Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.."

Transkript

1 TENTAMEN Tentamensdatum Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad du lämnar in! Skrivtid:.-8. Hjälpmedel: Kompendiet Prognoser av Baudin Valfri bok Miniräknare För godkänt resultat krävs 5 procent av maximal poäng. Observera att utelämnade eller bristfälliga motiveringar medför poängavdrag. Börja varje ny uppgift på ett nytt papper och skriv bara på en sida av varje papper. Inga svar får lämnas inne i själva tentan (där frågorna står). Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad du lämnar in! Tentamensresultatet beräknar vi att anslå den 8 april. Lycka till!

2 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Uppgift Summa Poäng Betyg:

3 Uppgift (3 p) En chef på ett försäkringsbolag vill undersöka relationen mellan storleken på livförsäkringar och försäkringstagarnas löner. Hon tror att personer med högre årsinkomst också ofta har en större livförsäkring. Livförsäkringsbelopp (-tals dollar) Y Årsinkomst (-tals dollar) X a) Illustrera relationen mellan livförsäkringbeloppet och årsinkomsten i en lämplig figur. Rita också på fri hand in en regressionslinje. (p) b) Nedan återfinns ett utdrag ur en MINITAB-utskrift med skattningar av parametrarna i en linjär modell mellan livförsäkringsbelopp och årsinkomst. Tolka de skattade parametrarna. (p) Regression Analysis: Y versus X The regression equation is Y = 8, +,35 X Predictor Coef SE Coef T P Constant 8,,6,97,8 X,359,8,9,9 S = 76,5 R-Sq = 5,5% R-Sq(adj) = 5,5% Analysis of Variance Source DF SS MS F P Regression ,5,9 Error Total c) Jämför den skattade modellen med den på fri hand ritade regressionslinjen. (p)

4 Uppgift ( p) En snabbmatskedja vars meny består av hamburgare och kycklingbaguetter ska just introducera fiskbaguetter på sin meny. Diskussionerna inom ledningsgruppen går höga om den troliga efterfrågan och vad priset ska sättas till på fiskbaguetterna. En nyanställd civilekonom övertygar de övriga om att utföra ett experiment för att kunna skatta en efterfrågekurvan som visar sambandet mellan pris och efterfråga. Man väljer ut restauranger med liknande försäljningssiffror och liknande kundunderlag vad gäller sociodemografiska egenskaper hos den närligggande befolkningen. På de olika restaurangerna säljs sedan fiskbaguetter för olika priser och på varje resturang räknar man efter en vecka antalet sålda fiskbaguetter. Priset och antalet sålda fiskbaguetter används sedan för att skatta en linjär regressionsmodell och en :a ordningens polynomregressionsmodell. Nedan återfinns ett spridningsdiagram och Minitab-utskrifter för de två modellerna. a) Gör en punktprediktion för varje modell av en veckoförsäljning då priset är $.. (p) b) Vilken modell verkar bättre? Motivera ditt svar utförligt! (3p) c) Använd den bättre modellen för att göra en punktprediktion av en veckoförsäljning då priset är $3.5. Förklara också varför det egentligen ingen av modellerna lämpar sig för att göra en prediktion när priset är $3.5. (3p) d) Om snabbmatskedjan skulle komplettera sina prediktioner med en intervallskattning, vilken bör de använda? Motivera ditt svar. (Obs! Du behöver inte räkna ut en sådan intervallskattning.) (p) 375 Scatterplot of Sales vs x 35 Sales ,5,75,,5 x,5,75 3,

5 Regression Analysis: Sales versus x The regression equation is Sales = 5-68,9 x Predictor Coef SE Coef T P Constant 53,56 5,8 9,87, x -68,9 6,68 -,3, S = 3,895 R-Sq = 85,5% R-Sq(adj) = 8,7% Analysis of Variance Source DF SS MS F P Regression ,, Error Total Unusual Observations Obs x Sales Fit SE Fit St Resid,5 377, 35,9 5,7 6,8,3R R denotes an observation with a large standardized residual. Plots for Sales 99 Normal Probability Plot Versus Fits 9 Percent Fitted Value Histogram Versus Order Frequency Observation Order 6 8

6 Regression Analysis: Sales versus x; x^ The regression equation is Sales = x + 6,5 x^ Predictor Coef SE Coef T P Constant 766,9 37,,5, x -359, 3,9 -,5, x^ 6,57 7,576 8,5, S = 5,9573 R-Sq = 97,3% R-Sq(adj) = 96,9% Analysis of Variance Source DF SS MS F P Regression ,5, Error Total Source DF Seq SS x 8798 x^ 576 Unusual Observations Obs x Sales Fit SE Fit St Resid 3,7 36, 3,98, -6,98-3,7R R denotes an observation with a large standardized residual. Plots for Sales 99 Normal Probability Plot Versus Fits Percent Fitted Value 36 8 Histogram Versus Order Frequency Observation Order 6 8

7 Uppgift 3 ( p) I ett starkt växande bostadsområde i utkanten av en stor amerikansk stad har försäljningspriser på hus ökat den senaste tiden. Man vad är det egentligen som avgör hur mycket kunderna är villiga att betala för ett visst hus? För att för att försöka ta reda på vilka egenskaper hos husen som spelar roll för marknadspriset har man slumpmässigt valt ut 9 nyligen sålda hus och registrerat följande variabler: husets pris (y), bostadsyta (x ), antal våningar (x ), antal sovrum (x 3 ) och antal badrum (x ). Följande modell används för att relatera priset till egenskaperna hos huset: Y = β + β x + β x + β x + β x + ε där ε är oberoende och N(, σ ) 3 3 En skattning av parametrarna i modellen gav följande resultat (standardavvikelsen för skattningarna inom parantes): Konstant (8.88) Bostadsyta (square feet) (.3) Antal våningar (.5) Antal sovrum (8.9) Antal badrum 5.93 (3.5) SSR (Sum of Squares due to Regression) och SSE (Sum of Squares due to Error) för den skattade modellen är 9359 respektive a) Tolka parameterskattningarna i ord. (p) b) Undersök om någon av förklaringsvariablerna är linjärt relaterad till priset med hjälp av en statistisk hypotesprövning där samtliga steg ska redovisas i en logisk ordning. (8p)

8 Uppgift (5 p) Följande uppgift är baserat på ett datamaterial som kommer från Hosmer och Lemeshow () Applied Logistic Regression: Second Edition, John Wiley and Sons Inc. Datat samlades in vid Baystate Medical Center i Springfield, Massachusetts och består av ett stickprov om patienter på en intensivvårdsavdelning. För att prediktera sannolikheten för överleva då man tagits in på en intensivvårdsavdelning skattas en logistisk regression där responsvariabel är STA (antar värdet om patienten dör och annars). Förklaringsvariablerna är AGE (patientens ålder), CAN (antar värdet om patienten har cancer och annars) TYP (antar värdet om inläggningen på avdelningen är akut och annars), SYS (systoliskt blodtryck, mm Hg, vid inläggning), HRA (puls, slag/min, vid inläggning) och PRE ( om tidigare inläggning vid intensiven de senaste 6 månaderna, annars). Nedan återfinns en Minitab-utskrift. a) Vad är sannolikheten att en patient som är 55 år, som inte har cancer, som är akutinlagd, som har systoliskt blodtryck 3, som har i puls och som inte har varit inlagt på intensiven de senaste månaderna dör vid intensivvårdsavdelningen? (p) b) Hur tolkar du den skattade oddskvoten för variabeln TYP? (3p) Binary Logistic Regression: STA versus AGE; CAN; TYP; SYS; HRA; PRE Link Function: Logit Response Information Variable Value Count STA (Event) 6 Total Logistic Regression Table Odds 95% CI Predictor Coef SE Coef Z P Ratio Lower Upper Constant -3,8967,53 -,5, AGE,3759,88 3,7,,,,6 CAN,8335,835,,8 6,5, 3,98 TYP 3,835,896 3,6,,8 3,8,95 SYS -,6565,6756 -,37,8,99,97, HRA -,7577,7897 -,,3,99,98, PRE,396,5366,83,7,55,55,39 Log-Likelihood = -8,97 Test that all slopes are zero: G = 38,6, DF = 6, P-Value =,

9 Uppgift 5 ( p) Julveckan är en mycket viktig vecka för många skidorter i Alperna då en stor del av vinsten gör denna vecka. Vädret tros dock vara en viktig förklaringsvariabel när det gäller variationen i antalet sålda liftkort år från år. Data från de senaste åren har samlats in och nedan följer en Minitab-utskrift där följande modell har skattats: Y = β + β x + β x + ε o där x = totalt snöfall (mm), x = medeltemperatur ( C) och ε är oberoende och N(, σ ) Regression Analysis: Tickets versus Snö; Temp The regression equation is Tickets = 88 +,9 Snö - 8,8 Temp Predictor Coef SE Coef T P Constant 87,9 935,9 8,58, Snö,937,3,5,66 Temp -8,75 9,7 -,,66 S = 7,68 R-Sq =,% R-Sq(adj) =,7% Analysis of Variance Source DF SS MS F P Regression ,6,337 Error Total Source DF Seq SS Snö 6556 Temp Durbin-Watson statistic =,593 Plots for Tickets 99 Normal Probability Plot 3 Versus Fits 9 5 Percent Fitted Value,8 Histogram 3 Versus Order Frequency 3,6,, 5-5, Observation Order 6 8

10 a) Utifrån förklaringsgrad, F-test och residualplottarna, är modellen en bra beskrivning av hur snöfall och temperatur påverkar försäljningen av liftkort? Motivera! Vilka antaganden kollas i respektive residualplot? Är de uppfyllda i dessa fall? (3p) b) Testa, med signifikansnivån 5%, om det föreligger positiv :a ordningens autokorrelation. Genomför samtliga steg i en statistisk hypotesprövning i en logisk ordning. (8p) c) Vill du utifrån vad residualplottarna och Durbin-Watson-testet visar, förändra modellen på något sätt? I så fall, hur? Motivera ditt svar. (p) Uppgift 6 ( poäng) I Holmsunds hamn utanför Umeå finns ett vindkraftsanläggning som varit i drift sedan juni 998. Totala mängden energi som producerats (i kilowattimmar) beskrivs i följande figur: Produced energy in Holmsund 5 kwh 5 5 jun-98 jun-99 jun- jun- jun- jun-3 jun- jun-5 jun-6 (Källa: Två skattade modeller baserat på data från juli 998 till december 6 för energiproduktionen på anläggningen är: Modell : (Additiv modell) Production = 33,38 -,7t -,8M - 8,5588M - 9,56M 3-5,58M - 55,679 M 5-5,9 M 6-56,978 M 7-6,9 M 8-35,9993 M 9-6,8759M + 9,5993M, där t=tid med t= för juli 998 (Produktionen startade juni 998, men var första månaden inte i full drift och därför är den månaden inte inkluderad) M = Dummyvariabel för januari, dvs M = för mätning i månaden januari och M = annars M = Dummyvariabel för februari, dvs M = för mätning i månaden februari och M = annars... osv.. M = Dummyvariabel för november

11 Modell : (Multiplikativ model) Production =,983 -,5t är den skattade trenddelen av model S =, Säsongsindex för januari baserat på en a multiplikativ model S =,3 Säsongsindex för februari baserat på en a multiplikativ model S3 =, Säsongsindex för mars baserat på en a multiplikativ model S =,78 Säsongsindex för april baserat på en a multiplikativ model S5 =,7 Säsongsindex för maj baserat på en a multiplikativ model S6 =,78 Säsongsindex för juni baserat på en a multiplikativ model S7 =,73 S8 =,69 S9 =,95 S =,5 S =, S =,3 Säsongsindex för juli baserat på en a multiplikativ model Säsongsindex för augusti baserat på en a multiplikativ model Säsongsindex för september baserat på en a multiplikativ model Säsongsindex för oktober baserat på en a multiplikativ model Säsongsindex för november baserat på en a multiplikativ model Säsongsindex för december baserat på en a multiplikativ model a) I vilken månad är energiproduktionen i genomsnitt högst respektive lägst enligt de två olika modellerna. Förklara hur du kommer fram till ditt svar! ( p) b) Tolka och jämför de markerade skattade värdena -,8 i modell och, i modell (p) c) Hur mycket lägre är energiproduktionen i genomsnitt i juli jämfört med januari enligt de två olika modellerna? Ledtråd: Du kan svara i kilowattimmar, procent eller procentenheter (och du behöver inte använda samma enhet för båda modellerna ) (p) d) Gör en prognos för energiproduktionen i januari 7 för de två modellerna. (Energiproduktionen i januari 7 var i själva verket,59 kilowattimmar) (p)

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys

Läs mer

Statistisk undersökningsmetodik (Pol. kand.)

Statistisk undersökningsmetodik (Pol. kand.) TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström 1 STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III) 3 högskolepoäng, ingående i kursen Undersökningsmetodik och

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (6 uppgifter) Tentamensdatum 2010-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Ove Edlund Adam Jonsson

Läs mer

Utflyttningsorsaker för Norrköpings kommun 2012

Utflyttningsorsaker för Norrköpings kommun 2012 Linköpings universitet Utflyttningsorsaker för Norrköpings kommun 2012 Mayumi Setsu Oskarsson 732G26 Survey metodik och uppsats Institutionen för datavetenskap (IDA) Vårterminen 2013 INNEHÅLLSFÖRTECKNING

Läs mer

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng.

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum: 26 april, 2014 kl. 9:00 13:00 Tillåtna hjälpmedel:

Läs mer

Kompletterande kursmaterial till kursen Matematisk statistik.

Kompletterande kursmaterial till kursen Matematisk statistik. Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 5 (8 uppgifter) Poäng totalt för del 30 (3 uppgifter) Tentamensdatum 008-0-7 Robert Lundqvist Lärare: Ove Edlund Skrivtid 09.00-4.00

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita

Läs mer

Sconesbakning. Sofi Bergdahl Anna Kers Johanna Nyberg Josefin Persson

Sconesbakning. Sofi Bergdahl Anna Kers Johanna Nyberg Josefin Persson HEMUPPGIFT Sconesbakning Sofi Bergdahl Anna Kers Johanna Nyberg Josefin Persson IEK203 Försöksplanering Institutionen för Industriell Ekonomi och Samhällsvetenskap Avdelningen för Kvalitets- & Miljöledning

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Lektion 1: Fördelningar och deskriptiv analys

Lektion 1: Fördelningar och deskriptiv analys Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Prediktion av huspriser i Falun

Prediktion av huspriser i Falun Prediktion av huspriser i Falun Examensarbete inom teknisk fysik, grundnivå, 15hp, SA104X KTH, institiotionen för matematik författare Robin Sollander 850307-8217 Kungsgårdsvägen 20 791 41 Falun 070-7652405

Läs mer

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413.

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Peter Anton TENTAMEN 2005-12-16 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer (ID),

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs

Läs mer

Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser

Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser REGRESSIONSANALYSER Ett antal olika regressionsmodeller har konstruerats för att undersöka om resultaten i ÖJ

Läs mer

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p) Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Examensarbete 2008:7

Examensarbete 2008:7 Matematisk statistik Stockholms universitet Överlevnadsanalys baserad på upprepade oregelbundna mätningar Applicering av statistiska metoder för jämförelse av två behandlingsmetoder mot depression Tsegalem

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng.

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng. Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl.

LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl. UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk Statistik Statistiska Metoder 5MS010, 7.5 hp Kadri Meister Rafael Björk LABORATIONER Detta dokument innehåller beskrivningar av de tre laborationerna

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning

Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Silvelyn Zwanzig, Matematiska Statistik NV1, 2005-03-03 1. Datamaterial I de uppgifter som f ljer skall du l ra dig hur Minitab anv ndas f r

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade) 5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 4

ÖVNINGSUPPGIFTER KAPITEL 4 ÖVNINGSUPPGIFTER KAPITEL 4 REGRESSIONSLINJEN: NIVÅ OCH LUTNING 1. En av regressionslinjerna nedan beskrivs av ekvationen y = 20 + 2x; en annan av ekvationen y = 80 x; en tredje av ekvationen y = 20 + 3x

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 查 询 TMS160 供 应 商 捷 多 邦, 专 业 PCB 打 样 工 厂,24 小 时 加 急 出 货 TENTAMEN: Statistisk modellering för I3, TMS160, fredagen den 26 Augusti kl? på?. Jour: Holger Rootzén, ankn. 3578 Hjälpmedel: Utdelad formelsamling

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Tidsserier och Prognoser

Tidsserier och Prognoser Tidsserier och Prognoser Mattias Villani Sveriges Riksbank och Stockholms Universitet Stockholm, Oktober 2008 Mattias Villani () Tidsserier och Prognoser Stockholm, Oktober 2008 1 / 16 Översikt Tidsserier,

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data Överlevnadsanalys 732G34 Statistisk analys av komplexa data 1 Tvärsnittsstudie Prospektiv Kohortstudie Observationsstudie Tvärsnittsstudie Retrospektiv Experimentell studie (alltid prospektiv) Klinisk

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Repetition och ANOVA. nbib44

Repetition och ANOVA. nbib44 Repetition och ANOVA nbib44 Repetition: Labb 2 Du har observerat: f(aa)=0.36, f(aa+aa)=0.64 Kan man testa om fenotypfrekvensen är i Hardy Weinberg jämvikt? Nej! Kan man testa om f(aa) är skiljt från någonting

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems MINITAB i korthet release 16 Jan-Eric Englund SLU Alnarp Kompendium 2011 Område Agrosystem Course notes Swedish University of Agricultural Sciences Department of Agrosystems Jan-Eric Englund är universitetslektor

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Frisörer och Faktorer

Frisörer och Faktorer Frisörer och Faktorer Seth Nielsen Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:1 Matematisk statistik Juni 2011 www.math.su.se Matematisk statistik

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014 Föreläsning 8. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Exempel: Pris och boyta Samband mellan två eller flera variabler? Spridningsdiagram

Läs mer

REGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11

REGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11 1/11 REGRESSIONSANALYS Exempel från F6 Linda Wänström Statistiska institutionen, Stockholms universitet 2/11 Datamaterial Amerikanskt datamaterial från 1970 "Income guarantees and the working poor" där

Läs mer

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007 Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik version 7 februari Datorlaboration 3 1 Inledning I denna laboration behandlas

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och

Läs mer

Statistik vad är det?

Statistik vad är det? Statistik vad är det? LWn/PEI / 1 Sveriges officiella statistik Statistiska CentralByrån (SCB www.scb.se) Statistikansvariga myndigheter Socialstyrelsen (www.sos.se) Riksförsäkringsverket (www.rfv.se)

Läs mer

HEMUPPGIFT. Att brygga det godaste kaffet försöksplanering och faktorförsök. IEK203 Försöksplanering Vt-2005

HEMUPPGIFT. Att brygga det godaste kaffet försöksplanering och faktorförsök. IEK203 Försöksplanering Vt-2005 HEMUPPGIFT Att brygga det godaste kaffet försöksplanering och faktorförsök IEK203 Försöksplanering Vt-2005 Pernilla Engström Mathias Larsson Patrik Paulsson Anna-Maria Ullnert Luleå Tekniska Universitet

Läs mer

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Prediktion av bostadsrättspriser i Stockholms innerstad

Prediktion av bostadsrättspriser i Stockholms innerstad Prediktion av bostadsrättspriser i Stockholms innerstad Examensarbete inom teknisk fysik, grundnivå SA104X Kandidatexamensarbete vid institutionen för KTH Matematik, avdelning Matematisk Statistik Av Ludvig

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

Statistiska undersökningar

Statistiska undersökningar Arbetsgång vid statistiska undersökningar Problemformulering, målsättning Statistiska undersökningar Arbetsgången mm Definition av målpopulation Framställning av urvalsram Urval Utformning av mätinstrument

Läs mer

SVERIGEFONDERS AVKASTNING:

SVERIGEFONDERS AVKASTNING: SVERIGEFONDERS AVKASTNING: TUR ELLER SKICKLIGHET? Harry Flam 1 Roine Vestman 2 1 Stockholms universitet 2 Stockholms universitet och Swedish House of Finance SNS, 9 februari 2015 VAD VI HAR GJORT Skattat

Läs mer

Blandade problem från väg- och vattenbyggnad

Blandade problem från väg- och vattenbyggnad Blandade problem från väg- och vattenbyggnad Sannolikhetsteori (Kapitel 1 7) V1. Vid en undersökning av bostadsförhållanden finner man att av 300 lägenheter har 240 bad (och dusch) medan 60 har enbart

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.

Läs mer

Antal hörnor i Premier League-matcher En modell för att uppskatta antalet hörnor i fotbollsmatcher

Antal hörnor i Premier League-matcher En modell för att uppskatta antalet hörnor i fotbollsmatcher KANDIDATUPPSATS Hösten 2013 Statistiska institutionen Uppsala Antal hörnor i Premier League-matcher En modell för att uppskatta antalet hörnor i fotbollsmatcher Handledare: Rolf Larsson Författare: Erik

Läs mer

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Christian Aguirre Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:17 Matematisk

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

Konjunkturförändringar i åländsk ekonomi

Konjunkturförändringar i åländsk ekonomi Kandidatuppsats i Statistik Konjunkturförändringar i åländsk ekonomi -Val av förklarande variabler för åländska företags omsättning Jesper Gullquist Abstract This paper is made on behalf of Statistics

Läs mer