Datorövning 2 Multipel regressionsanalys, del 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Datorövning 2 Multipel regressionsanalys, del 1"

Transkript

1 Datorövning 2 Multipel regressionsanalys, del 1 Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. analysera data enligt en multipel regressionsmodell 2. studera residualer från anpassade regressionsmodeller Multipel regressionanalys Starta Minitab Se till att ni kan skriva kommandon i Session-fönstret : klicka i Session-fönstret så att det blir aktivt. Öppna sedan menyn Editor (alltså inte menyn Edit) och välj där alternativet Enable Commands. Efter detta syns prompten MTB> i Session-fönstret efter vilken kommandon kan skrivas in. Datamaterial Ni skall börja med att ladda hem ett datamaterial som levereras i Minitab-distributionen och handlar om fastighetsvärdering. Nedanstående text förklarar datamaterialet och dess ingående kolumner: Assessors base their home assessments on many different variables. This data set includes a number of those variables, plus the final value of the home and land. Column Name Count Missing Description C1 Land$ 81 2 Assessed value of the land C2 Total$ 81 2 Assessed value of the home and 1 the land C3 Acreage 81 Number of acres C4-T Height 81 Story height (number and type of floors); 1Story, 1Stryatk (one story plus attic), 1.5Story, 2Stories, 2Storatk (two stories plus attic), SplitLev (split level), or BiLevel C5 1stFArea 81 Area of first floor, in square feet

2 C6-T Exterior 81 Exterior condition; Excellnt (excellent), Good, or Average C7-T Fuel 81 Type of fuel; NatGas (natural gas), Electric, Oil, or Solar C8 Rooms 81 Number of rooms C9 Bedrooms 81 Number of bedrooms C1 FullBath 81 Number of full baths C11 HalfBath 81 Number of half baths C12 Fireplace 81 Number of fireplaces C13-T Garage? 81 Presence of a garage; Garage or Nogarage Datamaterialet skall även användas i kommande datorövningar, men i just denna skall vi bara använda ett fåtal av variablerna. Observera 1! Variablerna ovan har engelska namn och vi kommer att även ge nya variabler engelska namn. I löpande text kommer vi dock då och då att använda svenska översättningar av namnen. Det är alltså samma variabler vi talar om men på olika språk. Observera 2! I datamaterialet saknas vissa värden för två av fastigheterna. Detta syns genom att rutorna har asterisker (*). En av finesserna med Minitab och annan statistisk programvara är att de flesta av procedurerna kan hantera detta problem. Programmet tar tillfälligt bort dessa observationer när analysen görs. Ni behöver alltså inte bli bekymrade om det då och då kommer information om att två observationer saknas. Ladda nu hem datamaterialet genom att göra följande: Öppna menyn File i Minitab, välj alternativet Open worksheet Ett fönster öppnas då på skärmen med ungefär följande utseende: 2

3 (Om inte fönstret öppnas med mappen Sample Data i fältet Look in: så hittar ni denna mapp under enhet C:\Program Files\Minitab 15\English) Öppna mappen student12 Välj sedan filen ASSESS i denna mapp och klicka på Open. Klicka på OK i den lilla dialogruta som påpekar att en kopia av filen kommer att adderas till ert pågående projekt. 3

4 Har ni gjort rätt skall ni nu ha laddat hem detta datamaterial så att det syns i Worksheetfönstret. Genomgående i analyserna skall ni använda variabeln Total$ (dvs kolumnen C2) som y- variabel (response, beroende variabel). Förklaringsvariablerna skall väljas bland övriga variabler. Grafisk analys Börja med att skapa er en uppfattning om hur priset borde kunna tänkas bero av följande förklaringsvariabler: Acreage (dvs tomtstorlek), 1stFArea (dvs bottenplansytan), Rooms, Bedrooms, Fullbath För att se hur priset kan tänkas bero av Acreage skall ni plotta C2 mot C3. Öppna menyn Graph och välj alternativet Scatterplot 4

5 Total$ Välj (som synes i figuren ovan) C2 som Y och C3 som X och klicka på OK. Resultatet ser ut enligt 5 Scatterplot of Total$ vs Acreage Acreage Ni hade också kunnat göra detta genom att skriva in kommandot plot c2*c3 Plotten anger att priset verkar bero positivt av tomtytan, men man ser också att det finns gott om variation. Anpassa nu en enkel linjär regressionsmodell där priset förklaras av tomtytan. Ni bör veta hur detta görs meny-vägen, men det går naturligtvis snabbast att bara ge kommandot: regress c2 1 c3 Studera utskriften i Session-fönstret. Vad kan ni säga om förklaringsgraden och signifikansen hos den anpassade modellen? Skall tomtytan vara med som förklaringsvariabel? Bör ytterligare variabler läggas till? Pröva nu i tur och ordning plotta C2 mot var och en av de övriga variablerna i listan ovan. Bedöm i varje fall hur ett eventuellt samband verkar se ut, dvs positivt eller negativt, starkt eller svagt. Notera allt detta. Multipla regressionsmodeller Bygg ut den enkla regressionsmodellen ovan genom att successivt lägga till flera variabler. För att t ex anpassa en modell där priset (C2) förklaras av variablerna Acreage (C3) och Rooms (C8) kan ni öppna menyn StatRegressionRegression och där välja C2 som Response och C3, C8 som Predictors. 5

6 Eller också kan ni ge kommandot regress c2 2 c3 c8 Pröva olika kombinationer och studera i varje fall: förklaringsgraden - Förbättras den nämnvärt då och då? tecknen hos de skattade lutningsparametrarna - Stämmer dessa med era noteringar från plottarna? signifikansen hos de anpassade modellerna (F-test) och för var och en av de ingående parametrarna (t-test) - Är resultaten konsistenta med era anteckningar om starka och svaga samband? Det händer säkert då och då att resultaten blir svårbegripliga. Det har att göra med diverse saker, som bl. a. kommer upp på nästa föreläsning, men i denna datorövning skall ni främst notera vad resultaten blir och fundera litet över orsakerna. Oavsett vad ni tycker om det prövade modellerna skall ni nu jobba med den modell där priset förklaras av de tre variablerna Acreage, 1stFArea och FullBath. Öppna åter dialogrutan för regression (Stat->Regression->Regression) 6

7 Välj variablerna enligt ovan och klicka sedan på Graphs Här kan ni välja att skapa diagram för residualerna Markera rutorna enligt ovan ( Histogram of residuals, Residuals versus fits, Residuals versus order ) och i fältet under Residuals versus the variables väljer ni som synes de tre förklaringsvariablerna. Klicka sedan på OK Klicka nu på Options (i den första dialogrutan) 7

8 Frequency Ni skall här välja en ny punkt i vilken prognos skall göras. Fyll i enligt rutan, dvs värdet 1.6 för Acreage värdet 2 för 1stFArea och värdet 2 för FullBath i den ordningen. Observera att det skall vara mellanslag mellan dessa värden. Denna nya punkt finns inte i datamaterialet (även om det förstås finns flera punkter där antalet badrum är 2). I fältet efter Confidence level skall ni se till att det står 99. Standard är 95 men detta skall alltså ändras. Klicka på OK och klicka sedan på OK i den första dialogrutan. Nu kommer skärmen att översvämmas med fönster. Dessa är de olika residualdiagram ni har valt och det blir totalt sex stycken. Börja med att ta fram fönstret med ett histogram över residualerna: 25 Histogram of the Residuals (response is Total$) Residual 6 12 Visar detta diagram på normalfördelning hos residualerna? Tag sedan fram diagrammet med Residuals Versus the Fitted Values 8

9 Residual Residual Residuals Versus the Fitted Values (response is Total$) Fitted Value Detta diagram kan avslöja om residualerna verka ha konstant varians eller ej. Verkar det som att residualernas varians beror av prisnivån? Diagrammet Residuals Versus the Order of the Data används för att bedöma om residualerna har ett starkt inbördes beroende. Detta kan man anse om endera residualerna verkar följas åt (dvs ett böljande möster) eller om de går tvärs emot varandra (dvs ett tätt sick-sack-mönster). Hur ser det ut i detta fall? Studera nu diagrammet Residuals Versus Acreage Residuals Versus Acreage (response is Total$) Acreage I detta diagram skall man leta efter krökningar i mönstret. Ev. skulle man kunna tycka att det är så ovan. Värden till vänster och till höger i diagrammet ser ut att ligga mer under än värdena i mitten. Om vi tror på detta skulle det i så fall innebära att priset beror såväl linjärt som kvadratiskt av tomtytan. Undersök på motsvarande sätt de sista två diagrammen. 9

10 Studera nu utskriften i Session-fönstret. Vad blir prognosen av priset för en fastighet med tomtyta 1.6 (acrs), bottenplanytan 2 (ft) och 2 badrum? Vad blir ett 99% konfidensintervall för det genomsnittliga priset på sådana fastigheter och vad blir det 99%- iga prognosintervallet för en enskild fastighet med dessa mått? Vi går nu vidare med antagandet att priset beror såväl linjärt som kvadratiskt av tomtytan. Ni skall då pröva att anpassa följande två modeller (instruktioner kommer nedan): y= x 1 (x 1 ) 2 + dvs pris förklaras av tomtyta och (tomtyta) 2 y= x 1 (x 1 ) x x 5 + dvs pris förklaras av tomtyta, (tomtyta) 2, bottenplanyta och antal badrum Observera att just modellerna ovan räknar upp beta-parametrarna en i taget även om numren på x-variablerna inte är korresponderande. (Variablerna x 3 och x 4 skulle i detta sammanhang vara antal rum resp. antal sovrum) För att skapa variabeln (tomtyta) 2 skriver ni följande kommando: let c14=c3**2 Variabeln lagras då i den nya kolumnen C14 som kan användas när ni öppnar dialogrutan för regression. Ge lämpligen sedan denna kolumn namnet Acreage-squared. Anpassa nu de två modellerna ovan, en i taget. Vad säger dessa två anpassningar om kvadrattermen? Verkar det vettigt att ha med den? Ni skall fortsätta med detta material under Datorövning 3. För att ni inte skall behöva göra om skapandet av nya variabler skall ni nu spara ert arbete som en Minitab Project File : välj FileSave Project As 1

11 I dialogrutan är det viktigt att ni gör följande: I fältet Save in: väljer ni er egen hemarea (enheten Z:), eventuellt någon undermapp, men det bestämmer ni. Det viktiga är att ni hittar dokumentet vid nästa datorövning. I fältet File name: välj ett annat namn än MINITAB.MPJ som hjälper er att hitta dokumentet vid nästa datorövning. Filändelsen.MPJ erhålls automatiskt och behöver inte skrivas in. Klicka på Save När ni vill öppna detta dokument igen räcker det med att dubbelklicka på ikonen för det. Minitab startas då automatiskt med alla kolumner och hela Session Window som det såg ut när ni sparade. Det går förstås också att i ett startat Minitab öppna denna projektfil genom att välja FileOpen Project Avslutning Avsluta alla program och logga ut från systemet. 11

Datorövning 1 Enkel linjär regressionsanalys

Datorövning 1 Enkel linjär regressionsanalys Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

Laboration 3: Modellval i multipel regression

Laboration 3: Modellval i multipel regression Laboration 3: Modellval i multipel regression I denna datorövning skall ni använda MINITAB för att 1. jämföra olika anpassade regressionsmodeller med hjälp av den justerade förklaringsgraden 2. arbeta

Läs mer

DATORÖVNING 2: TABELLER OCH STANDARD-

DATORÖVNING 2: TABELLER OCH STANDARD- DATORÖVNING 2: TABELLER OCH STANDARD- VÄGNING. I den här datorövningen använder vi Excel för att konstruera pivottabeller, som vi sedan använder för att beräkna standardvägda medeltal. Vi skapar också

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

DATORÖVNING 2: STATISTISK INFERENS.

DATORÖVNING 2: STATISTISK INFERENS. DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett

Läs mer

Datorövning 1 Introduktion till Minitab och Excel

Datorövning 1 Introduktion till Minitab och Excel Datorövning 1 Introduktion till Minitab och Excel Allmänt Hittills under statistikkursen har vi ägnat oss åt metoder för att illustrera och beskriva datamaterial. Du har kanske börjat öva på att räkna

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

DATORÖVNING 4: DISKRETA

DATORÖVNING 4: DISKRETA IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a

Läs mer

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488 Idiotens guide till Håkan Lyckeborgs SPSS-föreläsning 4/12 2008 Av: Markus Ederwall, 21488 1. Starta SPSS! 2. Hitta din datamängd på Kurs 601\downloads\datamängd A på studentwebben 3. När du hittat datamängden

Läs mer

DATORÖVNING 3: EXPERIMENT MED

DATORÖVNING 3: EXPERIMENT MED DATORÖVNING 3: EXPERIMENT MED SLUMPMÄSSIGA FÖRSÖK. I denna övning skall du med hjälp av färdiga makron simulera två olika försök och med hjälp av dessa uppskatta sannolikheter för ett antal händelser (och

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Kvadratisk regression, forts.

Kvadratisk regression, forts. Kvadratisk regression, forts. Vi fortsätter med materialet om fastigheter. Tidigare föreslog vi som en tänkbar modell y 0 + 3 x 3 + 5 x 3 2 + Vari ligger tanken att just använda en kvadratisk term? Det

Läs mer

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera

Läs mer

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

Föreläsning 4. Kap 5,1-5,3

Föreläsning 4. Kap 5,1-5,3 Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet

Läs mer

Intro till SPSS Kimmo Sorjonen (0811)

Intro till SPSS Kimmo Sorjonen (0811) 1 Intro till SPSS Kimmo Sorjonen (0811) 1. Att mata in data i SPSS 1. Klicka på ikonen för SPSS. 2. Välj alternativet Type in data och klicka på OK. 3. Databladet har två flikar: Data view och Variable

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

2.1 Minitab-introduktion

2.1 Minitab-introduktion 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Richard Öhrvall, http://richardohrvall.com/ 1

Richard Öhrvall, http://richardohrvall.com/ 1 Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden

Läs mer

Gran Canaria - Arbetsbeskrivning knapplänkar (Mediator 8)

Gran Canaria - Arbetsbeskrivning knapplänkar (Mediator 8) Gran Canaria - Arbetsbeskrivning knapplänkar (Mediator 8) I detta exempel kommer du att lära dig Att skapa en ny presentation från början Att skapa en enkel knapp Att använda händelseinställningar, events

Läs mer

Laboration 4 Regressionsanalys

Laboration 4 Regressionsanalys Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns

Läs mer

Marknadsinformationsmetodik Inlämningsuppgift

Marknadsinformationsmetodik Inlämningsuppgift Marknadsinformationsmetodik Inlämningsuppgift Uppgiften löses med hjälp av SPSS. Klistra in tabeller och diagram från SPSS i ett Worddokument och kommentera där. Använd ett försättsblad till den slutgiltiga

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA.

DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. ALLMÄNT OM DATORERNA Datorsystemet består av persondatorer kopplade i ett nätverk till en större server. Operativsystemet

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Histogram, pivottabeller och tabell med beskrivande statistik i Excel

Histogram, pivottabeller och tabell med beskrivande statistik i Excel Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning

Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Silvelyn Zwanzig, Matematiska Statistik NV1, 2005-03-03 1. Datamaterial I de uppgifter som f ljer skall du l ra dig hur Minitab anv ndas f r

Läs mer

LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl.

LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl. UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk Statistik Statistiska Metoder 5MS010, 7.5 hp Kadri Meister Rafael Björk LABORATIONER Detta dokument innehåller beskrivningar av de tre laborationerna

Läs mer

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Laborationer i statistik för A:1, Lab 1

Laborationer i statistik för A:1, Lab 1 Mittuniversitetet 2006-08-31 1 Laborationer i statistik för A:1, Lab 1 Laborationsanvisningar Genomförande Gå igenom laborationen i basgruppen och diskutera vilka lärandemål ni eventuellt behöver tillföra

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Skrivning i ekonometri lördagen den 15 januari 2005

Skrivning i ekonometri lördagen den 15 januari 2005 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad

Läs mer

Kort manual till SPSS 10.0 för Mac/PC

Kort manual till SPSS 10.0 för Mac/PC Institutionen för beteendevetenskap Linköpings universitet Kort manual till SPSS 10.0 för Mac/PC 1. Att skapa en ny variabel Inmatning av data sker i det spread sheet som kallas Data View (flik längst

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper.

Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Trots att COST verkade ha ett tydligt positivt samband med var och en av variablerna PAPER, MACHINE, OVERHEAD

Läs mer

6. Nu skall vi ställa in vad som skall hända när man klickar på knappen samt att markören skall ändra sig till en hand när markören är på knappen.

6. Nu skall vi ställa in vad som skall hända när man klickar på knappen samt att markören skall ändra sig till en hand när markören är på knappen. Fiskar Arbetsbeskrivning knappmeny (Mediator 8) I detta exempel kommer du att lära dig Att göra en mastersida med knappar Att använda en mastersida på andra sidor Att använd funktionen Alignment Arbetsgång

Läs mer

Att skapa en bakgrundsbild och använda den i HIPP

Att skapa en bakgrundsbild och använda den i HIPP Att skapa en bakgrundsbild och använda den i HIPP Bakgrundsbilder i HIPP kan användas till olika saker, t ex som ett rutnät för en tabell eller en grundkarta. Här visas hur man gör en grundkarta som en

Läs mer

DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA.

DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. ALLMÄNT OM DATORERNA Datorsystemet består av persondatorer kopplade i ett nätverk till en större server. Operativsystemet

Läs mer

Datoro vning 1-2 Statistisk analys av kodade svar

Datoro vning 1-2 Statistisk analys av kodade svar Datoro vning 1-2 Statistisk analys av kodade svar 732G19 Utredningskunskap I Denna datorövning utförs i grupper om 2-4 personer och ska ses som en instruktion i att analysera resultaten av en enkät. Ingen

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Att arbeta med centralfiler i Revit AADA20 Rhino/Revit Workshop 2016 LTH Ludvig Hofsten

Att arbeta med centralfiler i Revit AADA20 Rhino/Revit Workshop 2016 LTH Ludvig Hofsten Att arbeta med centralfiler i Revit 2017 AADA20 Rhino/Revit Workshop 2016 LTH Ludvig Hofsten 1. Öppna Revit. 2. Tryck på New 1. Hitta en bra mallfil (template på engelska.) Förslagsvis Mallfil LTH-A som

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Datorövning 1 Statistik med Excel (Office 2010, svenska)

Datorövning 1 Statistik med Excel (Office 2010, svenska) Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Datorövning 4 Multipel regressionsanalys, del 3

Datorövning 4 Multipel regressionsanalys, del 3 Datrövning 4 Multipel regressinsanalys, del 3 Datrövningen utförs i grupper m två persner. I denna datrövning skall ni använda Minitab för att 1. jämföra lika anpassade regressinsmdeller m h a R 2 -just.

Läs mer

Kom igång. Readyonet Lathund för enkelt admin. Logga in Skriv in adressen till din webbsida följt av /login. Exempel: www.minsajt.

Kom igång. Readyonet Lathund för enkelt admin. Logga in Skriv in adressen till din webbsida följt av /login. Exempel: www.minsajt. Kom igång Logga in Skriv in adressen till din webbsida följt av /login. Exempel: www.minsajt.se/login Nu dyker en ruta upp på skärmen. Fyll i ditt användarnamn och lösenord och klicka på "logga in". Nu

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Handledning för konstruktion av tabeller och diagram med Excel

Handledning för konstruktion av tabeller och diagram med Excel Handledning för konstruktion av tabeller och diagram med Excel 26 APRIL 2013 Inledning Excel är inte konstruerat för att i första hand utföra statistiska beräkningar, men en hel del sådant kan ändå göras.

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler:

Multikolinjäritet: Vi kan också beräkna parvisa korrelationskoefficienter mellan förklaringsvariabler: Multikolinjäritet: Betrakta åter datamaterialet med kostnader för produktion av korrugerat papper. Vi plottar förklaringsvariablerna mot varandra: Graph Matrix Plot Trots att COST verkade ha ett tydligt

Läs mer

Till flera av ovanstående finns det dessutom varianter, vilka kommer att presenteras i de olika avsnitten.

Till flera av ovanstående finns det dessutom varianter, vilka kommer att presenteras i de olika avsnitten. LINGUS32 Handledning Anne Börjesson Introduktion Lingus32 är ett program som främst är avsett att användas för att göra multimedia-baserade språkövningar. Programmet är skrivet för PC. Det finns möjlighet

Läs mer

Kursvärdering. Denna manual beskriver hur du kan skapa en mapp i Fronter som heter Kursvärdering där du ladda upp reslutat från kursutvärderingar.

Kursvärdering. Denna manual beskriver hur du kan skapa en mapp i Fronter som heter Kursvärdering där du ladda upp reslutat från kursutvärderingar. Kursvärdering Denna manual beskriver hur du kan skapa en mapp i Fronter som heter Kursvärdering där du ladda upp reslutat från kursutvärderingar. Här finns även tips på några olika sätt att skapa en kursvärdering

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Laboration 1 Introduktion till Visual Basic 6.0

Laboration 1 Introduktion till Visual Basic 6.0 Laboration 1 Introduktion till Visual Basic 6.0 Förberedelse Förbered dig genom att läsa föreläsningsanteckningar och de kapitel som gåtts igenom på föreläsningarna. Läs även igenom laborationen i förväg.

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 1 Syfte: 1. Lära sig läsa in data i SAS 2. Importera data från Excel 3. Lära sig skriva ut data med proc print 4. Kunna orientera

Läs mer

Facit till Extra övningsuppgifter

Facit till Extra övningsuppgifter LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en

Läs mer

Välj bort om du vill. 96 Internet och e-post. 2. Mail-programmet finns i datorn. 1. Skriv mail i sökrutan. Windows Live Mail i Aktivitetsfältet.

Välj bort om du vill. 96 Internet och e-post. 2. Mail-programmet finns i datorn. 1. Skriv mail i sökrutan. Windows Live Mail i Aktivitetsfältet. Välj bort om du vill Om du är nöjd med att ha din e-post på nätet, kan du lugnt hoppa över detta avsnitt. Har du tid och tycker att det är roligt, kan du testa att använda e-postprogrammet Windows Live

Läs mer

Flexibel meny i Studentportalen

Flexibel meny i Studentportalen Guide Flexibel meny i Studentportalen Via en flexibel meny kan lärare och administratörer skapa en menystruktur som består av menyblock och funktioner i valfri ordning. På så sätt kan menyn spegla kursens

Läs mer

FK2005 Datorövning 3

FK2005 Datorövning 3 FK2005 Datorövning 3 Den här övningen vänder sig endast till lärarstudenter (FK2005). Målet är att lära sig hur man gör en minsta kvadrat anpassning med hjälp av OpenOffice Calc. Laboration 2 kräver att

Läs mer

Datainmatning TÄNKTA BETECKNINGAR. Variabelnamn/kolumnbeteckning, Dummyvärden, som matas in beroende på aktuellt svarsalternativ

Datainmatning TÄNKTA BETECKNINGAR. Variabelnamn/kolumnbeteckning, Dummyvärden, som matas in beroende på aktuellt svarsalternativ Åke Aronsson och Studentlittertur Att komma igång med SPSS 1 Kapitel 7: Att komma igång med SPSS Syftet med detta avsnitt är att ge en introduktion till SPSS 9.0 för Windows 95/98/NT. I det här avsnittet

Läs mer

Sharpdesk V3.5. Installationsguide: produktnyckelversion. Version 1.0

Sharpdesk V3.5. Installationsguide: produktnyckelversion. Version 1.0 Sharpdesk V3.5 Installationsguide: produktnyckelversion Version 1.0 Copyright Upphovsrätten för denna programvara tillhör Sharp Corporation. All reproduktion, bearbetning eller översättning utan skriftligt

Läs mer

Introduktion till. Minitab version 14

Introduktion till. Minitab version 14 Statistiska institutionen LW n/pei/jb Introduktion till Minitab version 14 Innehållsförteckning 1 Introduktion Worksheeten datafönstret Minitabs menyer och Session-fönstret Att spara och öppna Minitab-filer

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Grundläggande statistik kurs 1

Grundläggande statistik kurs 1 Grundläggande statistik kurs 1 Problem 1 Arbeta med frekvenstabeller Sid 2: Så här ser sidan 2 ut. Vi har alltså en delad sida med kalkylbladet till vänster och en Data&Statistik-sida till höger. I den

Läs mer

Statistiska centralbyrån. Statistikatlasen

Statistiska centralbyrån. Statistikatlasen Statistiska centralbyrån Statistikatlasen Introduktion till Statistikatlasen När Statistikatlasen startas Statistikatlasen startas med en vy som i kartan visar befolkningstillväxten i Sveriges kommuner

Läs mer

Vanliga frågor för VoiceXpress

Vanliga frågor för VoiceXpress Vanliga frågor för VoiceXpress 1) Hur stort ordförråd (vokabulär) innehåller VoiceXpress? VoiceXpress innehåller ett mycket omfattande ordförråd, och svaret på frågan varierar en aning beroende på hur

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer