Regressions- och Tidsserieanalys - F4

Storlek: px
Starta visningen från sidan:

Download "Regressions- och Tidsserieanalys - F4"

Transkript

1 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1 / 25

2 Exempel: Enkel linjär regressionsanalys med pris (y) och KVM (x) Priset är utgångspriset (1tals kr) och KVM är kvadratmeter för 49 lägenheter från Hemnet.se. 6 5 Fitted Line Plot Pris = ,14 KVM S 128,14 R Sq 36,4% R Sq(adj) 35,% 4 Pris KVM Wänström (Linköpings universitet) F4 2 / 25

3 analys När en modell har skattats ska den utvärderas. Modellantagandena är att feltermerna är oberoende och normalfördelade med medelvärde noll och konstant varans (för varje x-värde). Vi kan inte undersöka feltermernas utseende direkt, utan undersöker i stället residualerna, e, eller de standardiserade (studentized) residualerna. = e = y ŷ; St. residual = y ŷ s Vi plottar residualer mot x eller mot skattade värden (ŷ) och undersöker om variansen runt noll-linjen verkar vara konstant Vi undersöker i samma plot om det ser ut som om vi har missat att funktionen kan vara icke-linjär Vi undersöker om residualerna ser normalfördelade ut i histogram/normal probability plot. Wänström (Linköpings universitet) F4 3 / 25

4 plottar 99 Normal Probability Plot Plots for Pris 2 Versus Fits 9 1 Percent Fitted Value 4 Histogram Versus Order 16 2 Frequency Observation Order 4 45 Wänström (Linköpings universitet) F4 4 / 25

5 Ökande varians? Vi kan prova att transformera y y = y 8 7 Fitted Line Plot rot(pris) = 13,85 +,4155 KVM S 12,915 R Sq 3,8% R Sq(adj) 29,3% Percent Plots for rot(pris) Normal Probability Plot Versus Fits rot(pris) Histogram Fitted Value Versus Order KVM Frequency Observation Order Wänström (Linköpings universitet) F4 5 / 25

6 Något annat som kan vara fel? 6 5 Ort 1 4 Pris KVM Wänström (Linköpings universitet) F4 6 / 25

7 Korrelationsmatris En korrelationsmatris är en matris med parvisa korrelationer, r, mellan flera variabler. Vanligtvis brukar även p-värdet för hypotestestet som testar nollhypotesen att ρ = (korrelationen i populationen) ges för varje korrelation. Nedan ges korrelationsmatrisen för variablerna utgångspris (pris: 1tals kr), kvadratmeter (KVM), antal rum (rum), samt avgift (1tals kr) för 49 lägenheter från Hemnet.se. Correlations: Pris; KVM; Rum; Avgift Pris KVM Rum KVM,63, Rum,498,881,, Avgift,615,91,813,,, Cell Contents: Pearson correlation P Value Wänström (Linköpings universitet) F4 7 / 25

8 Multikolinjäritet Perfekt multikolinjäritet existerar om en eller flera förklaringsvarabler är en linjärkombination av en eller flera andra förklaringsvariabler. Då går det inte att skatta en regressionsmodell. I praktiken är det mer vanligt att man får problem med multikolinjäritet för att att en eller flera förklaringsvariabler kan vara högt korrelerade med en eller flera andra förklaringsvariabler. Då går det att skatta regressionsmodellen, men man får stora standardavvikelser för skattningarna, dvs stora s b1, s b2 osv. Om en eller flera korrelationer (mellan förklaringsvariablerna) är minst.9 kan man få allvarliga problem med multikolinjäritet. Wänström (Linköpings universitet) F4 8 / 25

9 VIF Ett sätt att mäta multikolinjäritet är att mäta Variance Inflation Factor: VIF, för varje förklaringsvariabel. VIF j för förklaringsvariabel j beräknas som VIF j = 1 1 R 2 j där Rj 2 är förklaringsgraden från en regressionsanalys med förklaringsvariabel j som responsvariabel och övriga förklaringsvariabler som förklaringsvariabler. Multikolinjäritet anses vara ett stort problem om Någon VIF > 1 Medelvärdet för alla VIF är mycket större än 1. Wänström (Linköpings universitet) F4 9 / 25

10 Multipel regressionsanalys Ort mäts med en dummyvariabel där (1= Hammarby Sjöstad; =Haninge) Regression Analysis: Pris versus Kvm; Avgift; Rum; Ort; Ort*Kvm The regression equation is Pris = 149 4,73 Kvm Avgift Rum 19 Ort + 29,1 Ort*Kvm Predictor Coef SE Coef T P VIF Constant 148,8 475,2,31,756 Kvm 4,731 9,944,48,637 12,64 Avgift 137,7 12, 1,15,257 5,776 Rum 326,4 126,2 2,59,13 4,897 Ort 18,7 572,3,19,85 23,76 Ort*Kvm 29,51 6,717 4,33, 27,259 S = 46,342 R Sq = 93,4% R Sq(adj) = 92,7% Analysis of Variance Source DF SS MS F P Regression ,3, Error Total Wänström (Linköpings universitet) F4 1 / 25

11 Multipel Regressionsanalys med centrerad KVM Regression Analysis: Pris versus Kvm_C; Avgift; Rum; Ort; Ort*Kvm_C The regression equation is Pris = 545 4,73 Kvm_C Avgift Rum Ort + 29,1 Ort*Kvm_C Predictor Coef SE Coef T P VIF Constant 545, 652,,84,48 Kvm_C 4,731 9,944,48,637 12,64 Avgift 137,7 12, 1,15,257 5,776 Rum 326,4 126,2 2,59,13 4,897 Ort 2324,6 126,7 18,35, 1,131 Ort*Kvm_C 29,51 6,717 4,33, 4,77 S = 46,342 R Sq = 93,4% R Sq(adj) = 92,7% Analysis of Variance Source DF SS MS F P Regression ,3, Error Total Wänström (Linköpings universitet) F4 11 / 25

12 Vilka förklaringsvariabler ska vara med i en regressionsmodell? Mål: Vi vill ha förklaringsvariabler som tillsammans korrekt beskriver och prognosticerar resonsvariabeln. Vi kan jämföra modeller m.a.p. R 2 R 2 s P.I. Wänström (Linköpings universitet) F4 12 / 25

13 "Best subset regression" i Minitab med pris som responsvariabel och KVM, rum, avgift och ort Best Subsets Regression: Pris versus KVM; Rum; Avgift; Ort Response is Pris A v g K R i O Mallows V u f r Vars R Sq R Sq(adj) Cp S M m t t 1 61,5 6,7 134,1 939,48 X 1 37,8 36,4 244,8 1195, X 2 89,2 88,7 7,5 54,1 X X 2 88,6 88,2 9,9 515,93 X X 3 9,5 89,9 3,1 476,6 X X X 3 89,7 89, 7,1 497,52 X X X 4 9,6 89,7 5, 481,21 X X X X Wänström (Linköpings universitet) F4 13 / 25

14 Stegvis regression Välj α entry (to entry) och α stay (to remove) (tex.1) dvs signifikansnivåer för att en variabel ska "komma in" i respektive "stanna" i en modell. För p förklaringsvariabler: 1 p st enkla regressioner skattas, och den variabel som är mest signifikant relaterad till y kommer in i modellen (givet att p-värdet < α). Om ingen är signifikant slutar proceduren. 2 De p 1 återstående variablerna läggs till en och en var för sig och den som är mest signifikant relaterad till y givet att den 1:a variabeln är i modellen läggs till (givet att p-värdet < α). Den 1:a variabeln stannar i modellen om dess p-värde fortfarande är < α. Om inte, tas den bort från modellen och proceduren börjar om på nytt. Proceduren fortsätter med att lägga till variabler en och en samtidigt som gamla variabler kontrolleras, och de som inte längre är signifikanta tas bort. Proceduren är klar när alla variabler i modellen är signifikanta och ingen variabel kan läggas till utan att vara icke-signifikant relaterad till y. Wänström (Linköpings universitet) F4 14 / 25

15 Stegvis regression Stepwise Regression: Pris versus KVM; Rum; Avgift; Ort Alpha to Enter:,1 Alpha to Remove:,1 Response is Pris on 4 predictors, with N = 49 Step Constant Ort T Value 8,67 14,97 15,96 P Value,,, KVM 38,7 22, T Value 1,83 2,98 P Value,,5 Rum 371 T Value 2,54 P Value,15 S R Sq 61,53 89,16 9,52 R Sq(adj) 6,72 88,69 89,89 Mallows Cp 134,1 7,5 3,1 Wänström (Linköpings universitet) F4 15 / 25

16 Stegvis regression: Bakåteliminering Välj α stay (tex.1) 1 En modell med alla p oberoende variabler skattas. Den som är minst signifikant relaterad till y tas bort, givet att p-värdet >α. 2 Den nya modellen skattas. Den variabel som är minst signifikant relaterad till y tas bort, givet att p-värdet >α. Proceduren fortsätter tills alla variabler är signifikanta. Wänström (Linköpings universitet) F4 16 / 25

17 Bakåteliminering Stepwise Regression: Pris versus KVM; Rum; Avgift; Ort Backward elimination. Alpha to Remove:,1 Response is Pris on 4 predictors, with N = 49 Step 1 2 Constant KVM 19,6 22, T Value 2,3 2,98 P Value,49,5 Rum T Value 2,44 2,54 P Value,19,15 Avgift 53 T Value,38 P Value,77 Ort T Value 15,37 15,96 P Value,, S R Sq 9,55 9,52 R Sq(adj) 89,69 89,89 Mallows Cp 5, 3,1 Wänström (Linköpings universitet) F4 17 / 25

18 Den "bästa" modellen Regression Analysis: Pris versus KVM; Rum; Ort The regression equation is Pris = , KVM Rum Ort Predictor Coef SE Coef T P VIF Constant 1843, 31,6 6,11, KVM 22,1 7,373 2,98,5 4,821 Rum 371,5 146,1 2,54,15 4,774 Ort 2317,1 145,2 15,96, 1,8 S = 476,61 R Sq = 9,5% R Sq(adj) = 89,9% Analysis of Variance Source DF SS MS F P Regression ,26, Error Total Wänström (Linköpings universitet) F4 18 / 25

19 Regression Analysis: Pris versus Kvm_C; Ort; Ort*Kvm_C; Rum The regression equation is Pris = ,27 Kvm_C Ort + 27,8 Ort*Kvm_C Rum Predictor Coef SE Coef T P VIF Constant 22,4 426,6,5,958 Kvm_C 2,274 7,879,29,774 7,52 Ort 2353,9 124,6 18,9, 1,85 Ort*Kvm_C 27,792 6,65 4,18, 3,968 Rum 348,4 125,2 2,78,8 4,783 S = 47,86 R Sq = 93,2% R Sq(adj) = 92,6% Analysis of Variance Source DF SS MS F P Regression ,12, Error Total Wänström (Linköpings universitet) F4 19 / 25

20 analys När vi har valt vilka förklaringsvariabler som ska vara med i modellen kan vi utvärdera den. Modellantagandena är att feltermerna är oberoende och normalfördelade med medelvärde noll och konstant varans (för varje värde på x-variablerna). Vi kan inte undersöka feltermernas utseende direkt, utan undersöker i stället residualerna, e, eller de standardiserade (studentized) residualerna. = e = y ŷ; St. residual = y ŷ s Vi plottar residualer mot skattade värden och undersöker om variansen runt noll-linjen verkar vara konstant Vi undersöker i samma plot om det ser ut som om vi har missat att funktionen kan vara icke-linjär Vi undersöker om residualerna ser normalfördelade ut i histogram/normal probability plot. Wänström (Linköpings universitet) F4 2 / 25

21 plottar för modellen ovan med KVM_C, Ort, Ort*KVM_C och Rum 99 9 Normal Probability Plot Plots for Pris 5 Versus Fits Percent Fitted Value 45 6 Histogram Versus Order 1, 5 Frequency 7,5 5, 2,5 5, Observation Order 4 45 Wänström (Linköpings universitet) F4 21 / 25

22 Förbättras VIF om vi tar bort någon variabel, tex Rum? Regression Analysis: Pris versus Kvm_C; Ort; Ort*Kvm_C The regression equation is Pris = ,3 Kvm_C Ort + 28,6 Ort*Kvm_C Predictor Coef SE Coef T P VIF Constant 118,2 11,6 11,62, Kvm_C 17,292 6,158 2,81,7 3,994 Ort 2267,4 129,4 17,53, 1,18 Ort*Kvm_C 28,67 7,125 4,2, 3,961 S = 437,318 R Sq = 92,% R Sq(adj) = 91,5% Analysis of Variance Source DF SS MS F P Regression ,97, Error Total Wänström (Linköpings universitet) F4 22 / 25

23 plottar för modellen ovan med KVM_C, Ort och Ort*KVM_C 99 Normal Probability Plot Plots for Pris 1 Versus Fits 9 5 Percent Fitted Value , Histogram 1 Versus Order Frequency 7,5 5, 2,5 5 5, Observation Order 4 45 Wänström (Linköpings universitet) F4 23 / 25

24 Ovanliga observationer En observation som skiljer sig från resten av data kallas outlier. Den kan vara Extrem i förhållande till x : stort "leverage" (distance value) Extrem i förhållande till linjen: stor residual (inflytelserik) Om vi upptäcker en misstänkt outlier bör vi undersöka om det kan bero på felmätning/inmatning. Gör det inte det kan vi fundera över om observationen tillhör populationen vi vill dra slutsatser om. Gör den det och observationen är misstänkt inflytelserik kan vi prova att göra en ny analys utan observationen och se hur resultaten förändras. I en resultatrapport bör vi då redovisa resultaten både med och utan observationen/rna. Wänström (Linköpings universitet) F4 24 / 25

25 Regression Analysis: Pris versus Kvm_C; Ort; Ort*Kvm_C; Rum The regression equation is Pris = ,27 Kvm_C Ort + 27,8 Ort*Kvm_C Rum Predictor Coef SE Coef T P VIF Constant 22,4 426,6,5,958 Kvm_C 2,274 7,879,29,774 7,52 Ort 2353,9 124,6 18,9, 1,85 Ort*Kvm_C 27,792 6,65 4,18, 3,968 Rum 348,4 125,2 2,78,8 4,783 S = 47,86 R Sq = 93,2% R Sq(adj) = 92,6% Analysis of Variance Source DF SS MS F P Regression ,12, Error Total Source DF Seq SS Kvm_C Ort Ort*Kvm_C Rum Unusual Observations Obs Kvm_C Pris Fit SE Fit St Resid 19 9,3 195, 2794,6 116,5 844,6 2,16R 34 6,7 795, 1779,8 24,3 984,8 2,79R 48 37,2 2413, 1849,2 247,4 563,8 1,74 X Obs Rum KVM Avgift Pris Ort 19 2, 74,5 3, , 9,5 5, , 121, 6, Wänström (Linköpings universitet) F4 25 / 25

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Regressions- och Tidsserieanalys - F5

Regressions- och Tidsserieanalys - F5 Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?

Läs mer

Skrivning i ekonometri torsdagen den 8 februari 2007

Skrivning i ekonometri torsdagen den 8 februari 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)

Läs mer

a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!

a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1! LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Skrivning i ekonometri lördagen den 29 mars 2008

Skrivning i ekonometri lördagen den 29 mars 2008 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB, Ekonometri Skrivning i ekonometri lördagen den 9 mars 8.Vi vill undersöka hur variationen i antal arbetande timmar för gifta kvinnor i Michigan

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Skrivning i ekonometri lördagen den 15 januari 2005

Skrivning i ekonometri lördagen den 15 januari 2005 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad

Läs mer

Föreläsning 4. Kap 5,1-5,3

Föreläsning 4. Kap 5,1-5,3 Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

10.1 Enkel linjär regression

10.1 Enkel linjär regression Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Skrivning i ekonometri lördagen den 25 augusti 2007

Skrivning i ekonometri lördagen den 25 augusti 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA

Läs mer

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data

F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann

Läs mer

1. Man tror sig veta att en viss variabel, y, i genomsnitt beror av en annan variabel, x, enligt sambandet:

1. Man tror sig veta att en viss variabel, y, i genomsnitt beror av en annan variabel, x, enligt sambandet: LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Extra övningsuppgifter 1. Man tror sig veta att en

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 43 poäng.

För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 43 poäng. STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson Skriftlig hemtentamen i Fortsättningskurs i statistik, moment 1, Statistisk Teori, poäng. Deltentamen 2: Regressionsanalys Måndagen den

Läs mer

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som

Läs mer

Laboration 2 multipel linjär regression

Laboration 2 multipel linjär regression Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper.

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Trots att COST verkade ha ett tydligt positivt samband med var och en av variablerna PAPER, MACHINE, OVERHEAD

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2015-01-13 Tentamen Tillämpad statistik A5 (15hp) 2015-01-13 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

732G71 Statistik B. Föreläsning 6. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15

732G71 Statistik B. Föreläsning 6. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15 732G71 Statistik B Föreläsning 6 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15 Efterfrågeanalys Metoder för att studera sambandet mellan efterfrågan på

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

Bayesiansk statistik, 732g43, 7.5 hp

Bayesiansk statistik, 732g43, 7.5 hp Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär

Läs mer

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

Instruktioner till Frivillig Inlämningsuppgift 2 och Datorövning 3-4. Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10 poäng.

Instruktioner till Frivillig Inlämningsuppgift 2 och Datorövning 3-4. Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10 poäng. STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-12 MC Instruktioner till Frivillig Inlämningsuppgift 2 och Datorövning 3-4 Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10

Läs mer

F7 Polynomregression och Dummyvariabler

F7 Polynomregression och Dummyvariabler F7 Polnomregression och Dummvariabler Antag att man börjar med enkel linjär regression. Kap Polnomregression Emellanåt upptäcker man samband som är kvadratiska, kubiska osv. Allmänt: polnom av k:te ordningen

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2011-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Ove Edlund Adam Jonsson

Läs mer

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler:

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler: Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Vi plottar förklaringsvariablerna mot varandra: Graph Matrix Plot Trots att COST verkade ha ett tydligt

Läs mer

LABORATION 3 - Regressionsanalys

LABORATION 3 - Regressionsanalys Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid (5) i matematisk statistik Statistisk processtyrning 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-3.00 ger maximalt 2 poäng. För godkänt krävs

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Multipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1

Multipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1 Multipel linjär regression l: Y= β 0 + β X + β 2 X 2 + + β p X p + ε Välj β 0,β,β 2,, β p så att de minimerar summan av residualkvadraterna (Y i -β 0 -β X i - -β p X pi ) 2 Geometrisk tolkning Med Y=β

Läs mer

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2013-08-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas

Läs mer

För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 44 poäng.

För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 44 poäng. STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson Skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen 2: Regressionsanalys Torsdagen den 7

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik

Läs mer

Kvadratisk regression, forts.

Kvadratisk regression, forts. Kvadratisk regression, forts. Vi fortsätter med materialet om fastigheter. Tidigare föreslog vi som en tänkbar modell y 0 + 3 x 3 + 5 x 3 2 + Vari ligger tanken att just använda en kvadratisk term? Det

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-10-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod SM Poäng totalt för del : 5 (9 uppgifter) Tentamensdatum -3-3 Poäng totalt för del : 3 (3 uppgifter) Skrivtid 9. 4. Lärare: Adam Jonsson och Inge Söderkvist Jourhavande

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Matematisk statistik, Föreläsning 5

Matematisk statistik, Föreläsning 5 Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk

Läs mer

LABORATION 3 - Regressionsanalys

LABORATION 3 - Regressionsanalys Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik, LP1, HT 2015, Adam Jonsson LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i enkel regressionsanalys

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive

Läs mer

8.1 General factorial experiments

8.1 General factorial experiments Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.

Läs mer

Finansiell statistik. Multipel regression. 4 maj 2011

Finansiell statistik. Multipel regression. 4 maj 2011 Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi

Läs mer