TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

Storlek: px
Starta visningen från sidan:

Download "TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval"

Transkript

1 TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen

2 Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen TAMS65 - Fö11 1/45

3 Repetition Vi har modellen y : (n 1) är en obs. från Y = X β + ε, där ε N n (0, σ 2 I ), med MK-skattningen och σ 2 -skattningen Vidare gäller att s 2 = β = (X X ) 1 X y SS E n k 1 (df = n k 1). β = (X X ) 1 X Y N k+1 ( β, σ 2 (X X ) 1) och (n k 1)S 2 σ 2 χ 2 (n k 1). TAMS65 - Fö11 2/45

4 Om ( X X ) 1 = (hij ) k i,j=0 så har vi att den s.v. alltså ˆβ i N(β i, σ h ii ), ˆβ i β i σ h ii N(0, 1) och ˆβ i β i S h ii t(n k 1). Detta är vår hjälpvariabel för konstruktion av I βi. TAMS65 - Fö11 3/45

5 Vi vill pröva H 0 : β i = 0 mot H 1 : β i 0. Var har gjort det genom att konstruera I βi och förkasta H 0 om 0 I βi. Man kan i stället använda teststorheten t = ˆβ i 0 s h ii (tänk på att den s.v. ˆβ i N(β i, σ h ii )). Den s.v. T t(n k 1) om H 0 är sann. TAMS65 - Fö11 4/45

6 H 0 förkastas om t > b, dvs. om t < b eller t > b. t(n-k-1) α/2 α/2 -b b P = P( T > t OBS om H 0 är sann ) = P(T < t OBS ) + P(T > t OBS ) om H 0 är sann. H 0 förkastas om P < α. P-värdet för det här testet kan beräknas med MATLAB. P/2 P/2 - u OBS u OBS Det är praktiskt att kunna utnyttja det här testet i samband med t.ex. stegvis regression. TAMS65 - Fö11 5/45

7 Residualanalys De skattade väntevärdena ˆµ j kallas ibland också ŷ j, det vill säga ŷ j = ˆβ 0 + ˆβ 1 x j1 + + ˆβ k x jk. Residualerna definieras som e i = y j ŷ j. Om vi vill arbeta med vektorer istället så har vi modellen Y N n (X β, σi n ) och residualerna ges av e = y ŷ = y X β = (I X (X X ) 1 X )y. TAMS65 - Fö11 6/45

8 Enligt vårt modell antagande bör residualerna 1. ha konstant varians, oberoende av förklaringsvariablerna x 1,..., x p, 2. vara oberoende av varandra, 3. vara normalfördelade. 1. och 2. är viktiga för regressionsmodellen medan 3. är viktig för den fortsatta analysen när man ska göra inferens så som konfidensintervall och olika test. Alla våra t- och F-test bygger på normalfördelningsantagandet. TAMS65 - Fö11 7/45

9 Enklast är att göra residualanalysen visuellt, det vill säga studera olika plottar. Det kan vara intressant att studera plottar av e 1,..., e n 1. på en tallinje (histogram), 2. i tidsföljd, 3. mot de skattade väntevärdena ˆµ j (eller mot y j ), 4. mot var och en av förklaringsvariablerna x j, j = 1,..., p. TAMS65 - Fö11 8/45

10 Exempel Ett företag har mätt tre prestationsvariabler x 1, x 2 och x 3 för sina säljare. Vidare har de fått genomgå test där man mätt kreativitet (x 4 ), förmåga att resonera mekaniskt (x 5 ) respektive abstrakt (x 6 ) samt matematisk förmåga (x 7 ). Nr x 1 x 2 x 3 x 4 x 5 x 6 x Låt oss som övergripande prestationsmått utnyttja y = x 1 + x 2 +x 3. Vid nyanställning av personal är det intressant att förutsäga Y -värdet med hjäp av x 4,..., x 7. Analysera resultatet först med bara x 4 och x 7. TAMS65 - Fö11 9/45

11 TAMS65 - Fö11 10/45

12 Beräkna residualerna i MATLAB. regr = regstats(y,[x4 x7], linear, all ); yhat = regr.yhat; r = regr.r; figure; hist(r,15) figure; scatter(1:length(r),r) figure; scatter(yhat,r, * ) figure; normplot(r) TAMS65 - Fö11 11/45

13 Histogram för residualerna TAMS65 - Fö11 12/45

14 Residualerna plottade i ordning TAMS65 - Fö11 13/45

15 Residualerna plottade mot skattat väntevärde TAMS65 - Fö11 14/45

16 Normalfördelningsplot för residualerna TAMS65 - Fö11 15/45

17 Modellval När man studerar en responsvariabel Y, väljer man ofta mellan flera alternativa modeller genom att man kan göra olika val av förklaringsvariabler. Ambitionen är att förklara så stor del av variationerna i y-värdena som möjligt genom att utnyttja relevanta förklaringsvariabler. TAMS65 - Fö11 16/45

18 Modeller jämförs med hjälp av residualkvadratsummor respektive residualmedelkvadratsummor (= σ 2 -skattningar). Det finns andra kriterier också men ett litet värde på σ antyder att ε-variabeln i modellen är ganska försumbar. En extra förklaringsvariabel ger alltid en minskning av residualkvadratsumman. Vi behöver kunna bedöma när denna minskning är väsentlig. TAMS65 - Fö11 17/45

19 Vi antar nu att vi vill jämföra Modell 1: Y = β 0 + β 1 x β k x k + ε och Modell 2: Y = β 0 + β 1 x β k+p x k+p + ε alltså vi vill ev. utvidga Modell 1 med p nya förklaringsvariabler. Man får i allmänhet nya β-koefficienter och en ny ε-variabel, men vi behåller samma notation. TAMS65 - Fö11 18/45

20 Vi vill pröva H 0 : β k+1 =... = β k+p = 0 (nya förklaringsvariablerna meningslösa.) mot H 1 : minst en av β k+1,..., β k+p är 0. Teststorhet: W = (SS(1) E SS(2) E )/p SS (2) E /(n k p 1) (Se formelsamling) TAMS65 - Fö11 19/45

21 Teststorhet: W = (SS(1) E SS(2) E )/p SS (2) E /(n k p 1) p = antalet nya förklaringsvariabler i modell 2 och n k p 1 = n (k + p) 1 är frihetsgraderna för SS (2) E. H 0 förkastas om W > c. TAMS65 - Fö11 20/45

22 Alltså, H 0 förkastas om W > c. Vi har också den s.v. W F (p, n k p 1), om H 0 är sann. TAMS65 - Fö11 21/45

23 Stegvis regression Då man tillämpar stegvis regression börjar man ofta med en modell utan förklaringsvariabler och tar sedan in en förklarings- variabel i sänder i modellen. En förklaringsvariabel Om y j är observation av Y j = β 0 + β 1 x j + ε j, för j = 1,..., n, så kan man visa att SS R = r 2 n (y j ȳ) 2, i=1 SS E = SS TOT SS R = (1 r 2 ) n (y j ȳ) 2, där r är den empiriska korrelationen för (x 1, y 1 ),..., (x n, y n ). i=1 TAMS65 - Fö11 22/45

24 Slutsats Den förklaringsvariabel som är starkast korrelerad med Y (har högst värde på r ) ger minst residualkvadratsumma vid analyser med en förklaringsvariabel. OBS Den näst bästa förklaringsvariabeln hittar man inte via korrelationsmatrisen. TAMS65 - Fö11 23/45

25 Exempel En viss typ av buss har bara en dörr, som måste användas både av dem som stiger av och dem som stiger på. Man har vid 20 tillfällen mätt tiden y (i sekunder) från det att bussen stannat vid en hållplats tills den åter satt igång. Samtidigt har man noterat antalet påstigande (x 1 ) och antalet avstigande (x 2 ). y = [ ] ; x1 = [ ] ; x2 = [ ] ; Man vill försöka förklara bussens stopptid y med hjälp av en linjär regressionsmodell på x 1 och/eller x 2. TAMS65 - Fö11 24/45

26 En förklaringsvariabel: Välj x 1 eftersom den har störst korrelation med y. >> corr([x1 x2],y) ans = Modell 1: Y = β 0 + β 1 x 1 + ε Testa om förklaringsvariabeln gör nytta, dvs. H 0 : β 1 = 0 mot H 1 : β 1 0 prövas på nivån TAMS65 - Fö11 25/45

27 >> betahat = regr.tstat.beta betahat = >> se = regr.tstat.se se = >> t = regr.tstat.t t = >> fstat = regr.fstat fstat = sse: dfe: 18 dfr: 1 ssr: e+03 f: pval: e-11 TAMS65 - Fö11 26/45

28 Skattad regressionslinje: y = x 1 i βi d( β i ) Variansanalys: Frihetsgrader Kvadratsumma REGR RES TOT TAMS65 - Fö11 27/45

29 Teststorhet T 1 = β 1 d( β 1 ) t(18) under H 0. Observerat värde t 1 = β 1 d( β 1 ) = = Förkasta H 0 om t 1 > c, d.v.s. om t 1 < c eller t 1 > c där c = t (18) = Alltså, förkasta H 0. Förklaringsvariabeln x 1 gör nytta i modellen. TAMS65 - Fö11 28/45

30 >> t = regr.tstat.t >> betahat = regr.tstat.beta betahat = >> se = regr.tstat.se se = t = >> P = regr.tstat.pval P = 1.0e-03 * H 0 : β 1 = 0 kan förkastas eftersom P < α. TAMS65 - Fö11 29/45

31 En annan teststorhet för samma hypotes skulle kunna vara v = SS R/1 SS E /18 = som testar om alla förklaringsvariabler är meningslösa. Den s.v. V F (1, 18) om H 0 är sann. H 0 förkastas om v > c. Tabell ger c = > 8.29; med stor sannolikhet gör x 1 nytta som förklaringsvariabel. Ta med x 1 i modellen. TAMS65 - Fö11 30/45

32 Modell 2: Y = β 0 + β 1 x 1 + β 2 x 2 + ε Testa om x 2 gör nytta, dvs. H 0 : β 2 = 0 mot H 1 : β 2 0 på nivån TAMS65 - Fö11 31/45

33 Skattad regressionslinje: y = x x 2 i βi d( β i ) Variansanalys: Frihetsgrader Kvadratsumma REGR RES TOT TAMS65 - Fö11 32/45

34 Teststorhet T 2 = β 2 d( β 2 ) t(17) under H 0. Observerat värde t 2 = β 2 d( β 2 ) = = 3.50 Förkasta H 0 om t 2 > c, d.v.s. om t 2 < c eller t 2 > c där c = t (17) = Alltså, förkasta H 0. Förklaringsvariabeln x 2 gör också nytta i modellen. TAMS65 - Fö11 33/45

35 En annan teststorhet för samma hypotes skulle kunna vara w = (SS(1) E SS(2) E )/1 SS (2) E /17 = /17 = som testar om de extra förklaringsvariablerna gör nytta i modellen. Den s.v. W F (1, 17) om H 0 är sann. H 0 förkastas om w > c. Tabell ger den kritiska gränsen c > 8.41; H 0 förkastas. Med stor sannolikhet gör även x 2 nytta som förklaringsvariabel. Använd Modell 2. TAMS65 - Fö11 34/45

36 Exempel I exemplet med prestationsmått för försäljare använde vi bara x 4 och x 7 som förklaringsvariabler. Även för x 5 och x 6 finns det tendenser till linjära samband. Vi skall använda framåtvalsprincipen för att få fram rätt modell. TAMS65 - Fö11 35/45

37 TAMS65 - Fö11 36/45

38 Steg 1 Vi letar upp den bästa ensamma förklaringsvariabeln t.ex. genom korrelationsmatrisen. >> correlation = corr([x4 x5 x6 x7],y) correlation = x 7 är den bästa ensamma förklaringsvariabeln. TAMS65 - Fö11 37/45

39 Gör en regressionsanalys med x 7 och kontrollera om den förklaringsvariabeln gör nytta. >> regr = regstats(y,x7, linear, all ); >> t = regr.tstat.t t = >> P = regr.tstat.pval P = 1.0e-33 * t = och P < α, dvs. förkasta H 0 : β 7 = 0 och x 7 gör nytta. TAMS65 - Fö11 38/45

40 Steg 2 Gör alla analyser med x 7 och en annan förklaringsvariabel. Jämför SS E för de tre analyserna och välj den som har minst. disp( -- x7 och x4 -- ) regr = regstats(y,[x7 x4],... linear, all ); sse = regr.fstat.sse disp( -- x7 och x5 -- ) regr = regstats(y,[x7 x5],... linear, all ); sse = regr.fstat.sse disp( -- x7 och x6 -- ) regr = regstats(y,[x7 x6],... linear, all ); sse = regr.fstat.sse -- x7 och x4 -- sse = e x7 och x5 -- sse = x7 och x6 -- sse = TAMS65 - Fö11 39/45

41 SS x 7,x 5 E = 934 < SS x 7,x 6 E = 990 < SS x 7,x 4 E = 1014 Välj Y = β 0 + β 7 x 7 + β 5 x 5 + ε. Testa om x 5 gör nytta. -- x7 och x5 -- disp( -- x7 och x5 -- ) regr = regstats(y,[x7 x5],... linear, all ); t = regr.tstat.t P = regr.tstat.pval t = P = t = 2.07 och P < α, dvs. förkasta H 0 och även x 5 gör nytta. Ta in x 5 i modellen. TAMS65 - Fö11 40/45

42 Steg 3 Gör alla analyser med x 7, x 5 och en annan förklaringsvariabel. Jämför SS E för de två analyserna och välj den som har minst. disp( -- x7, x5 och x4 -- ) regr = regstats(y,[x7 x5 x4],... linear, all ); sse = regr.fstat.sse disp( -- x7, x5 och x6 -- ) regr = regstats(y,[x7 x5 x6],... linear, all ); sse = regr.fstat.sse -- x7, x5 och x4 -- sse = x7, x5 och x6 -- sse = TAMS65 - Fö11 41/45

43 SS x 7,x 5,x 4 E = 866 < SS x 7,x 5,x 6 E = 921 Välj Y = β 0 + β 7 x 7 + β 5 x 5 + β 4 x 4 + ε. Testa om x 4 gör nytta. regr = regstats(y,[x7 x5 x4],... linear, all ); t = regr.tstat.t P = regr.tstat.pval t = P = t = 1.9 och P > α, dvs. vi kan inte förkasta H 0. Vi stannar här! TAMS65 - Fö11 42/45

44 Framåtvalsprincipen ger modellen Y = β 0 + β 5 x 5 + β 7 x 7 + ε. Vi vill nu testa om modellen med all fyra förklaringsvariablerna är signifikant bättre. >> regr = regstats(y,[x7 x5],... linear, all ); >> fstat = regr.fstat fstat = sse: dfe: 47 dfr: 2 ssr: e+04 f: pval: 0 >> regr = regstats(y,[x7 x5 x4 x6],... linear, all ); >> fstat = regr.fstat fstat = sse: dfe: 45 dfr: 4 ssr: e+04 f: pval: 0 TAMS65 - Fö11 43/45

45 Teststorhet: w = (SS(1) E SS (2) E SS(2) E )/p ( )/2 = /(n k p 1) 848.8/45 = 2.26 Den s.v. W F (2, 45) om H 0 är sann. H 0 förkastas om w > c. MATLAB (eller tabell) ger den kritiska gränsen c=finv(0.95,2,45) vilken blir c = w = 2.26 < 3.20 = c dvs. vi kan inte förkasta H 0 : β 4 = β 6 = 0. Alltså, vi kan fortsätta använda den lilla modellen. TAMS65 - Fö11 44/45

46 Exempel - Linjär interpolering Vi har V F (2, 45) och söker c så att P(V > c) = c ( ) = Här ges 3.23 i F (2, 40)-tabell och 3.18 i F (2, 50)-tabell. TAMS65 - Fö11 45/45

47

REGRESSIONSANALYS. Martin Singull

REGRESSIONSANALYS. Martin Singull REGRESSIONSANALYS Martin Singull 16 april 2018 Innehåll 1 Beroendemått och stokastiska vektorer 4 1.1 Beroendemått........................................... 4 1.2 Stokastiska vektorer.......................................

Läs mer

TAMS65 DATORÖVNING 2

TAMS65 DATORÖVNING 2 TAMS65 DATORÖVNING 2 Datorövningen behandlar multipel linjär regression Förberedelser Läs allmänt om regressionsanalys i boken och på föreläsningsanteckningarna Glöm inte att rensa minnet och alla fönster

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Föreläsning 9: Linjär regression del II

Föreläsning 9: Linjär regression del II Föreläsning 9: Linjär regression del II Johan Thim (johan.thim@liu.se) 29 september 2018 No tears, please. It s a waste of good suffering. Pinhead Vi fixerar en vektor u T = (1 u 1 u 2 u k ), där u i kommer

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Föreläsning 15: Faktorförsök

Föreläsning 15: Faktorförsök Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Föreläsning 15, FMSF45 Multipel linjär regression

Föreläsning 15, FMSF45 Multipel linjär regression Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Bayesiansk statistik, 732g43, 7.5 hp

Bayesiansk statistik, 732g43, 7.5 hp Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

oberoende av varandra så observationerna är

oberoende av varandra så observationerna är Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 1, 1-5-7 REGRESSION (repetition) Vi har mätningarna ( 1, 1 ),..., ( n, n

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Laboration 2 multipel linjär regression

Laboration 2 multipel linjär regression Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 februari

Tentamen för kursen. Linjära statistiska modeller. 22 februari STOCKHOLMS UIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 februari 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

förstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II.

förstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II. Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 2, 6 DECEMBER 2017 Syfte Syftet med den här laborationen är att du ska

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

GRUNDLÄGGANDE REGRESSIONSANALYS Problemsamling

GRUNDLÄGGANDE REGRESSIONSANALYS Problemsamling GRUNDLÄGGANDE REGRESSIONSANALYS Problemsamling Martin Singull Kapitel 1 GR-1.1. Uppgift 1. i Grundläggande Regressionsanalys. GR-1.2. Uppgift 2. i Grundläggande Regressionsanalys. GR-1.3. Uppgift 3. i

Läs mer

a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!

a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1! LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Matematisk statistik, Föreläsning 5

Matematisk statistik, Föreläsning 5 Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk

Läs mer

10.1 Enkel linjär regression

10.1 Enkel linjär regression Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för

Läs mer

Matematisk statistik kompletterande projekt, FMSF25 Övning om regression

Matematisk statistik kompletterande projekt, FMSF25 Övning om regression Lunds tekniska högskola, Matematikcentrum, Matematisk statistik Matematisk statistik kompletterande projekt, FMSF Övning om regression Denna övningslapp behandlar regression och är tänkt som förberedelse

Läs mer

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013. Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................

Läs mer

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 2 & 9 oktober 217 Johan Lindström - johanl@maths.lth.se FMSF7/MSB2 F11 1/32 Repetition Multipel linjär regression

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger LÖSNINGAR TILL Matematisk statistik Tentamen: 2015 08 18 kl 8 00 13 00 Matematikcentrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Lunds tekniska högskola MASB02 Matematisk statistik för

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 10 Johan Lindström 27 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F10 1/26 Repetition Linjär regression Modell Parameterskattningar

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, ONSDAGEN DEN 17 MARS 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, ONSDAGEN DEN 17 MARS 2010 KL TENTAMEN I SF2950 (F D 5B1550 TILLÄMPAD MATEMATISK STATISTIK, ONSDAGEN DEN 17 MARS 2010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari

Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se

Läs mer

TAMS 28 DATORÖVNING 2

TAMS 28 DATORÖVNING 2 TAMS 28 DATORÖVNING 2 Datorövningen behandlar enkel och multipel linjär regression. Du kommer att använda filerna syra.mpj, fosfat.mpj, smog.mpj och mogel.mpj. Om regressionskommandot: Det underlättar

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 17 februari

Tentamen för kursen. Linjära statistiska modeller. 17 februari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,

Läs mer

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012 Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 14 januari

Tentamen för kursen. Linjära statistiska modeller. 14 januari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Sal 22, hus

Läs mer

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år). Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta

Läs mer

Föreläsning 8: Linjär regression del I

Föreläsning 8: Linjär regression del I Föreläsning 8: Linjär regression del I Johan Thim (johanthim@liuse) 29 september 2018 Your suffering will be legendar, even in hell Pinhead Vi återgår nu till ett exempel vi stött på redan vid ett flertal

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

TAMS65 - Föreläsning 12 Test av fördelning

TAMS65 - Föreläsning 12 Test av fördelning TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det

Läs mer

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 27 oktober

Tentamen för kursen. Linjära statistiska modeller. 27 oktober STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 27 oktober 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida

Läs mer

Multipel linjär regression

Multipel linjär regression Multipel linjär regression Motiverande exempel: effekt av sjukhusstorlek Multipel kausalitet En aktuell fråga: Svårare fall av urinblåsecancer behandlas ofta med cystektomi, det vill säga att man opererar

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

Föreläsning 4. Kap 5,1-5,3

Föreläsning 4. Kap 5,1-5,3 Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 13 januari

Tentamen för kursen. Linjära statistiska modeller. 13 januari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 13 januari 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Finansiell statistik. Multipel regression. 4 maj 2011

Finansiell statistik. Multipel regression. 4 maj 2011 Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Facit till Extra övningsuppgifter

Facit till Extra övningsuppgifter LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en

Läs mer

Enkel linjär regression

Enkel linjär regression Enkel linjär regression Fäders och söners längder Om man anpassar en linje y=α+βx, så passar y = 86.07+0.51x bäst. Uppenbart räcker inte linjen som förklaring. Det finns slumpmässig variation, som gör

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

Exempel på tentamensuppgifter

Exempel på tentamensuppgifter STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer