Lösningar till SPSS-övning: Analytisk statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Lösningar till SPSS-övning: Analytisk statistik"

Transkript

1 UMEÅ UNIVERSITET Statistiska institutionen Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt vid graviditetens början mellan de kvinnorna var helt fria från ryggbesvär eller hade lindriga besvär och de som hade bekymmersamma eller allvarliga besvär? Vad är nollhypotesen respektive alternativ hypotesen här? Hur tolkar du resultatet av testet? Nollhypotes: Det finns ingen skillnad i medelvikt vid graviditetens början mellan de med lindriga besvär och de med svårare besvär. Alternativ hypotes: Det finns skillnad i medelvikt vid graviditetens början mellan de med lindriga besvär och de med svårare besvär. Group Statistics start of pregnancy (kg) Back pain severity >= 2 < 2 Std. Error N Mean Std. Deviation Mean 87 60,3552,00429, ,970 9,27095,9635 Independent Samples Test start of pregnancy (kg) assumed not assumed Levene's Test for Equality of Variances F Sig. t df Sig. (2-tailed) t-test for Equality of Means Mean Difference 95% Confidence Interval of the Std. Error Difference Difference Lower Upper,385,24,95 78,362,3842,5324 -,6098 4,37039,90 68,626,364,3842,5287 -,6207 4,38858 Tolkning av resultatet: Eftersom p-värdet är så stort, 0.362, (större än 0.05) så kan vi inte förkasta nollhypotesen (på 5%-nivån). Tillsvidare accepterar vi nollhypotesen om att det inte finns någon skillnad.

2 Uppgift 2 Testa om det är någon skillnad i medelvikt vid graviditetens slut mellan de kvinnorna var helt fria från ryggbesvär eller hade lindriga besvär och de som hade bekymmersamma eller allvarliga besvär? Vad är nollhypotesen respektive alternativ hypotesen här? Hur tolkar du resultatet av testet? Nollhypotes: Det finns ingen skillnad i medelvikt vid graviditetens slut mellan de med lindriga besvär och de med svårare besvär. Alternativ hypotes: Det finns skillnad i medelvikt vid graviditetens slut mellan de med lindriga besvär och de med svårare besvär. Group Statistics end of pregnancy (kg) Back pain severity >= 2 < 2 Std. Error N Mean Std. Deviation Mean 87 72,747,49059, ,2785 0,73287,295 end of pregnancy (kg) assumed not assumed Levene's Test for Equality of Variances F Sig. Independent Samples Test t df Sig. (2-tailed) t-test for Equality of Means Mean Difference 95% Confidence Interval of the Std. Error Difference Difference Lower Upper,659,48,748 78,082 2,8962, , ,6496,744 74,84,083 2,8962, ,3804 6,7284 Tolkning av resultatet: Eftersom p-värdet är större än 0.05 så kan vi inte förkasta nollhypotesen (på 5%-nivån). Tillsvidare accepterar vi nollhypotesen om att det inte finns någon skillnad. Väljer vi signifikansnivån 0% så kan vi dock förkasta nollhypotsen. Alltså det finns en signifikant skillnad (på 0%-nivån) mellan grupperna avseende slutvikt.

3 Chi-2-test Uppgift 3 Koda om NOCHLDR i följande grupper Inga barn, Ett barn och Mer än ett barn. Koda om BPSEV i följande grupper Ingen eller lindrig smärta och Bekymmersam eller allvarlig smärta. Namnge variablerna och variabelvärdena. Gör en korstabell med de nya omkodade variablerna. Testa om smärtnivån är beroende av antal barn från tidigare graviditeter. Vad är nollhypotesen respektive alternativ hypotesen här? Hur tolkar du resultatet av testet? Nollhypotes: Grad av ryggbesvär är oberoende av antalet barn sedan tidigare. Alternativ hypotes: Grad av ryggbesvär är beroende av antalet barn sedan tidigare. Case Processing Summary Back pain severity * Number of children Cases Valid Missing Total N Percent N Percent N Percent 80 00,0% 0,0% 80 00,0% Back pain severity * Number of children Crosstabulation Count Back pain severity Total no or "troubleless" pain pain Number of children more than no child one child one child Total Chi-Square Tests Pearson Chi-Square Likelihood Ratio Linear-by-Linear Association N of Valid Cases Asymp. Sig. Value df (2-sided) 2,66 a 2,002 2,758 2,002 0,45,00 80 a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 3,05. Tolkning av resultatet: Eftersom p-värdet är mindre än 0.05 så förkastas nollhypotesen (på 5%-nivån). Grad av ryggbesvär är beroende av antalet barn sedan tidigare.

4 Uppgift 4 Klassindela kvinnornas ålder samt gör en korstabell med smärtnivåer. Testa om smärtnivån är beroende av kvinnans ålder. Vad är nollhypotesen här? Hur tolkar du resultatet av testet? Nollhypotes: Grad av ryggbesvär är oberoende av kvinnans ålder. Alternativ hypotes: Grad av ryggbesvär är beroende av kvinnans ålder. Case Processing Summary Back pain severity * AGEGROUP Cases Valid Missing Total N Percent N Percent N Percent 80 00,0% 0,0% 80 00,0% Back pain severity * AGEGROUP Crosstabulation Count Back pain severity Total no or "troubleless" pain pain AGEGROUP younger than older than 25 years years Total Chi-Square Tests Pearson Chi-Square Likelihood Ratio Linear-by-Linear Association N of Valid Cases Asymp. Sig. Value df (2-sided) 5,944 a 3,4 5,976 3,3 3,034, a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 5,80. Tolkning av resultatet: Eftersom p-värdet är större än 0.05 så kan vi inte förkasta nollhypotesen (på 5%-nivån).

5 Regressionsanalys Uppgift 5 Skapa en ny variabel som bygger på kvinnornas viktökning. Vilken är den minsta respektive största viktökningen. Gör en regressionsmodell där du försöker förklara de varierande viktökningarna med de andra variablerna, t ex patientens ålder, patientens längd, patientens vikt vid graviditetens början, barnets vikt, antal barn från tidigare graviditeter eller vad du tycker skulle vara relevant. Summary Adjusted Std. Error of R R Square R Square the Estimate,38 a,45,25 5,009 a. Predictors: (Constant), Number of children, Weight of patient at start of pregnancy (kg), Weight of baby (kg), Age Regression Residual Total ANOVA b Sum of Squares df Mean Square F Sig. 772, ,09 7,48,000 a 4553, , , a. Predictors: (Constant), Number of children, start of pregnancy (kg), Weight of baby (kg), Age b. Dependent Variable: Weight gain under pregnancy (kg) (Constant) Weight of baby (kg) start of pregnancy (kg) Age Number of children a Unstandardized a. Dependent Variable: Weight gain under pregnancy (kg) Standardized B Std. Error Beta t Sig. 5,262 3,249,620,07 3,48,60,366 5,58,000-6,49E-02,038 -,2 -,707,090 3,805E-03,078,004,049,96 -,983,585 -,33 -,679,095 Hur tolkar du de skattade koefficienterna? Koefficienten för vikten på babyn = 3.4. Tolkning: Om barnets vikt ökar med ett kilo ökar mammans viktökning i genomsnitt med 3. kg (jmf med mammor med en baby som är ett kilo lättare) om allt annat (ålder, vikt vid graviditetens början, antalet barn sedan tidigare) är lika.

6 Koefficienten för startvikten = Tolkning: Om mammans vikt från graviditetens början ökar med ett kilo minskar mammans viktökning med 0.06 kg i genomsnitt (jmf med mammor vars startvikt var ett kilo lättare) om allt annat (ålder, babyns vikt, antalet barn sedan tidigare) är lika. Osv Testa om kofficienterna är skild från noll, dvs om variabeln i fråga förklarar något av variationen i viktökningarna. Kan du ta bort någon variabel från din modell? Hur blir skattningarna nu? En koefficient är signifikant skild från noll: Barnets vikt förklarar (i alla fall en del av) variationen i viktökning mellan kvinnorna. Tar vi bort variabler ändras skattningarna av koefficienterna? Jmf nedan. Om vi inte tar hänsyn till ålder etc som tidigare så ökar viktökningen i genomsnitt 2,9 kg per kilo som babyns vikt ökar, enligt modellen. (Constant) Weight of baby (kg) a Unstandardized a. Dependent Variable: Weight gain under pregnancy (kg) Standardized B Std. Error Beta t Sig.,683,990,846,399 2,908,607,338 4,792,000 Varför bör man inte göra en regressions analys med t ex smärtnivåer som responsvariabel (yvariabel)? Eftersom smärtnivåer är mätt på ordinalskala kan man inte använda dessa som responsvariabel i en regression. Responsvariabeln måste vara mätt på kvot- eller intervallskala.

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Population. Observationsenhet. Stickprov. Variabel Ålder Kön. Blodtryck 120/80. Värden. 37 år. Kvinna

Population. Observationsenhet. Stickprov. Variabel Ålder Kön. Blodtryck 120/80. Värden. 37 år. Kvinna Varför statistik Vi vill sammanfatta stora mängder av data i syfte att: Kvantitativt beskriva fenomen Undersöka samband mellan variabler Undersöka skillnader mellan grupper i något avseende Undersöka skillnader

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data Överlevnadsanalys 732G34 Statistisk analys av komplexa data 1 Tvärsnittsstudie Prospektiv Kohortstudie Observationsstudie Tvärsnittsstudie Retrospektiv Experimentell studie (alltid prospektiv) Klinisk

Läs mer

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng.

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum: 26 april, 2014 kl. 9:00 13:00 Tillåtna hjälpmedel:

Läs mer

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng.

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng. Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:

Läs mer

Kan föräldrastöd förbättra föräldrars hälsa, kompetens och barns beteende?

Kan föräldrastöd förbättra föräldrars hälsa, kompetens och barns beteende? Kan föräldrastöd förbättra föräldrars hälsa, kompetens och barns beteende? 2010 Omfattande instrument låg svarsfrekvens, anpassad för e-mail 2011 Minskad enkät något bättre svarsfrekvens, anpassad för

Läs mer

Variansanalys med SPSS Kimmo Sorjonen (2012-01-19)

Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1 Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1. Envägs ANOVA för oberoende mätningar 1.1 Variabler Data simulerar det som använts i följande undersökning (se Appendix A): Petty, R. E., & Cacioppo,

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Bakgrund. Christina. C Fåhraeus Barnläkare 2011

Bakgrund. Christina. C Fåhraeus Barnläkare 2011 Christina. C Fåhraeus Barnläkare 2011 Bakgrund Fetma är en av västvärldens snabbast växande hälsoproblem. Trenden likartad över hela världen. WHO klassificerar fetma som kronisk sjukdom Nationella data

Läs mer

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14 KA RKUNSKAP Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc Vad vet samhällsvetarna om sin kår? STAA31 HT14 Handledare: Peter Gustafsson Ekonomihögskolan, Statistiska institutionen Innehållsförteckning

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Introduktion till Biostatistik. Hans Stenlund, 2011

Introduktion till Biostatistik. Hans Stenlund, 2011 Introduktion till Biostatistik Hans Stenlund, 2011 Modellbaserad analys Regression Logistisk regression Överlevnadsanalys Hitta misstag Hantera extremvärden Bortfall Hur samlas data in? Formell analys

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

AD/HD i ett äldreperspektiv

AD/HD i ett äldreperspektiv AD/HD i ett äldreperspektiv Taina Guldberg Leg.psykolog, Minnesmottagningen Hässleholm Doktorand, Psykologiska institutionen, Göteborgs universitet. AD/HD=Attention Deficit/ Hyperactivity Disorder (DSM-IV)

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik

Läs mer

NÄR SKA MAN SÄLJA SIN BOSTAD?

NÄR SKA MAN SÄLJA SIN BOSTAD? NÄR SKA MAN SÄLJA SIN BOSTAD? En multipel regressionsanalys av bostadsrätter i Stockholm Oscar Jonsson Moa Englund Stockholm 2015 Matematik Institutionen Kungliga Tekniska Högskolan Sammanfattning Projektet

Läs mer

Richard Öhrvall, http://richardohrvall.com/ 1

Richard Öhrvall, http://richardohrvall.com/ 1 Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden

Läs mer

Datorövningar SPSS. Elisabet Borg, HT2007+

Datorövningar SPSS. Elisabet Borg, HT2007+ Datorövningar SPSS Elisabet Borg, HT2007+ 28 Instruktion till SPSS Detta är endast en enkel lathund med några få grundläggande funktioner för att du ska kunna komma igång med statistikprogrammet SPSS 13

Läs mer

Statistiska analyser C2 Bivariat analys. Wieland Wermke

Statistiska analyser C2 Bivariat analys. Wieland Wermke + Statistiska analyser C2 Bivariat analys Wieland Wermke + Bivariat analys n Mål: Vi vill veta något om ett samband mellan två fenomen n à inom kvantitativa strategier kan man undersöka detta genom att

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser

Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser REGRESSIONSANALYSER Ett antal olika regressionsmodeller har konstruerats för att undersöka om resultaten i ÖJ

Läs mer

Bilaga 1: Informationsbrev Informationsbrev gällande enkät undersökning

Bilaga 1: Informationsbrev Informationsbrev gällande enkät undersökning Bilaga 1: Informationsbrev Informationsbrev gällande enkät undersökning Hej! Mitt namn är Anna Vestman och jag studerar vid Karlstads Universitet på Vård- och stödsamordnarprogrammet. Jag håller just nu

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel

Läs mer

ARBETSRAPPORT NR 6 INOM GAVRA-ROJEKTET. Maria Nygren. Barnen en jämförelse mellan svenska och grekiska barn i tvillingmaterialet (2007)

ARBETSRAPPORT NR 6 INOM GAVRA-ROJEKTET. Maria Nygren. Barnen en jämförelse mellan svenska och grekiska barn i tvillingmaterialet (2007) ARBETSRAPPORT NR 6 INOM GAVRA-ROJEKTET Maria Nygren Barnen en jämförelse mellan svenska och grekiska barn i tvillingmaterialet (2007) Barnen Barnen... 1 Materialets egenskaper barnen i tvillingmaterialet...

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Statistik Lars Valter

Statistik Lars Valter Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications

Läs mer

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Introduktion till SPSS

Introduktion till SPSS Introduktion till SPSS.. Innehåll 1 Introduktion till SPSS 1 1.1 Data Editor 1 1.2 Viewer 1 2 Variabler och Mätskalor 2 2.1 Kvantitativa variabler (Numeriska variabler) 2 2.2 Kategoriska variabler (Kvalitativa

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

Analys av elfiskedata

Analys av elfiskedata 1 Analys av elfiskedata Erik Degerman, Erik Petersson & Berit Sers Sveriges Lantbruksuniversitet Institutionen för akvatiska resurser Sötvattenslaboratoriet Förord De statistiska metoderna är generellt

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems MINITAB i korthet release 16 Jan-Eric Englund SLU Alnarp Kompendium 2011 Område Agrosystem Course notes Swedish University of Agricultural Sciences Department of Agrosystems Jan-Eric Englund är universitetslektor

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

Utflyttningsorsaker för Norrköpings kommun 2012

Utflyttningsorsaker för Norrköpings kommun 2012 Linköpings universitet Utflyttningsorsaker för Norrköpings kommun 2012 Mayumi Setsu Oskarsson 732G26 Survey metodik och uppsats Institutionen för datavetenskap (IDA) Vårterminen 2013 INNEHÅLLSFÖRTECKNING

Läs mer

Regression med kvalitativa variabler. Jesper Rydén

Regression med kvalitativa variabler. Jesper Rydén Regression med kvalitativa variabler Jesper Rydén 1 2 UPPSALA UNIVERSITET Matematiska institutionen Jesper Rydén Matematisk statistik 1MS026 Tillämpad statistik vt 2013 REGRESSION MED KVALITATIVA VARIABLER

Läs mer

Introduktion till. Minitab version 14

Introduktion till. Minitab version 14 Statistiska institutionen LW n/pei/jb Introduktion till Minitab version 14 Innehållsförteckning 1 Introduktion Worksheeten datafönstret Minitabs menyer och Session-fönstret Att spara och öppna Minitab-filer

Läs mer

Falls and dizziness in frail older people

Falls and dizziness in frail older people Falls and dizziness in frail older people Predictors, experience and effect of an intervention Ulrika Olsson Möller Leg sjukgymnast, doktorand Mars 2013 Andelen äldre kommer att öka Våra mest sjuka äldre

Läs mer

Antal hörnor i Premier League-matcher En modell för att uppskatta antalet hörnor i fotbollsmatcher

Antal hörnor i Premier League-matcher En modell för att uppskatta antalet hörnor i fotbollsmatcher KANDIDATUPPSATS Hösten 2013 Statistiska institutionen Uppsala Antal hörnor i Premier League-matcher En modell för att uppskatta antalet hörnor i fotbollsmatcher Handledare: Rolf Larsson Författare: Erik

Läs mer

Statistiska undersökningar

Statistiska undersökningar Arbetsgång vid statistiska undersökningar Problemformulering, målsättning Statistiska undersökningar Arbetsgången mm Definition av målpopulation Framställning av urvalsram Urval Utformning av mätinstrument

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.

Läs mer

Konjunkturförändringar i åländsk ekonomi

Konjunkturförändringar i åländsk ekonomi Kandidatuppsats i Statistik Konjunkturförändringar i åländsk ekonomi -Val av förklarande variabler för åländska företags omsättning Jesper Gullquist Abstract This paper is made on behalf of Statistics

Läs mer

Fysisk aktivitet och dess samvariation med självskattad psykisk status och stress

Fysisk aktivitet och dess samvariation med självskattad psykisk status och stress Fysisk aktivitet och dess samvariation med självskattad psykisk status och stress Henrik Allström L4L Martin Unander L3K Gymnastik och idrottshögskolan Examensarbete 165:2011 Lärarprogrammet 2008-2012

Läs mer

Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet. SPSS (PASW) 18 for Windows - a guided tour

Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet. SPSS (PASW) 18 for Windows - a guided tour Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet SPSS (PASW) 18 for Windows - a guided tour VT 2010 2 Introduktion till SPSS (PSAW) Denna övning kommer steg för steg att lära oss de grundläggande

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Rämshyttans fiskevårdsområdesförening. Kräftprovfiske i sjön Sången år 2010 Ronnie Hermansson

Rämshyttans fiskevårdsområdesförening. Kräftprovfiske i sjön Sången år 2010 Ronnie Hermansson Kräftprovfiske i sjön Sången år 2010 Ronnie Hermansson 1. Inledning Rämshyttans fiskevårdsområde ligger på gränsen mellan kommunerna Borlänge, Ludvika och Säter i Dalarna (se figur 1). De tre kommunerna

Läs mer

Ersättningsprinciper i primärvården svenska erfarenheter. 23 maj 2016

Ersättningsprinciper i primärvården svenska erfarenheter. 23 maj 2016 Ersättningsprinciper i primärvården svenska erfarenheter 23 maj 2016 Anders Anell, Lunds universitet Svensk primärvård Tradition av offentliga vårdcentraler med områdesansvar Introduktion av vårdval 2007-2010

Läs mer

Lösningar till Tentafrågor

Lösningar till Tentafrågor Lösningar till Tentafrågor 1. I en stor studie skattade man nedre och övre kvartilen till 100 resp 140. Hur många kan man därmed anse har värden över 140? Övre kvartilen år 75% percentil, vilket betyder

Läs mer

Analys av bostadsrättspriset i Stockholms innerstad

Analys av bostadsrättspriset i Stockholms innerstad Analys av bostadsrättspriset i Stockholms innerstad En multipel linjär regression Kandidatexamensarbete i Teknisk Fysik Anda Zhang andaz@kth.se Handledare Boualem Djehiche Avdelningen för Matematisk Statistik

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

Statskontorets regressionsanalyser (Dnr 2008/45-5)

Statskontorets regressionsanalyser (Dnr 2008/45-5) 1 (22) Statskontoret PM (2009) Statskontorets regressionsanalyser (Dnr 2008/45-5) I denna bilaga återges de regressionsanalyser och beskrivningar som konsulten Karl-Martin Sjöstrand utfört och författat

Läs mer

Introduktion till PSPP

Introduktion till PSPP Introduktion till PSPP Centrum för Primärvårdsforskning (CPF) 2015-02-09 Mir Nabi Pirouzi Fard www.cpf.se 1 Introduktion PSPP är ett program för statistisk analys av data. En manual i pdf-format för hur

Läs mer

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413.

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Peter Anton TENTAMEN 2005-12-16 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer (ID),

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

Sconesbakning. Sofi Bergdahl Anna Kers Johanna Nyberg Josefin Persson

Sconesbakning. Sofi Bergdahl Anna Kers Johanna Nyberg Josefin Persson HEMUPPGIFT Sconesbakning Sofi Bergdahl Anna Kers Johanna Nyberg Josefin Persson IEK203 Försöksplanering Institutionen för Industriell Ekonomi och Samhällsvetenskap Avdelningen för Kvalitets- & Miljöledning

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Examensarbete 2008:7

Examensarbete 2008:7 Matematisk statistik Stockholms universitet Överlevnadsanalys baserad på upprepade oregelbundna mätningar Applicering av statistiska metoder för jämförelse av två behandlingsmetoder mot depression Tsegalem

Läs mer

Inference in multiplicative pricing

Inference in multiplicative pricing Inference in multiplicative pricing Tariffanalysis med svaga antaganden Föredrag i aktuarieföreningen 2015-11-26 Stig Rosenlund Metoderna är implementerade i programspråket Rapp. För att hitta Rapp på

Läs mer

Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 查 询 TMS160 供 应 商 捷 多 邦, 专 业 PCB 打 样 工 厂,24 小 时 加 急 出 货 TENTAMEN: Statistisk modellering för I3, TMS160, fredagen den 26 Augusti kl? på?. Jour: Holger Rootzén, ankn. 3578 Hjälpmedel: Utdelad formelsamling

Läs mer

Experimentdesign och statistik. Håkan Rydin Evolutionsbiologiskt centrum växtekologi. Experimentdesign. Olika slags studier

Experimentdesign och statistik. Håkan Rydin Evolutionsbiologiskt centrum växtekologi. Experimentdesign. Olika slags studier Medan ni väntar fundera över: Varför använder biologer statistik? Varför behövs replikat? Varför använder biologer statistik? Eperimentdesign och statistik Håkan Rydin Evolutionsbiologiskt centrum vätekologi

Läs mer

Repetition och ANOVA. nbib44

Repetition och ANOVA. nbib44 Repetition och ANOVA nbib44 Repetition: Labb 2 Du har observerat: f(aa)=0.36, f(aa+aa)=0.64 Kan man testa om fenotypfrekvensen är i Hardy Weinberg jämvikt? Nej! Kan man testa om f(aa) är skiljt från någonting

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera

Läs mer

Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning

Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Silvelyn Zwanzig, Matematiska Statistik NV1, 2005-03-03 1. Datamaterial I de uppgifter som f ljer skall du l ra dig hur Minitab anv ndas f r

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014 Föreläsning 8. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Exempel: Pris och boyta Samband mellan två eller flera variabler? Spridningsdiagram

Läs mer

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling

Läs mer

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488 Idiotens guide till Håkan Lyckeborgs SPSS-föreläsning 4/12 2008 Av: Markus Ederwall, 21488 1. Starta SPSS! 2. Hitta din datamängd på Kurs 601\downloads\datamängd A på studentwebben 3. När du hittat datamängden

Läs mer

Radon Det osynliga hotet

Radon Det osynliga hotet Radon Det osynliga hotet Hur många lungcancerfall kan sparas om gränsvärdet i bostäder sänks? Riskanalysmetoder VBR 180 Emma Ingmarsson, Robin Linde, Anders Lynnér, Johan Nilsson 2012-10-15 Följande rapport

Läs mer

REGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11

REGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11 1/11 REGRESSIONSANALYS Exempel från F6 Linda Wänström Statistiska institutionen, Stockholms universitet 2/11 Datamaterial Amerikanskt datamaterial från 1970 "Income guarantees and the working poor" där

Läs mer

Introduktion till PAST

Introduktion till PAST Introduktion till PAST Robert Szulkin robert.szulkin@sll.se Innehållsförteckning Innehållsförteckning... - 2 - PAST - Introduktion... - 3 - Introduktion... - 3 - Hjälpmanual... - 3 - Installation... -

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Tillämpad statistik Naprapathögskolan. Henrik Källberg www.henrikkallberg.com Henrik.Kallberg@ki.se Tel. 08-5248 74 82

Tillämpad statistik Naprapathögskolan. Henrik Källberg www.henrikkallberg.com Henrik.Kallberg@ki.se Tel. 08-5248 74 82 Tillämpad statistik Naprapathögskolan Henrik Källberg www.henrikkallberg.com Henrik.Kallberg@ki.se Tel. 08-5248 74 82 Mål! Introducera deskriptiv statistik Förklara grundläggande begrepp inom statistik

Läs mer

Kvantitativa (analys) metoder

Kvantitativa (analys) metoder Kvantitativa (analys) metoder Roland Sjöström Statistik, SPSS, analysmetoder Vad är standardavvikelse och varians Vad händer om ni får dubbelt så många svar? Medelfel? Vad innebär 95% sannolikhet Varför

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer