Instruktioner till Inlämningsuppgift 1 och Datorövning 1
|
|
- Sara Samuelsson
- för 1 år sedan
- Visningar:
Transkript
1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och består av fem delar enligt instruktionerna nedan. Dessa skall lösas och redovisas skriftligt helst skrivna i ett ordbehandlingsprogram som Word. Ni skall arbeta två och två, i nödfall kan ni arbeta i grupper om tre men kolla med läraren först. Ni skall lämna in en kopia av redovisningen per grupp men kom ihåg att ta personliga kopior av ert arbete. Kom också ihåg att alla skall bidra! Får ni problem, kontakta läraren. Syftet med grupparbetet är att det ska underlätta ert lärande genom att ni får en diskussionspartner. Instruktionerna nedan avser statistikprogrammet Minitab version 14 men om ni vill använda något annat programpaket är detta naturligtvis tillåtet. Era skriftliga redovisningar inlämnas till momentansvarig lärare senast 28 oktober 2005 eller enligt överenskommelse. Resultatet av ert arbete kommer att meddelas i samband med tentamensåterlämningen. En del av frågorna nedan har vi ännu inte gått igenom på föreläsningarna. Försök ändå att resonera kring vad det är som avses. Var inte oroliga om ni inte förstår direkt, vi kommer att gå igenom allt på föreläsningar och övningarna. Om ni inte hinner genomföra hela arbetet under de schemalagda datorövningarna har ni möjlighet att på egen hand fortsätta vid något senare tillfälle. OBS! Det är inte meningen att ni ska redovisa ett stort uppsatsarbete, besvara bara frågorna så kortfattat som möjligt. Om ni har problem med formler i ordbehandlingsprogrammet kan ni alltid lämna lite utrymme mellan raderna för handskrivna kompletteringar. Återigen, kortfattade, läsliga och prydliga redovisningar efterlyses! OBS! Om ni fastnar på något eller inte förstår hur ni skall lösa en uppgift, fråga! Syftet med uppgiften är att ni skall lära er något om grundläggande regressionsanalys! SISTA INLÄMNINGSDATUM: tisdag 28 oktober
2 - Inledning Starta Minitab14 och öppna projektfilen Data3.mpj via menyalternativet File>Open Project. Filen ligger under M:\FK\TEORI\. Spara sedan projektet som en egen fil under ett nytt och eget valt filnamn på valfri plats på H: alternativt på en egen diskett. Filen är det ni behöver för hela inlämningsuppgiften. Filen innehåller två datamaterial el. worksheets; - Anscombe omfattande 11 observationer i sex variabler och skall användas för Del 1 nedan. Kolumnerna är namngivna X, Y1, Y2, Y3, X4, och Y4. - Regression omfattande 50 simulerade observationer i sex variabler. Materialet skall användas för Del 2-7. Kolumnerna är namngivna, X1 X4 samt Y och Y2 Ni kan växla mellan worksheeten genom att helt enkelt klicka på valfri plats inom det fönster ni vill aktivera. Starta sedan Word (eller något annat ordbehandlingsprogram). Under M:\FK\TEORI\ finner ni dokumentfilen RedovisnOvn1Eko.doc som ni kan öppna och sedan spara under ett nytt namn på valfri plats på H: alternativt på en egen diskett eller USB-minne. Detta nya dokument kan ni använda som mall och fylla på med era svar och lösningar. Om ni vill kan ni sedan skicka era redovisningar via e-post till ansvarig lärare. - Del 1: Vikten av att titta på data Aktivera Anscombe materialet. Genomför sedan fyra regressionsanalyser enligt följande: kolumn C1, X, som ensam prediktorvariabel och, i tur och ordning, kolumner C2-C4, Y1-Y3, som responsvariabel. Sedan kolumn C5, X4, som ensam prediktorvariabel med kolumn C6, Y4, som responsvariabel. Regressionsanalyserna gör ni via menyalternativet Stat>Regression>Regression. Dialogfönstret ska se ut ungefär som nedan: För var och en av skattningarna ska ni få en utskrift med resultat. (a) Fyll i tabellen i ert redovisningsdokumentet med de uppgifter som efterfrågas där; enklast görs detta givetvis genom att kopiera och klistra. 2
3 (b) Med ledning enbart av Minitabutskrifterna och tabellen, vilken eller vilka av modellerna skulle ni välja som bästa modell? Är det några större skillnader? (c) Jämför också Minitabutskrifterna från respektive analys/modell, med avseende på Unusual Observations. Är det några skillnader och vad kan de i så fall bero på? (d) Plotta nu respektive par av variabler; detta gör ni enklast med Minitabkommandot plot c2*c1 plot c3*c1 osv Kopiera in plottarna in i ert dokument. Hur ser sambandet mellan beroende och oberoende variabel ut i respektive fall.. Vad drar ni för slutsatser? Försök förklara i ord vad som karaktäriserar de olika situationerna. Är en linjär modell lämplig att använda i de olika fallen? Om inte, varför? OBS! När ni kopierar in ett diagram till er Wordfil kan ni anpassa det storleksmässigt genom att högerklicka på det och välja Formatera bild. Ändra sedan storlek under fliken storlek; runt 50-75% av originlstorleken brukar bli bra, beroende på vad det är för bild. Datamaterialet är hämtat från Anscombe, Graphs in Statistical Analysis, American Statistician, (1973). - Del 2: Enkel linjär regression Härefter skall endast datamaterialet Regression användas. Aktivera detta material genom att klicka var som helst i det fönstret. (a) Bestäm vilken av variablerna X1 X4 som har det starkaste linjära sambandet med variabeln Y. Plotta sedan Y mot den valda variabeln. Ser sambandet linjärt ut? Kopiera resultatutskriften och diagrammet och klistra in i ert redovisningsdokument. Kommandon: corr c5 c1-c4 plot c5*c? (Obs! Byt ut? mot vad det nu är ni väljer) (b) Gör en regressionsanalys med Y som responsvariabel och den i (a) valda variabeln som prediktor via menyalternativet Stat>Regression>Regression. Klicka också Graphs-knappen och välj alternativen enligt bilden nedan. Skriv även in den i (a) valda variabeln vid Residuals versus the variables. Tryck OK, OK och kopiera sedan in resultatutskriften och diagrammet in i ert dokumentet. 3
4 (c) Tolka regressionskoefficienterna i ord! Är tolkningen av interceptet rimligt? Finns det några ovanliga observationer rapporterade? På vilket sätt är de ovanliga? Diskutera sinsemellan vad som kan menas med large standardized residual respektive large influence. Jämför förklaringsgraden R 2 med motsvarande korrelationskoefficient i (a). (d) Testa på 5% signifikansnivå nollhypotesen H 0 : β 1 = 0, dvs att regressionskoefficienten skiljer sig från noll. Detta gör ni för hand genom att läsa av relevanta delar av utskriften. Testresultatet kan ni enkelt avgöra genom en titt på utskriften och efter att ha tagit fram en lämplig t- fördelningskvantil. Kommando: invcdf 0,975; t 48. (e) Bilda ett 95% konfidensintervall för regressionskoefficienten β 1 samt tolka resultatet i ord. Även detta gör ni för hand genom att titta på utskriften. Vad är kopplingen till förra deluppgiften? (f) Studera nu de fyra diagrammen som genererades vid regressionsanalysen. Resonera kortfattat kring hur dessa kan vara till hjälp när ni skall försöka verifiera att de grundläggande antagandena som ligger till grund för regressionsmodellen är uppfyllda eller inte. Den del av diagrammet som heter Normal Probability Plot of the Residuals används för att bedöma om residualerna är normalfördelade eller inte; om de är det skall punkterna ligga ungefär utefter linjen i diagonalen. (g) Som avslutning på första delen kan ni, via menyalternativet Stat>Regression>Fitted Line Plot, även skapa ett diagram för att visa hur den skattade regressionslinjen ligger i datamaterialet. Klicka på Options-knappen och kryssa för alternativen för konfidens- respektive prediktionsband. Är resultatet det ni förväntar er? Försök att för er själva identifiera de observationer som rapporterades som ovanliga i resultatutskriften i (b) ovan. - Del 3: Multipel linjär regression med två prediktorer (a) Ni ska nu utöka modellen genom att ta med ytterligare en prediktor. Välj någon av de övriga variablerna och genomför en ny regressionsanalys nu med två prediktorer. Se till att ni väljer att plotta residualerna mot bägge förklaringsvariabler som ni har valt via Graphs-knappen, se figuren nedan. Notera att i figuren nedan är X4 och X3 angivna som ett exempel, ni ska ange de ni har valt. Kopiera sedan resultatutskriften och diagrammet och klistra in i ert dokument. 4
5 (b) Hur stor är ökningen i förklaringsgrad R 2 jämfört med den enkla regressionsmodellen i 1b)? Hur jämför sig ökningen i R 2 med de ursprungliga korrelationskoefficienterna som ni observerade i uppgift 1a)? (c) Studera nu diagrammen som genererades vid regressionsanalysen. Kan ni verifiera om modellantagandena är uppfyllda eller inte? (d) Testa på 5% signifikansnivå om båda regressionskoefficienterna (ej interceptet) är lika med noll mot att någon är skild från noll. Testresultatet kan ni enkelt avgöra genom en titt på utskriften och efter att ha tagit fram en lämplig F-fördelningskvantil. Kommando: invcdf 0,95; F (e) Beräkna det förväntade värdet på Y givet att X1 = 4, X2 = 25, X3 = 25 och X4 = 400. Välj alltså ut de två värden som motsvarar de två prediktorer som ni har valt. Beräkna även ett 95% konfidensoch ett prediktionsintervall och tolka intervallen i ord. Ledning: Det finns ett enkelt sätt att beräkna det predicerade värdet och intervallen via Stat>Regression>Regression och Options-knappen, se figuren nedan. (f) Undersök nu vilka observerade värden på prediktorena som finns i datamaterialet. Vad drar ni för slutsatser? Kommando: desc c? c? (Obs! Byt ut? mot vad det nu är ni har valt) 5
6 - Del 4: Multipel linjär regression med tre prediktorer (a) Utöka nu modellen genom att stoppa in ytterligare en variabel och genomför en ny regressionsanalys. Den här gången ska ni dessutom ta fram variansinflationsfaktorer (VIF). Dessa får ni via Options-knappen och genom att markera boxen för dessa. Klistra in resultatutskriften in i Worddokumentet. (b) Verifiera att T-kvoten för den nya prediktorn överensstämmer med motsvarande F-kvot som kan anges i ANOVA-tablån och SS Seq kolumnen i utskriften. Vilka värden ska användas för att beräkna F-kvoten? Vad är noll- respektive mothypotes? Vad är slutsatsen? (c) Studera utskriften. Skulle ni vilja modifiera modellen på något sätt? Är det någon prediktor som ni skulle vilja testa att ta bort eller lägga till? Är det problem med multikollinearitet? - Del 5: Stegvis regression Ni har nu modellerat datamaterialet manuellt genom att titta på korrelationskoefficienter och lagt till nya prediktorer en i taget. Detta kan till viss del automatiseras med hjälp av Mintabs procedur för stegvis regression (eng. stepwise regression). Vad proceduren gör är att leta upp den prediktor som ger störst förklaringsgrad R 2 jämfört med en tom modell. Sedan denna är vald letar programmet upp den prediktor bland de övriga som ger störst ökning i förklaringsgrad R 2, givet att den först valda redan är med. Därefter den tredje givet de två första och så vidare. Kriteriet för att få vara med i modellen är att motsvarande partiella F-test ger ett signifikant resultat enligt sist-in-strategin. (a) Proceduren utförs via Stat>Regression>Stepwise. I dialogfönstret (se nästa sida) anges responsvariabel (Y) och samtliga prediktorkandidater (X1-X4). Här spelar inte ordningen någon roll eftersom Minitab i varje steg letar upp den som ger det bästa resultatet. När ni har startat proceduren får ni först ett delresultat utskrivet i sessionsfönstret. Svara med ett y vid prompten SUBC> för att fortsätta analysen. När det inte verkar hända så mycket mer, svara med ett n för stoppa exekveringen. Kopiera sedan resultatet i sessionfönstret till ert dokument. (b) Varje kolumn i utskriften motsvarar ett steg i proceduren (Step 1, 2 osv). Varj rad anger vilken variabel som antingen togs med eller slängdes bort. Vad har ni fått för slutlig modell? Var det väntat med tanke på era slutsatser i Del 1-3? 6
Datorövning 1 Enkel linjär regressionsanalys
Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband
Datorövning 5 Exponentiella modeller och elasticitetssamband
Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell
Regressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Datorövning 2 Multipel regressionsanalys, del 1
Datorövning 2 Multipel regressionsanalys, del 1 Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. analysera data enligt en multipel regressionsmodell
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Regressionsanalys med SPSS Kimmo Sorjonen (2010)
1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Skrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
Föreläsning 4. Kap 5,1-5,3
Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Skrivning i ekonometri lördagen den 15 januari 2005
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Obligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,
I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Sänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Enkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Regressionsanalys av lägenhetspriser i Spånga
Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B
Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så
Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.
y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett
Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.
Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel
Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
Datorövning 2 Statistik med Excel (Office 2007, svenska)
Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter
Laboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Föreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
Datorövning 1 Introduktion till Minitab och Excel
Datorövning 1 Introduktion till Minitab och Excel Allmänt Hittills under statistikkursen har vi ägnat oss åt metoder för att illustrera och beskriva datamaterial. Du har kanske börjat öva på att räkna
TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )
TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare
Richard Öhrvall, http://richardohrvall.com/ 1
Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2011-03-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Erland
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Laboration 4 Regressionsanalys
Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns
Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om
DATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett
732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en
Histogram, pivottabeller och tabell med beskrivande statistik i Excel
Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.
Datorövning 1 Statistik med Excel (Office 2010, svenska)
Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland
FACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl.
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk Statistik Statistiska Metoder 5MS010, 7.5 hp Kadri Meister Rafael Björk LABORATIONER Detta dokument innehåller beskrivningar av de tre laborationerna
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
SAMBANDS- MODELLER, 15HP. Lärare: Ann-Charlotte Hallberg Tommy Schyman
1 SAMBANDS- MODELLER, 15HP Lärare: Ann-Charlotte Hallberg Tommy Schyman 2 Kursplan Kursplanen är det styrande dokumentet i en kurs. Planen är fastställd av fakulteten och måste följas. Kursplanen visas
TENTAMEN I STATISTIK B,
732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen
Statistiska metoder för säkerhetsanalys
F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den
LABORATION 1. Syfte: Syftet med laborationen är att
LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa
Laboration 4: Hypotesprövning och styrkefunktion
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration
Regressions- och Tidsserieanalys - F5
Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera
Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man
Introduktion till Word och Excel
Introduktion till Word och Excel HT 2006 Detta dokument baseras på Introduktion till datoranvändning för ingenjörsprogrammen skrivet av Stefan Pålsson 2005. Omarbetningen av detta dokument är gjord av
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de
Datorövning 1 Statistik med Excel (Office 2007, svenska)
Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
Statistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde
Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler
UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2013-01-14 Tentamen Tillämpad statistik A5 (15hp) 2013-01-14 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Datorövning 1 Statistik med Excel (Office 2007, svenska)
Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
DATORÖVNING 2: TABELLER OCH STANDARD-
DATORÖVNING 2: TABELLER OCH STANDARD- VÄGNING. I den här datorövningen använder vi Excel för att konstruera pivottabeller, som vi sedan använder för att beräkna standardvägda medeltal. Vi skapar också
Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi
1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer
Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man
DATORÖVNING 4: DISKRETA
IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a
Räkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010
v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen
Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,