Skrivning i ekonometri lördagen den 25 augusti 2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Skrivning i ekonometri lördagen den 25 augusti 2007"

Transkript

1 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA = SALES ( i ton ), förklaras av variationen i TEMP = temperaturen ( i grader Fahrenheit) under 59 månader. Därför bestämdes regressionen av SALES på TEMP för dessa månader. En Fitted Line Plot finns i Bilaga 1, medan den skattade enkla linjära regressionen av SALES på TEMP finns i Bilaga. plotter för denna regression finns i Bilaga 3 och normal probability plott för de skattade residualerna i Bilaga 4. a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Tolka intercept och regressionskoefficient i denna regression!. Fortsättning av uppgift 1: Som ett alternativ till regressionen i uppgift bestäms i stället regressionen av LSALES = logaritmerad ölförsäljning på TEMP. En Fitted Line Plot finns i Bilaga 5, medan den skattade enkla linjära regressionen av LSALES på TEMP finns i Bilaga 6. plotter för denna regression finns i Bilaga 7 och normal probability plott för de skattade residualerna i Bilaga 8. a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Tolka intercept och regressionskoefficient i denna regression! 3. Fortsättning av uppgift 1 och : Skatta SALES med ett 95%-igt prediktionsintervall då TEMP=100 grader F med a) modellen i uppgift 1! b) modellen i uppgift! Deskreptiv statistik för TEMP, SALES och LSALES finns i Bilaga 9.

2 4. Fortsättning av uppgift 1: För att få en bättre anpassning för regressionen av SALES på TEMP införs ytterligare en förklaringsvariabel, SUN = totala antalet soltimmar. Resultatet av den multipla regressionen av SALES på TEMP och SUN finns i bilaga 10. Fås en bättre anpassning? Pröva på 1%-nivån om denna modell är överlägsen den enkla modellen i uppgift 1 5. a) Undersök om modellerna i uppgift 1 och 3 uppvisar autokorrelation av första ordningen! b) Redogör kortfattat för konsekvenserna av eventuell autokorrelation av första ordningen! 6. Fortsättning av uppgift 1: I ett försök att eliminera effekterna av eventuell autokorrelation på regressionen av SALES på TEMP används Proc Autoreg för att skatta denna regression. Outputen från denna körning finns i Bilaga 11. a) Redovisa den slutliga modellen som skattas! b) Är denna modell bättre än den i uppgift 1? 7. Fortsättning av uppgift 3 : För att få en bättre anpassning för regressionen av SALES på TEMP och SUN införs ytterligare två förklaringsvariabler, PR1 = månadsnederbörd, måndag-onsdag (i tum) och PR = månadsnederbörd, torsdag-lördag. Resultatet av den multipla regressionen av SALES på TEMP, SUN, PR1 och PR finns i bilaga 1. Pröva på 1%-nivån om denna modell är överlägsen den enkla modellen i uppgift 1 respektive modellen i uppgift 3! 8. Vi använder nu bästa delmängdsregression för att bestämma lämpliga förklaringsvariabler, då SALES är beroende variabel och TEMP, SUN, PR1 och PR är tänkbara förklaringsvariabler. Resultatet av denna körning finns i bilaga 13. a) Vilken modell verkar vara bäst? b) Jämför med tidigare resultat samt med stegvis regression, vilka resultat finns i bilaga 14 och 15!

3 Bilaga1 SALES = ,36 TEMP Regression 95% CI 95% PI S 68,66 R-Sq 67,9% R-Sq(adj) 67,3% 3500 SALES TEMP BILAGA Regression Analysis: SALES versus TEMP The regression equation is SALES = ,4 TEMP Predictor Coef SE Coef T P Constant 041,8 109,3 18,68 0,000 TEMP 0,357 1,855 10,97 0,000 S = 68,66 R-Sq = 67,9% R-Sq(adj) = 67,3% PRESS = R-Sq(pred) = 65,3% Analysis of Variance Source DF SS MS F P Regression ,39 0,000 Error Lack of Fit ,16 0,57 Pure Error Total rows with no replicates

4 Unusual Observations Obs TEMP SALES Fit SE Fit St Resid 1 3,7 3414,5 707,4 55,3 707,1,69R 4 31,9 3365,4 691, 56,5 674,,57R 36 36,7 3376,8 788,9 49,8 587,9,3R R denotes an observation with a large standardized residual. Durbin-Watson statistic =,05559 Possible lack of fit at outer X-values (P-Value = 0,07) Overall lack of fit test is significant at P = 0,07 Bilaga 3 Normal Probability Plot of the s s Versus the Fitted Values 99,9 Percent Fitted Value Histogram of the s s Versus the Order of the Data Frequency Observation Order 50 55

5 Bilaga 4 Normal Percent 99, Mean -3,776E-1 StDev 65,9 N 59 AD 0,471 P-Value 0, RESI ,5 8,4 8,3 8, Bilaga 5 LSALES = 7, , TEMP Regression 95% C I 95% PI S 0, R-Sq 67,7% R-Sq(adj) 67,1% LSALES 8,1 8,0 7,9 7,8 7, TEMP BILAGA 6 Regression Analysis: LSALES versus TEMP The regression equation is

6 LSALES = 7,69 + 0,00646 TEMP Predictor Coef SE Coef T P Constant 7,6990 0, ,07 0,000 TEMP 0, , ,93 0,000 S = 0, R-Sq = 67,7% R-Sq(adj) = 67,1% PRESS = 0,44911 R-Sq(pred) = 65,10% Analysis of Variance Source DF SS MS F P Regression 1 0,8711 0, ,43 0,000 Error 57 0, ,0079 Lack of Fit 55 0,4033 0, ,17 0,569 Pure Error 0,0154 0,0067 Total 58 1, rows with no replicates Unusual Observations Obs TEMP LSALES Fit SE Fit St Resid 1 3,7 8,1358 7,9040 0,0176 0,318,77R 4 31,9 8,113 7,8988 0,0180 0,5,66R 36 36,7 8,147 7,998 0, ,3R R denotes an observation with a large standardized residual. Durbin-Watson statistic =,05989 Possible lack of fit at outer X-values (P-Value = 0,017) Overall lack of fit test is significant at P = 0,017

7 99,9 99 Normal Probability Plot of the s Bilaga 7 0, s Versus the Fitted Values Percent , - 0,0 0, 0,0 - -0, 7,9 8,0 8,1 Fitted Value 8, Histogram of the s s Versus the Order of the Data 1 0, Frequency , ,0 0, -0, Observation Order Bilaga 8 Normal Percent 99, Mean -3,59788E-15 StDev 0,08467 N 59 AD 0,361 P-Value 0, ,3-0, - 0,0 RESI 0, 0,3

8 BILAGA 9 Descriptive Statistics: TEMP; SALES; LSALES Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 TEMP ,83,47 18,99 7,70 36,70 56,70 74,40 SALES , 61,1 469, 31,0 908,0 31,7 3535,8 LSALES ,0533 0, ,7459 7,975 8,0465 8,1707 BILAGA 10 Regression Analysis: SALES versus TEMP; SUN The regression equation is SALES = ,9 TEMP - 0,518 SUN Predictor Coef SE Coef T P VIF Constant 040,0 110,0 18,54 0,000 TEMP 1,871 3,359 6,51 0,000 3, SUN -0,5178 0,9554-0,54 0,590 3, S = 69,943 R-Sq = 68,0% R-Sq(adj) = 66,9% PRESS = R-Sq(pred) = 64,48% Analysis of Variance Source DF SS MS F P Regression ,60 0,000 Error No replicates. Cannot do pure error test. Source DF Seq SS TEMP SUN Unusual Observations Obs TEMP SALES Fit SE Fit St Resid 1 3,7 3414,5 736,6 77,4 677,9,6R 4 31,9 3365,4 703,9 61,5 661,5,5R 36 36,7 3376,8 810,7 64,3 566,1,16R R denotes an observation with a large standardized residual. Durbin-Watson statistic =,04003 No evidence of lack of fit (P >= ).

9 BILAGA 11 The SAS System The AUTOREG Procedure Dependent Variable SALES Ordinary Least Squares Estimates SSE DFE 57 MSE Root MSE SBC AIC Regress R-Square Total R-Square Durbin-Watson.0556 Standard Approx Variable DF Estimate Error t Value Pr > t Intercept <.0001 TEMP <.0001 Estimates of Autocorrelations Lag Covariance Correlation ******************** * **** ** * ** ***** * *** * ****** ********** Backward Elimination of Autoregressive Terms Lag Estimate t Value Pr > t Preliminary MSE

10 Estimates of Autoregressive Parameters Standard Lag Coefficient Error t Value Expected Autocorrelations Lag Autocorr Expected Autocorrelations Lag Autocorr Yule-Walker Estimates SSE DFE 56 MSE Root MSE SBC AIC Regress R-Square Total R-Square Durbin-Watson.0181 Standard Approx Variable DF Estimate Error t Value Pr > t Intercept <.0001 TEMP <.0001 Expected Autocorrelations Lag Autocorr

11 Expected Autocorrelations Lag Autocorr BILAGA 1 Regression Analysis: SALES versus TEMP; SUN; PR1; PR The regression equation is SALES = ,8 TEMP - 0,50 SUN + 9 PR1 + 0 PR Predictor Coef SE Coef T P VIF Constant 01,4 140, 14,4 0,000 TEMP 1,767 3,477 6,6 0,000 3,3 SUN -0,496 1,004-0,49 0,63 3,5 PR1 9,4 653,4 0,05 0,964 1,1 PR 635, 0,3 0,75 1,0 S = 74,639 R-Sq = 68,1% R-Sq(adj) = 65,7% PRESS = R-Sq(pred) = 60,0% Analysis of Variance Source DF SS MS F P Regression ,81 0,000 Error Total No replicates. Cannot do pure error test. Source DF Seq SS TEMP SUN PR1 1 1 PR Durbin-Watson statistic =,04140 No evidence of lack of fit (P >= ).

12 BILAGA 13 Best Subsets Regression: SALES versus TEMP; SUN; PR1; PR Response is SALES T E S P P Mallows M U R R Vars R-Sq R-Sq(adj) C-p S P N ,9 67,3-0,6 68,7 X 1 43,8 4, ,66 X 68,0 66,9 1,1 69,94 X X 67,9 66,8 1,3 70,37 X X 3 68,1 66,4 3,0 7,14 X X X 3 68,0 66,3 3,1 7,39 X X X 4 68,1 65,7 5,0 74,64 X X X X BILAGA 14 Stepwise Regression: SALES versus TEMP; SUN; PR1; PR Alpha-to-Enter: 5 Alpha-to-Remove: 5 Response is SALES on 4 predictors, with N = 59 Step 1 Constant 04 TEMP 0,4 T-Value 10,97 P-Value 0,000 S 68 R-Sq 67,87 R-Sq(adj) 67,30 Mallows C-p -0,6 PRESS R-Sq(pred) 65,3

13 BILAGA 15 Stepwise Regression: SALES versus TEMP; SUN; PR1; PR Backward elimination. Alpha-to-Remove: Response is SALES on 4 predictors, with N = 59 Step Constant TEMP 1,8 1,8 1,9 0,4 T-Value 6,6 6,4 6,51 10,97 P-Value 0,000 0,000 0,000 0,000 SUN -0,50-0,51-0,5 T-Value -0,49-0,53-0,54 P-Value 0,63 0,601 0,590 PR1 9 T-Value 0,05 P-Value 0,964 PR T-Value 0,3 0,3 P-Value 0,75 0,75 S R-Sq 68,09 68,09 68,03 67,87 R-Sq(adj) 65,73 66,35 66,89 67,30 Mallows C-p 5,0 3,0 1,1-0,6 PRESS R-Sq(pred) 60,0 6,96 64,48 65,3

14 Lösning till skrivning i ekonometri lördagen den juni 007: 1) a) Plotten ser linjär ut med ett par outliers. Regressionen är signifikant (P=0.000), med rimligt stort R =67.9 % och R (pred)=65.3 %! Bra P-värde i första linjaritetstestet, P=0.578, medan det andra är sämre, P=0.07. Autokorrelation är att vänta, ty tidsseriedata, men eftersom d är något större än, så tycks det inte finnas någon autokorrelation. en verkar vara nf (P=0.37). Knappast tydlig heteroskedasticitet syns från plott bortsett från ett par outliers. b) βˆ =0.4 tolkas som medelökning i ölförsäljning då temperaturen ökar med en grad. Interceptet, 04, går inte att tolka och är en extrapolation. ) ) a) Plotten ser linjär ut med ett par outliers. Regressionen är signifikant (P=0.000), med rimligt stort R =67.7 % och R (pred)=65.10 %! Bra P-värde i första linjaritetstestet, P=0.569, medan det andra är sämre, P= Autokorrelation är att vänta, ty tidsseriedata, men eftersom d är något större än, så tycks det inte finnas någon autokorrelation. en verkar vara tydligt nf (P=0.435). Knappast tydlig heteroskedasticitet syns från plott bortsett från ett par outliers. b) βˆ = tolkas som relativ ökning medeltal i ölförsäljning, då temperaturen ökar med dy d y en grad.( ty ln y d y dy = ln = ) Interceptet, 7.69, går inte att tolka och är en dx dy dx dx extrapolation. 3. a) y ˆ = *100 = ; s = s e 1 1 ( x0 x) 1 ( ) + + = n ( n 1) s 59 58*18.99 x Så PI=( , ) = (3511.3, ) = 8.665; t.5 (57)= a) l yˆ = *100 = yˆ = ; s = s e 1 1 ( x0 x) 1 ( ) + + = n ( n 1) s 59 58*18.99 x = ; t.5 (57)= Så PI för ly=(8.158, 8.519). Genom antilogaritmering fås PI för y= (3491.7, ) 4) H 0 : β 3 =0 prövas med t=-0.54 med P=0.590, så H 0 förkastas inte, så denna modell är inte överlägsen den enkla! Vi ser också en rätt måttlig ökning i R, justerat R och R (pred) är sämre, så resultatet är knappast överaskande. 5) a) Eftersom d i båda fallen är större än, kan positiv autokorrelation av första ordningen inte konstateras. b) Se läroboken!

15 Y ˆ = t 1 6) a) = * X ; R = 0.79; d =. 018 u ˆt 0.488* uˆ (14.6) (8.7) (-4.18). t-värden inom parentes. b) Ja, ty nu är autokorrelationen vid lag 1 (säsongautokorrelationen) eliminerad. Vi ser också hur detta påverkar såväl t-värden som förklaringsgrad. ΔRSS / 7) ) H 0 : β 4 =β 5 =0 prövas med F = =(1+7635)//7547=0.051, så H 0 förkastas inte MSE U med k.v. F 5 (,54)= , så denna modell är inte överlägsen modellen i uppgift 3! ΔRSS / 3 ( ) / 3 H 0 : β 3 =β 4 =β 5 =0 prövas med F = = = 0. 18, så H 0 förkastas MSE U 7547 inte med k.v. F 5 (3,54)= , så denna modell är inte överlägsen modellen i uppgift 1! Vi ser också en rätt måttlig ökning i R och justerat R, och R (pred) är sämre, så resultatet är knappast överaskande. 8) a) För bästa delmängdsregressionen fås bäst justerad förklaringsgrad 67.3 % med TEMP, med bra Cp=-0.6<. Denna modell ger R (pred)=65.3. b) Egentlig stegvis regr. och bakåt stegvis reg. ger samma modell, med högst R (pred)=65.3. Vi såg i bilaga 10, att SUN var klart icke-sign., och i bilaga 1 var också endast TEMP sign., så resultatet överaskar knappast.

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

Skrivning i ekonometri lördagen den 15 januari 2005

Skrivning i ekonometri lördagen den 15 januari 2005 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Regressions- och Tidsserieanalys - F5

Regressions- och Tidsserieanalys - F5 Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Föreläsning 4. Kap 5,1-5,3

Föreläsning 4. Kap 5,1-5,3 Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Multipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1

Multipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1 Multipel linjär regression l: Y= β 0 + β X + β 2 X 2 + + β p X p + ε Välj β 0,β,β 2,, β p så att de minimerar summan av residualkvadraterna (Y i -β 0 -β X i - -β p X pi ) 2 Geometrisk tolkning Med Y=β

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys.

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys. Tentamen i Matematisk statistik Ämneskod-linje S0001M Poäng totalt för del 1 5 (8 uppgifter) Poäng totalt för del 0 ( uppgifter) Tentamensdatum 009-10-6 Adam Jonsson Lärare: Lennart Karlberg Robert Lundqvist

Läs mer

Prediktion av huspriser i Falun

Prediktion av huspriser i Falun Prediktion av huspriser i Falun Examensarbete inom teknisk fysik, grundnivå, 15hp, SA104X KTH, institiotionen för matematik författare Robin Sollander 850307-8217 Kungsgårdsvägen 20 791 41 Falun 070-7652405

Läs mer

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng. UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med

Läs mer

Konjunkturförändringar i åländsk ekonomi

Konjunkturförändringar i åländsk ekonomi Kandidatuppsats i Statistik Konjunkturförändringar i åländsk ekonomi -Val av förklarande variabler för åländska företags omsättning Jesper Gullquist Abstract This paper is made on behalf of Statistics

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska

Läs mer

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper.

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Trots att COST verkade ha ett tydligt positivt samband med var och en av variablerna PAPER, MACHINE, OVERHEAD

Läs mer

Kvadratisk regression, forts.

Kvadratisk regression, forts. Kvadratisk regression, forts. Vi fortsätter med materialet om fastigheter. Tidigare föreslog vi som en tänkbar modell y 0 + 3 x 3 + 5 x 3 2 + Vari ligger tanken att just använda en kvadratisk term? Det

Läs mer

HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen

HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik, ANd HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen REGRESSIONS- OCH TIDSSERIEANALYS, 5 P TENTAMEN LÖRDAGEN

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2013-01-14 Tentamen Tillämpad statistik A5 (15hp) 2013-01-14 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2014-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Inge

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod SM Poäng totalt för del : 5 (9 uppgifter) Tentamensdatum -3-3 Poäng totalt för del : 3 (3 uppgifter) Skrivtid 9. 4. Lärare: Adam Jonsson och Inge Söderkvist Jourhavande

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Uppgift a b c d e f (vet ej) Poäng

Uppgift a b c d e f (vet ej) Poäng TENTAMEN: Statistisk modellering för I3, TMS161, lördagen den 22 Oktober kl 8.30-11.30 på V. Jour: John Gustafsson, ankn. 5316. Hjälpmedel: På hemsidan tillgänglig ordlista och formelsamling med tabeller,

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Statistisk undersökningsmetodik (Pol. kand.)

Statistisk undersökningsmetodik (Pol. kand.) TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler:

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler: Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Vi plottar förklaringsvariablerna mot varandra: Graph Matrix Plot Trots att COST verkade ha ett tydligt

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng.

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum: 26 april, 2014 kl. 9:00 13:00 Tillåtna hjälpmedel:

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data Överlevnadsanalys 732G34 Statistisk analys av komplexa data 1 Tvärsnittsstudie Prospektiv Kohortstudie Observationsstudie Tvärsnittsstudie Retrospektiv Experimentell studie (alltid prospektiv) Klinisk

Läs mer

Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:

Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här: GÖTEBORGS UNIVERSITET Psykologiska institutionen Tentamen Kurs: PC1307 Kurs 7: Samhällsvetenskaplig forskningsmetodik PC1546 Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Tentamensdatum:

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström & Pär Bjälkebring Tentamensdatum: 10/1-2015 Tillåtna hjälpmedel:

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Premiepensionens delningstal och dess känslighet för ändrad livslängd och ränteantagande

Premiepensionens delningstal och dess känslighet för ändrad livslängd och ränteantagande 1 (5) PM Dok.bet. 2016-06-16 Analysavdelningen Tommy Lowen 010-454 20 50 Premiepensionens delningstal och dess känslighet för ändrad livslängd och ränteantagande Premiepensionens delningstal minskar med

Läs mer

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller ) TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018

Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018 Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer