Facit till Extra övningsuppgifter

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Facit till Extra övningsuppgifter"

Transkript

1 LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en elasticitetsmodell, även om variabelnamnen inte är desamma som i formelsamlingen. Genomgående i lösningen betyder log 10- logaritmen, dvs log 10. a) y = α x β δ, där δ är en slumpkomponent sådan att log δ N(0, σ). b) Logaritmera sambandet log y = log α + β log x + log δ y = α + β x + ε log x log y ( log x) ( log y)/n β skattas med b = (log x) 2 ( log x) 2 = /n ( )/ ( ) /10 α skattas med a = log y b log x = α skattas med a = 10 a = c) t = b/s b. s b = MSE (log x) 2 ( log x) 2 och MSE = SSE/8 där /n SSE = (log y) 2 a log y b (log x) (log y) = /8 s b = ( ) och t = /0.129 / t [8] = < 6.7 H 0 förkastas! d) 95% P.I. för y 0: log 5.0± ( ) (log ) ( ) 2 / ± = (1.050, 1.390) 95% P.I. för y blir ( , ) (11.22, 24.55) Om antagandet om modellen stämmer beträffande δ får intervallet 95% säkerhet. 2. Genomgående i lösningen betyder log 10-logaritmen, dvs log 10. a) Q = α p Ep δ, där Q =Antal sålda enheter och p är endera Pris/KPI eller Prisindex/KPI. E p är priselsaticiteten (vid isoelastiskt samband) och δ är en slumpkomponent sådan att log δ N(0, σ). v g v

2 b) Logaritmera modellen: log Q = log α + E p log p + log δ Motsvarar enkel linjär regression med y = log Q, x = log p, β 0 = log α och β 1 = E p. Följande summor behövs: log p, log Q, (log p) 2, (log Q) 2 och (log p) (log Q). log Q = , (log Q) 2 = Alt. 1: Låt p =Pris/KPI log p = , (log p) 2 = , (log p) (log Q) = (log p) (log Q) ( log p) ( log Q)/n Êp = (log p) 2 ( log p) 2 = /n ( ) (21.557)/ ( ) 2 = /8 Alt. 2: Låt p =Prisindex/KPI. Prisindex fås genom att dividera alla prisvärden med (t ex) det första (ger basår 1) och sedan multiplicera med 100. log p = , (log p) 2 = , (log p) (log Q) = ( ) (21.558)/8 Êp = ( ) 2 = /8 Vi får alltså samma resultat och det hade vi även fått med olika val av basår i Prisindexet och/eller KPI. Det som ändras är skattningen av α, men denna utnyttjas ju inte just här. c) Vi använder anpassningen enligt alt. 2 här, men det går lika bra med alt. 1. Test av H 0 : E p = 1 mot H 1 : E p 1 Testfunktion: t = b ( 1) s b = Ê p ( 1) (SSE/(n 2))/( (log p) 2 ( log p) 2 /n) SSE = SST Êp ( (log p) (log Q) n log p log Q) = ( ) 2 /8 ( 1.218) ( ( /8) ( /8)) ( 1) t = (0.011/6)/( (( ) t[6] /8)) = < H 0 kan ej förkastas. d) Q E = a p c p log a = log Q Êp log p = ( /8) ( 1.218) ( /8) Prognos av förändring i logaritmerad efterfrågan: δ(logq) = (log a+êp log(1.02 p)) (log a+êp log p) = Êp (log log p) Êp log p = = Êp log 1.02 = ( 1.218) log Obervera alltså att log a inte behövs! Efterfrågan minskar till = = 97.62% av tidigare värde, dvs en minskning med c:a 2.38%. Alternativt kan man direkt se detta som (1.02) Då förändringen är liten fungerar det också hyfsta att approximera med Êp δp = % 2.44%.

3 3. Modellen är en elasticitetsmodell även om variabelnamnen ej överensstämmer med de i formelsamlingen. Genomgående i lösningen betyder log 10-logaritmen, dvs log 10. a) ˆθ (log x) (log y) n log x log y = (log x) 2 n (log x) 2 log x = log(x1 x 2... x 12 ) = log , log y = log(y 1 y 2... y 12 ) = log ˆθ (4.3288/12) (5.5972/12) = (4.3288/12) log ˆγ = log y ˆθ log x = (5.5972/12) (4.3288/12) ˆγ = b) SSE = (log y) 2 (log ˆγ) log y ˆθ (log x) (log y) = = % K.I. för θ: ˆθ ± t [n 2] SSE/(n 2) (log x) 2 n (log x) = /10 = ± (4.3288/12) ± = (0.754, 1.416) c) ŷ = % P.I. för log y: ( ) log ŷ ± t [n 2] SSE n n 1 + (log x 0 log x) 2 (log x) 2 n (log x) 2 = (log 3.0)± (0.374, 0.811) 99% P.I. för y blir: ( , ) (2.37, 6.47) 4. a) Analys 1: Volym= β 0 + β 1 RPI + β 2 INK + ε Analys 2: Volym=α RPI Ep INK EI δ b) Analys 2 Êp = ( ) (log 3.0 (4.3288/12)) (4.3288/12) 2 c) Test av H 0 : E I = 0 mot E I 0. Testet finns i utskriften till Analys 2. t-kvoten=1.35 och P -värdet=0.196> 0.05 H 0 kan ej förkastas, dvs vi kan inte hävda att varan är inkomstelastisk. 5. a) Framåtval: I de två analyserna med en variabel har den med RPI högst R 2 och RPI blir även signifikant. Denna variabel skall alltså vara med. I analysen med två variabler blir inte variabeln INK signifikant och den slutliga modellen blri därför den med RPI, dvs Volym= α RPI Ep δ. Bakåteliminering: I modellen med två variabler blir INK ej signifikan. Den tas då bort. I den resulterande modellen med endast RPI blir denna signfikant. Slutlig modell blir då densamma som för framåtval. v g v

4 b) Test av H 0 : E p 1 mot H 1 : E p > 1. Testfunktion: t = Ê p ( 1) s Ep ( 1) I analys 2: t = 1.78 t [15] = < 1.78 H 0 förkastas. Svar: Nej ( 1) I analys 3: t = 1.70 t [16] = > 1.70 H 0 kan ej förkastas. Svar: Tänkbart. I testet har vi utgått från att en vara är priskänslig om priselasticiteteten är 1 eller lägre. Det blir då naturligt att definiera hypoteserna enligt ovan. Om man å andra sidan menar att priskänslighet gäller då priselasticiteten är lägre än 1 blir H 0 : E p 1 mot H 1 : E p < 1 och i detta fall kan man inte förkasta H 0 i någon av analyserna. Sluttutalandet blir då med statistiskt språkbruk svagare, men bygger på samma underlag. Det är alltså viktigt att formulera hypoteserna efter vad det är man vill försöka påvisa. c) Ledning: Använd endera den första analysen i den andra Minitabkörningen och skissa Volym som funktion av RPI enligt sambandet: Volym= RPI RPI INK=40000 kommer inte in här. Eller, använd den andra analysen i den första Minitab-körningen och skissa Volym som funktion av RPI enligt sambandet: Volym= RPI RPI 0.60 Välj i bägge fallen värden på RPI i paritet med värdena i tabellen över datamaterialet. 6. Säsongrensning: y t = y t sn t År (t) Halvår y t sn t yt

5 7. Säsongrensning: y t = y t /sn t Tidsper. t y t sn t yt apr 91 sep okt 91 mar apr 92 sep okt 92 mar apr 93 sep okt 93 mar För att skatta tillväxtfaktorn anpassar vi modellen: yt = β 0 (β 1 ) t δ. Logaritmera säsongrensade värden och anpassa med enkel linjär regression modellen log yt = log β 0 + (log β 1 ) t + log δ. Med 10-logaritmen (lg): t = 21, log y t = , t 2 = 91, (log yt ) 2 = , t (log yt ) = Tillväxtfaktorn är 100 (β 1 1)%. Vi skattar först log β 1 med: t (log y log b = t ) ( t ( log yt )/6 t 2 ( t) 2 = / /6 = 91 (21) /6 β 1 = Tillväxtfaktorn skattas till 16.8%. Med naturliga logaritmen (ln): t = 21, log y t = , t 2 = 91, (log yt ) 2 = , t (log yt ) = Tillväxtfaktorn är 100 (β 1 1)%. Vi skattar först log β 1 med: t (log y log b = t ) ( t ( log yt )/6 t 2 ( t) 2 = / /6 = 91 (21) /6 β 1 = e Tillväxtfaktorn skattas till 16.8%. Notera alltså att valet av logaritm inte spelar någon roll för slutresultatet. Vidare gäller den skattade faktorn tillväxten per halvår. Skattad tillväxt per år blir ((1.168) 2 1) 100% 36%

6 8. Plotten har följande utseende: Säsongsvariationen är stor i detta datamaterial och nivån varierar inte särskilt mycket. Det förefaller då klokast att använda en additiv modell. Använd därför den andra delen av analysen (säsongkomponenterna varierar runt 0 där). sn 1 = I första kvartalet är antal uthyrda soltimmar i genomsnitt c:a 480 timmar högre än genomsnittsnivån sn 2 = I andra kvartalet är antal uthyrda soltimmar i genomsnitt c:a 119 timmar högre än genomsnittsnivån sn 3 = I tredje kvartalet är antal uthyrda soltimmar i genomsnitt c:a 586 timmar lägre än genomsnittsnivån sn 3 = I fjärde kvartalet är antal uthyrda soltimmar i genomsnitt c:a 13 timmar lägre än genomsnittsnivån

7 9. a) De skattade säsongkomponenterna varierar runt 1 Multiplikativ modell har använts. b) n = 76 första kvartalet 1999 motsvarar tidpunkt 77. ŷ 77 = tr 77 sn 1 eftersom ingen skattning av en ev. cyklisk komponnet finns med och ir alltid sätts till 1 i en prognos ŷ 77 = ( ) c) Prognoserna beräknade med Winter s metod är lägre och verkar återspegla att konsumtionstrenden börjar vika nedåt mot slutet av tidsserien. Detta kan inte den klassiska modellen fånga upp och prognoserna enligt Winter s metod blir därför mer trovärdiga. 10. a) De skattade säsongkomponenterna varierar runt 1 Multiplikativ modell har använts. Ingen cyklisk komponent har modellerats y t = TR t SN t IR t. b) sn 1 = I första kvartalet ligger försäljningen i genomsnitt ( ) 100% 10.6% lägre än genomsnittsnivån sn 2 = I andra kvartalet ligger försäljningen i genomsnitt ( ) 100% 6.8% högre än genomsnittsnivån sn 3 = I tredje kvartalet ligger försäljningen i genomsnitt c:a 14.4% högre än genomsnittsnivån sn 4 = I tredje kvartalet ligger försäljningen i genomsnitt c:a 10.6% lägre än genomsnittsnivån c) n = 16 Kvartal 1, 2002 motsvarar tidpunkt 17 och kvartal 2, 2002 motsvarar tidpunkt 18. ŷ 17 = ( ) ŷ 18 = ( ) d) Prognoserna med Winters s metod ligger ganska nära prognoserna i b) uppgiften. Man ser dock att anpassningen med Winter s metod ger högre värden på avvikelsemåtten, vilket skulle tala för att prognoserna med den klassiska metoden är att föredra. Ett motiv för att använda prognoserna med Winter s metod är kanske att de är något lägre och därmed inte så optimistiska. Möjligen finns det en tendens till att trenden i försäljning mattas mot slutet av tidsserien och det är då detta som Winter s metod fångar upp. Sammanfattningsvis är det svårt att avgöra i dessa analyser vilken som är bäst. Bägge duger nog på sitt sätt.

8 11. b) y i = β 0 + β 1 x 1i + ε i, i = 1,..., 10 där β 0 är en nivåjusterande konstant, β 1 anger förändringen i genomsnittligt huspris när befolkningen ökar med 1000 personer, samt ε 1,... ε 10 är oberoende och N(0, σ) fördelade slumpkomponenter. c) β x1i y 1 = b 1 = i ( x 1i ) ( y i )/n (x1i ) 2 ( x 1i ) 2 = /n /10 = (1654) 2 /10 β 0 = b 0 = ȳ b 1 x = d) R 2 = SSR SSE där SSR = SST SSE och SST = y 2 i ( y i ) 2 /n = (12.43) 2 / SSE = y 2 i b 0 y i b 1 x1i y i = = SSR = = R 2 = 2.680/ = 82.3% e) Test av H 0 : β 1 = 0 mot H 1 : β 1 0: Testfunktion t = b 1 s b1 = b 1 = SSE/(n 2) (x1i x 1 ) 2 = / (1645) 2 /10 t [8] = < 6.11 H 0 förkastas! Alt. Testfunktion F = MSR MSE = 2.680/ / F [1,8] 0.05 = 5.32 < 37.3 H 0 förkastas! f) inv. x 0 = % P.I. för y 0 : ( ) ± ( ) (1654) 2 / ± = (0.430, 1.732)

9 12. a) Anpassad modell för kommuner med icke borgerlig majoritet: ŷ = x 1 b 0 = är inte tolkningsbar, b 1 = tolkas som att genomsnittspriset för ett hus ökar med miljoner kronor, dvs 2430 kronor då befolkningen ökar med 1000 personer. Anpassad modell för kommuner med borgerlig majoritet: ŷ = ( ) + ( ) x 1 = x 1 Värdet är inte tolkningsbart. Värdet tolkas som att genomsnittspriset för ett hus ökar med miljoner kronor, dvs kronor då befolkningen ökar med 1000 personer. b) Teckna modellen: y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 1 x 2 + ε Test av H 0 : β 2 = 0 mot H 1 : β 2 0: Testfunktion t = b 2 s b2 = t [6] = < H 0 kan ej förkastas. Svar: Nej! c) Test av H 0 : β 3 = 0 mot H 1 : β 3 0: Testfunktion t = b 3 s b3 = < H 0 kan ej förkastas. Svar: Nej! d) Test av H 0 : β 2 = β 3 = 0 mot H 1 : Minst en av β 2 och β 3 0: Partiellt F-test: Testfunktion F = (SSE R SSE C )/2 SSE C /6 SSE R tas från uppgift 11 till F = ( )/ / F [2,6] 0.05 = 5.14 > H 0 kan ej förkastas. Svar Nej! 13. a) Knappast, eftersom korrelationerna mellan x variablerna ä relativt låga. b) b 0 = 4173 är ej tolkningsbar. b 1 = 80.7 tolkas som att genomsnittlig begynnelselön ökar med 80.7 dollar per år i utbildning., b 2 = 692 tolkas som att genomsnittlig begynnelslön för män är 692 dollar högre än den hos kvinnor för personer med lika lång utbildning. c) Testfunktion F = MSE MSR = F [2,90] 0.05 finns ej i tabell, men man ser att värdet måste vara lägre än 4 och därmed klart lägre än 25.7 H 0 förkastas! v g v

10 d) t [90] ± ± e) Kön tas med först ty den har högst absolut korrelation med y. I varje steg läggs den variabel till, som ger den högst förklaringsgraden tillsammans med tidigare invalda variabler. Om den nya variabeln blir signifikant behålls den i modellen. I utskriften skrivs t-kvoterna i dessa signifikanstest ut och vi kan se att samtliga är relativt stora. Jämförelsesn kommer i varje steg att göras med 1.96 eftersom vi har ett mycket stort antal frihetsgrader. Detta innebär att samtliga fyra förklaringsvariabler kommer att tas med i den slutliga modellen. 14. a) Testfunktion F = MSE MSR = F [2,22] 0.05 = 3.44 < 64.8 H 0 förkastas! b) Testa 1) H 01 : β 1 = 0 mot H 11 : β 1 0: Testfunktion t = b 1 s b1 = t [22] = < 8.98 H 01 förkastas! 2) H 02 : β 2 = 0 mot H 12 : β 2 0: Testfunktion t = b 2 s b2 = frac > H 02 förkastas! Svar: Ja, bägge koefficienterna är skilda från 0. c) Histogrammet ser en aning konstigt ut, varför antagandet om normalfördelning kan ifrågasättas. Diagrammet med residualer mot anpassade värden (fits) tyder ev. på ökad spridning med ökad nivå hos y, vatför man kanske också bör ifrågasätta antagandet om konstant slumpvarians. d) Variabeln Region representeras fullt ut av variablerna South, Midwest och West. I regressionsmodellen skall dock bara två av dessa användas eftersom den tredje då ingår automatiskt. Svaret på frågan är alltså Ja! e) Nej knappast! Inget av VIF-värdena överstiger 10 och alla skattade lutningsparametrar har rimliga tecken om man ser till vilka variabler de står framför. f) Partiellt F -test för tillägg av två variabler: F = (SSE R SSE C )/2 ( )/2 = 17.3 SSE C / /20 F [2,20] 0.05 = 3.49 < 17.3 Den större modellen är bättre.

Regressions- och Tidsserieanalys - F8

Regressions- och Tidsserieanalys - F8 Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen

HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik, ANd HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen REGRESSIONS- OCH TIDSSERIEANALYS, 5 P TENTAMEN LÖRDAGEN

Läs mer

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Föreläsning 4. Kap 5,1-5,3

Föreläsning 4. Kap 5,1-5,3 Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016 Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 7

ÖVNINGSUPPGIFTER KAPITEL 7 ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl. LINKÖPINGS UNIVERSITET 73G71 Statistik B, 8 hp Institutionen för datavetenskap Civilekonomprogrammet, t 3 Avdelningen för Statistik/ANd HT 009 Justeringar och tillägg till Svar till numeriska uppgifter

Läs mer

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper.

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Trots att COST verkade ha ett tydligt positivt samband med var och en av variablerna PAPER, MACHINE, OVERHEAD

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler:

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler: Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Vi plottar förklaringsvariablerna mot varandra: Graph Matrix Plot Trots att COST verkade ha ett tydligt

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

Kvadratisk regression, forts.

Kvadratisk regression, forts. Kvadratisk regression, forts. Vi fortsätter med materialet om fastigheter. Tidigare föreslog vi som en tänkbar modell y 0 + 3 x 3 + 5 x 3 2 + Vari ligger tanken att just använda en kvadratisk term? Det

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I

Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Sebastian Andersson Statistiska institutionen Senast uppdaterad: 15 december 2015 Data kan generellt sett delas in i tre kategorier: 1 Tvärsnittsdata:

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Sänkningen av parasitnivåerna i blodet

Sänkningen av parasitnivåerna i blodet 4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet

Läs mer

Datorövning 1 Enkel linjär regressionsanalys

Datorövning 1 Enkel linjär regressionsanalys Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III

Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Sebastian Andersson Statistiska institutionen Senast uppdaterad: 16 december 2015 är en prognosmetod vi kan använda för serier med en

Läs mer

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller ) TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare

Läs mer

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller

Läs mer

Tidsserier. Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden.

Tidsserier. Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden. Tidsserier Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden. Den allmänna formeln för den additiva modellen:, och för den multiplikativa modellen:, där T står för trend,

Läs mer

Föreläsning 10, del 1: Icke-linjära samband och outliers

Föreläsning 10, del 1: Icke-linjära samband och outliers Föreläsning 10, del 1: och outliers Pär Nyman par.nyman@statsvet.uu.se 19 september 2014-1 - Sammanfattning av tidigare kursvärderingar: - 2 - Sammanfattning av tidigare kursvärderingar: Kursen är för

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Laboration 4 Regressionsanalys

Laboration 4 Regressionsanalys Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns

Läs mer

Analys av egen tidsserie

Analys av egen tidsserie Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Regressions- och Tidsserieanalys - F5

Regressions- och Tidsserieanalys - F5 Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?

Läs mer

REGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11

REGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11 1/11 REGRESSIONSANALYS Exempel från F6 Linda Wänström Statistiska institutionen, Stockholms universitet 2/11 Datamaterial Amerikanskt datamaterial från 1970 "Income guarantees and the working poor" där

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

Skrivning i ekonometri lördagen den 25 augusti 2007

Skrivning i ekonometri lördagen den 25 augusti 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

Resursfördelningsmodellen

Resursfördelningsmodellen PCA/MIH Johan Löfgren Rapport 25-6-26 (6) Resursfördelningsmodellen Växjös skolor våren 25 Inledning Underlag för analyserna utgörs av ett register som innehåller elever som gått ut årskurs nio 2 24. Registret

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer