Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Regressionsanalys med SPSS Kimmo Sorjonen (2010)"

Transkript

1 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet; (2) ålder; (3) studier, anger hur många timmar i veckan man ägnar sig åt sina studier; (4) sova, anger hur många timmar i veckan man sover; (5) tv, anger hur många timmar i veckan man tittar på TV; (6) motionera, anger hur många timmar i veckan man motionerar. I en linjär multipel regression bör utfallsvariabeln (i det här fallet life.sat) ha ett linjärt samband med prediktorerna (alternativt inget samband). För att kolla detta: Graphs Legacy Dialogs Scatter/Dot. Klicka på Matrix Scatter och sedan på Define. Kör in alla variabler i rutan Matrix Variables och klicka på OK. I det aktuella fallet erhölls följande matris (endast raden för life.sat visas): På variablerna Ålder (längst till vänster) och TV-tittande (fyra från vänster) finns varsin positiv outlier. Annars ser inte sambanden oroväckande icke-linjära ut. Vi kör. life.sat studier TV life.sat 1.2. En första körning (Enter-metoden) För att köra vanlig linjär regression i SPSS: Klicka på Analyze Regression Linear. Kör in kriterievariabeln i rutan Dependent och prediktorerna i rutan Independent(s). För att kontrollera för kollinearitet: Klicka på Statistics Kryssa för Collinearity diagnostics (ger Tolerance och VIF ). Klicka på Continue. Klicka på OK för att köra analysen. I det här exemplet har life satisfaction predicerats utifrån de fem övriga variablerna. Modellen förklarar 14,1 % av variansen i life satisfaction. Korrigerat för antalet prediktorer (fem stycken) och N (64) förklarar modellen 6,7 % av variansen i life satisfaction.

2 2 Om man kontrollerar för de andra prediktorerna så har endast antalet pluggade timmar i veckan en signifikant (och positiv) effekt på life satisfaction. Detta bör dock tolkas med försiktighet eftersom F-kvoten ovan inte var signifikant. Den aktuella modellen kan inte förklara signifikant mer än noll procent av variansen i life satisfaction, F(5, 58) = 1.91, p =.11. Alla prediktorer skulle kunna ha en koefficient på noll i populationen. Inga problem med kollinearitet (alla toleranser är höga och alla VIF är låga) Stepwise Hittills har vi kört med Enter som selektionsmetod, vilket innebär att alla valda prediktorer tas med i modellen. Genom att välja Stepwise som selektionsmetod så kan vi låta programmet välja ut de prediktorer som bidrar med en signifikant förbättring av modellen. För att välja Stepwise: Välj i menyn under Method (se figuren intill): Och så exempel på output (se även nästa sida): I steg 1 tas studier med som prediktor av life satisfaction. Efter detta kan ingen av de fyra andra prediktorerna bidra till att signifikant förbättra modellen (alltså tas de inte med). Modellen med studier som prediktor förklarar 6,8% av variansen i life satisfaction (5,3% om man justerar för antalet prediktorer och N).

3 3 Modellen med studier som prediktor förklarar signifikant mer än noll procent av variansen i life satisfaction, F(1, 62) = 4.51, p =.04. En timmes ökning i veckan i pluggande är associerad med en ökning i life satisfaction med 0,017 poäng (på en skala från 1 till 7). En ökning i pluggande med en standardavvikelse är associerad med en ökning i life satisfaction med 0,260 standardavvikelser Diagnostik Nu har vi alltså en modell där life satisfaction kan prediceras utifrån hur mycket man pluggar. Innan vi skickar in det hela till Science bör vi dock kontrollera att vissa diagnostiska kriterier är uppfyllda. Vi kör en regressionsmodell (enter-metoden) där life satisfaction prediceras utifrån studier. För diagnostik : Save Kryssa för Predicted Values, Unstandardized, Residuals, Standardized, och Influence Statistics, Standardized DfBeta(s). (Observera att dessa variabler beräknas för varje körning och sparas som variabler längst ut till höger i databladet). Klicka på Continue och sedan på OK. Vi får fyra nya variabler: (1) PRE_1, predicerad life satisfaction baserad på hur mycket man pluggar (= 4, ,017 studier); (2) ZRE_1, standardiserad residual ((observerad life satisfaction minus predicerad life satisfaction) / SD för residualen); (3) SDBO_1, standardiserat värde för hur mycket var och en av personerna påverkar det framräknade interceptet, ex drar personen på första raden ner värdet på interceptet med 0,17057 medelfel medan personen på andra raden lyfter interceptet med 0,00905 medelfel; (4) SDB1_1, standardiserat värde för hur mycket var och en av personerna påverkar den framräknade koefficienten för effekten av studier. Dessa nya variabler bör uppvisa vissa egenskaper för att vi skall känna oss trygga med att regressionsanalysen inte kommit fram till ett felaktigt resultat: (1) Residualerna bör i genomsnitt vara ungefär noll för alla nivåer av de predicerade värdena (detta kan undersökas genom att titta på en scatterplot med predicerade värden på x-axeln och med residualer på y- axeln); (2) Ingen person bör ha en otillbörligt stark effekt på framräknat intercept eller

4 4 regressionskoefficient (detta kan undersökas genom att titta på histogram över de standardiserade DfBeta-värdena). I det aktuella fallet ser det ut som nedan: Det finns inget samband mellan predicerade värden och residualer och för varje nivå av predicerade värden verkar den genomsnittliga residualen vara ungefär noll (det finns både positiva och negativa residualer). Gott så. DfBeta (standardiserat) för interceptet verkar vara ungefär jämt fördelat på båda sidor av noll och ingen person har ett värde som avviker särskilt mycket från de andras värden. Gott så. DfBeta (standardiserat) för koefficienten för effekten av studier ser väl rätt så OK ut. Tre personer har värden som kanske ligger lite långt åt det negativa hållet. Vi hittade en positiv effekt av studier på life satisfaction och utan dessa tre hade effekten varit mer positiv. Dessa tre bidrar alltså till att dämpa, snarare än till att förstärka, resultatet. Gott så (med tanke på att vi ändå fann en effekt) Standardisering Analyze Descriptive Statistics Descriptives Kör in variabeln som du vill standardisera i rutan Variable(s) Kryssa för Save standardized values as variables Klicka på OK. Den nya variabeln med standardiserade värden dyker upp längst ut till höger i databladet Kurvlinjära prediktorer Tänk dig att vi, av någon anledning, tror att sambandet mellan TV-tittande och life satisfaction bäst beskrivs med en kurva. Då kan vi kvadrera TV-variabeln och ta med den som en prediktor i analysen. Bl.a. för att undvika kollinearitet med den ursprungliga TV-variabeln standardiseras denna först (se ovan).

5 5 För att få fram den kvadrerade variabeln: Transform Compute variable. Ge den nya variabeln ett namn (i rutan Target Variable, se figuren intill). Kör in variabeln som skall kvadreras i rutan Numeric Expression, klicka på dubbelasterisk (= upphöjt till) och skriv till en tvåa. Klicka på OK. Den nya kvadrerade variabeln dyker upp längs ut till höger i databladet. Den kvadrerade variabeln kan nu användas som en prediktor i linjär regressionsanalys. Nedan ett exempel på utskrift: 1.7. Men TV-tittande har ett signifikant kurvlinjärt samband med life satisfaction. Eftersom koefficienten för den kvadrerade termen är positiv (+ 0,143) så vet vi att sambandet är U-format. Inverterat U- formade samband ( ) ger en negativ koefficient för den kvadrerade termen. Figuren till höger visar fördelningen av DfBeta (standardiserat) för koefficienten för den kvadrerade termen. Data från en enda person gör så att koefficienten blir drygt 2,5 medelfel större (mer positiv) än vad den annars skulle ha blivit. Det är inte tillfredsställande att framräknade koefficienter i så hög utsträckning påverkas av en enda person. Om analysen görs om utan den här personen (Select Cases if SDB2_2 < 2) så får vi istället resultatet nedan. Nu får vi fram att det finns ett nästan signifikant och negativt linjärt samband mellan TV-tittande och life satisfaction (p =.058) men inget signifikant kurvlinjärt samband (p =.842).

6 Interaktioner Säg att vi, av någon anledning, tror att effekten av pluggande på life satisfaction är olika för personer med olika åldrar, alltså att pluggande och ålder interagerar i sin effekt på life satisfaction. För att testa detta kan vi multiplicera de två variablerna med varandra och ta med den nya produktvariabeln som en prediktor i analysen. Detta leder dock återigen till risk för kollinearitet, och detta kan vi, återigen, undvika genom att standardisera de två variablerna innan multiplikationen. Nedan ett exempel på output från regressionsanalysen. Vi ser att, kontrollerat för de andra prediktorerna, har pluggande ett signifikant (p =.005) och positivt samband med life satisfaction. Vi ser även att interaktionstermen är signifikant (p =.027). Att den är positiv (+ 0,380) innebär att effekten av pluggande på life satisfaction ökar (blir mer positiv) med åldern och att effekten av ålder på life satisfaction ökar (blir mer positiv) ju mer man pluggar. Effekten av pluggande (standardiserat) på life satisfaction ges av formeln 0, ,380 Zålder. För personer med Zålder = -1 (motsvarar en ålder på 18,9 år) beräknas effekten av pluggande (standardiserat) på life satisfaction till 0, ,380-1 = -0,079, vilket innebär att en ökning i pluggande med en standardavvikelse associeras med en sänkning i life satisfaction med 0,079 poäng. För personer med Zålder = 0 (24,1 år) associeras en SD ökning i pluggande med en ökning i life satisfaction med 0,301 poäng och för dem med Zålder = 1 (29,3 år) med en ökning på 1,061 poäng. En titt på sambandet mellan predicerade värden och residualer samt på DfBetas gav inte upphov till någon (större) oro gällande resultatet från interaktions-analysen ovan. 2. Logistisk regression (binär) Vid logistisk regression prediceras värdena (eller egentligen: logaritmen för oddsen för det ena utfallet) på en dikotom variabel utifrån en eller flera prediktorer. Prediktorerna kan vara kontinuerliga, dikotoma eller kategorivariabler (görs om till dummy-variabler). För att utföra en logistisk regression: Analyze Regression Binary Logistic. Kör in den dikotoma beroende variabeln i rutan Dependent och prediktorerna i rutan Covariates. Klicka på OK. Nedan ses exempel på output där det prediceras ifall folk har barn (=1 på variabeln Barn2 ) eller inte (=0) utifrån ålder och om man har körkort (=1) eller inte (=0).

7 7 De som har barn kodas som 1 och resten som 0. Detta är viktigt för tolkningen av resultaten. Den s.k. nollmodellen (inga prediktorer) predicerar att ingen har barn och detta är rätt i 90,8% av fallen. Vår modell (med prediktorer) är signifikant bättre på att predicera om folk har barn än vad nollmodellen är. Åtminstone en av prediktorerna kan antas ha en koefficient som skiljer sig från noll i populationen. Här ser vi att om man använder 0,5 som en brytpunkt så kategoriserar vår modell (med prediktorer) folk till rätt grupp i 92,3% av fallen (att jämföra med nollmodellens 90,8%). Här ser vi att ålder har en signifikant (p =.005) och ökande effekt på oddsen att ha barn (om man kontrollerar för körkortsinnehav). För en ökning i ålder med ett år ökar den naturliga logaritmen av oddsen att ha barn med 0,459. Detta motsvarar en odds-ökning på e 0,459 = 1,583 (för ett års ökning i ålder ökar alltså oddsen för att ha barn med 58,3%). Effekten av körkortsinnehav (kontrollerat för ålder) är nästan signifikant (p =.074). För körkortinnehavare är oddsen att ha barn endast 5,7% av motsvarande odds för dem utan körkort.

8 8 Övningsuppgifter: Predicera graden av life satisfaction utifrån: (a) Hur mycket man pluggar (f23) (standardisera först) (b) Hur mycket man tittar på TV (f25) (standardisera först) (c) Produkten av pluggande (standardiserad) och TV-tittande (standardiserad) Spara predicerade värden (ostandardiserade), residualer (standardiserade) och DfBetas (standardiserade). F1: Hur stor andel av variansen i life satisfaction förklarar vår modell? F2: Är vår modell signifikant (predicerar den mer än noll procent av variansen i life satisfaction)? F3: Är någon av de enskilda prediktorerna signifikant? F4: Finns det skäl att misstänka problem med kollinearitet? F5: Hur tolkas den signifikanta interaktionen? F6: Ser de diagnostiska kriterierna OK ut? Predicera odds för att respondenterna bor norr om Storkyrkan (f3bor = 1) utifrån: (a) Ålder (f2) (b) Antalet barn man har (f7) (c) Restid till KI (f11) F7: Hur stor andel av respondenterna blir korrekt kategoriserade i nollmodellen? F8: Hur stor andel av respondenterna blir korrekt kategoriserade av modellen med våra prediktorer? F9: Är den här skillnaden signifikant? F10: Är någon av de enskilda prediktorerna signifikant?

9 9 Facit F1: R 2 =.168 F2: Ja, F(3, 61) = 4.12, p =.01. F3: Ja, Zstudier, b(61) = 0.22, p =.03, ju mer man pluggar desto högre grad av life satisfaction. Även interaktionstermen är signifikant, b(61) = -0.14, p =.03. F4: Nej, toleransen är så hög som den kan bli. F5: När graden av TV-tittande ökar med en SD så ökar effekten av Zstudier på life satisfaction med 0,256 och vice versa. Alltså: Ju mer man ägnar sig åt den ena aktiviteten, desto starkare samband har den andra aktiviteten med graden av life satisfaction. F6: En person har ett avvikande högt värde på DfBeta för Ztv (se figuren till höger). Om analysen görs om utan den här personen så slutar interaktionen att vara signifikant, b(60) = 0.18, p =.12, men nu ser vi istället ett signifikant negativt samband mellan TV-tittande och life satisfaction, b(60) = -0.27, p =.02. F7: 57,8% F8: 70,3% F9: Ja, χ 2 (3) = 18.42, p <.001. F10: Ja, restid, B(1) = , p =.002. För varje minuts ökning i restid till KI så minskar oddsen för att man bor norr om storkyrkan med 7,5%.

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Intro till SPSS Kimmo Sorjonen (0811)

Intro till SPSS Kimmo Sorjonen (0811) 1 Intro till SPSS Kimmo Sorjonen (0811) 1. Att mata in data i SPSS 1. Klicka på ikonen för SPSS. 2. Välj alternativet Type in data och klicka på OK. 3. Databladet har två flikar: Data view och Variable

Läs mer

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio med SPSS Kimmo Sorjonen 1. Faktoranalys Innan man utför en faktoranalys kan det vara bra att testa om det finns några outliers i data. Detta kan

Läs mer

Kort manual till SPSS 10.0 för Mac/PC

Kort manual till SPSS 10.0 för Mac/PC Institutionen för beteendevetenskap Linköpings universitet Kort manual till SPSS 10.0 för Mac/PC 1. Att skapa en ny variabel Inmatning av data sker i det spread sheet som kallas Data View (flik längst

Läs mer

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488 Idiotens guide till Håkan Lyckeborgs SPSS-föreläsning 4/12 2008 Av: Markus Ederwall, 21488 1. Starta SPSS! 2. Hitta din datamängd på Kurs 601\downloads\datamängd A på studentwebben 3. När du hittat datamängden

Läs mer

Variansanalys med SPSS Kimmo Sorjonen (2012-01-19)

Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1 Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1. Envägs ANOVA för oberoende mätningar 1.1 Variabler Data simulerar det som använts i följande undersökning (se Appendix A): Petty, R. E., & Cacioppo,

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet. SPSS (PASW) 18 for Windows - a guided tour

Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet. SPSS (PASW) 18 for Windows - a guided tour Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet SPSS (PASW) 18 for Windows - a guided tour VT 2010 2 Introduktion till SPSS (PSAW) Denna övning kommer steg för steg att lära oss de grundläggande

Läs mer

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet 1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS:

Läs mer

Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5

Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5 1 Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5 Chalmers bok Johanssons bok Ladymans bok Chalmers: Vad är vetenskap egentligen? Innehåll Boken beskriver, och problematiserar,

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Richard Öhrvall, http://richardohrvall.com/ 1

Richard Öhrvall, http://richardohrvall.com/ 1 Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden

Läs mer

Statistik 2 2010, 3.-9.5.2010. Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12.

Statistik 2 2010, 3.-9.5.2010. Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12. Statistik 2 2010, 3.-9.5.2010 Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12.00 13.15-15.00 13.15-15.00 13.15-16.00 13.15-16.00 Under kursens

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24)

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1 Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1. Variabler och tänkt modell Data simulerar de som använts i följande studie (se Appendix A): Hull, J. G., & Mendolia, M. (1991). Modeling

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Introduktion till SPSS

Introduktion till SPSS Introduktion till SPSS.. Innehåll 1 Introduktion till SPSS 1 1.1 Data Editor 1 1.2 Viewer 1 2 Variabler och Mätskalor 2 2.1 Kvantitativa variabler (Numeriska variabler) 2 2.2 Kategoriska variabler (Kvalitativa

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

ANOVA Faktoriell (tvåvägs)

ANOVA Faktoriell (tvåvägs) ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.

Läs mer

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data Överlevnadsanalys 732G34 Statistisk analys av komplexa data 1 Tvärsnittsstudie Prospektiv Kohortstudie Observationsstudie Tvärsnittsstudie Retrospektiv Experimentell studie (alltid prospektiv) Klinisk

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 6

ÖVNINGSUPPGIFTER KAPITEL 6 ÖVNINGSUPPGIFTER KAPITEL 6 ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14 KA RKUNSKAP Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc Vad vet samhällsvetarna om sin kår? STAA31 HT14 Handledare: Peter Gustafsson Ekonomihögskolan, Statistiska institutionen Innehållsförteckning

Läs mer

Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet Per-Erik Isberg. SPSS for Windows 12 - a guided tour

Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet Per-Erik Isberg. SPSS for Windows 12 - a guided tour Matematikcentrum 1(12) Matematisk Statistik Lunds Universitet Per-Erik Isberg SPSS for Windows 12 - a guided tour HT 2006 2 Introduktion till SPSS Denna övning kommer steg för steg att lära oss de grundläggande

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 110319 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Datainmatning TÄNKTA BETECKNINGAR. Variabelnamn/kolumnbeteckning, Dummyvärden, som matas in beroende på aktuellt svarsalternativ

Datainmatning TÄNKTA BETECKNINGAR. Variabelnamn/kolumnbeteckning, Dummyvärden, som matas in beroende på aktuellt svarsalternativ Åke Aronsson och Studentlittertur Att komma igång med SPSS 1 Kapitel 7: Att komma igång med SPSS Syftet med detta avsnitt är att ge en introduktion till SPSS 9.0 för Windows 95/98/NT. I det här avsnittet

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl. LINKÖPINGS UNIVERSITET 73G71 Statistik B, 8 hp Institutionen för datavetenskap Civilekonomprogrammet, t 3 Avdelningen för Statistik/ANd HT 009 Justeringar och tillägg till Svar till numeriska uppgifter

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 12

ÖVNINGSUPPGIFTER KAPITEL 12 ÖVNINGSUPPGIFTER KAPITEL 12 ANOVA I EN MULTIPEL REGRESSION 1. I en amerikansk studie samlade man in data för 601 gifta personer, och mätte hur många utomäktenskapliga affärer de haft under det senaste

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

JMG. En introduktion till logistisk regressionsanalys. Arbetsrapport nr 62. Johannes Bjerling Jonas Ohlsson

JMG. En introduktion till logistisk regressionsanalys. Arbetsrapport nr 62. Johannes Bjerling Jonas Ohlsson Arbetsrapport nr 62 En introduktion till logistisk regressionsanalys Johannes Bjerling Jonas Ohlsson JMG Institutionen för journalistik, medier och kommunikation Arbetsrapport nr. 62 En introduktion till

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

NÄR SKA MAN SÄLJA SIN BOSTAD?

NÄR SKA MAN SÄLJA SIN BOSTAD? NÄR SKA MAN SÄLJA SIN BOSTAD? En multipel regressionsanalys av bostadsrätter i Stockholm Oscar Jonsson Moa Englund Stockholm 2015 Matematik Institutionen Kungliga Tekniska Högskolan Sammanfattning Projektet

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Forskningsmetodik 2008. Lektion 6 Korrelation och kausalitet Per Olof Hulth hulth@physto.se. Tvådimensionella histogram

Forskningsmetodik 2008. Lektion 6 Korrelation och kausalitet Per Olof Hulth hulth@physto.se. Tvådimensionella histogram Forskningsmetodik Korrelation och kausalitet Per Olof Hulth hulth@phsto.se Tvådimensionella histogram Korrelation mellan två variabler (X och Y) 1 Tvådimensionella histogram Korrelation mellan två variabler

Läs mer

Verksamhetsutvärdering av Mattecentrum

Verksamhetsutvärdering av Mattecentrum Verksamhetsutvärdering av Mattecentrum April 2016 www.numbersanalytics.se info@numbersanalytics.se Presskontakt: Oskar Eriksson, 0732 096657 oskar@numbersanalytics.se INNEHÅLLSFÖRTECKNING Inledning...

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 7

ÖVNINGSUPPGIFTER KAPITEL 7 ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Faktorer som påverkar befolkningstillväxten av unga individer i olika kommuntyper

Faktorer som påverkar befolkningstillväxten av unga individer i olika kommuntyper Faktorer som påverkar befolkningstillväxten av unga individer i olika kommuntyper Inledning Många av Sveriges kommuner minskar i befolkning. Enligt en prognos från Svenskt Näringsliv som publicerades i

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet. Laboration 4. Regressionsanalys

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet. Laboration 4. Regressionsanalys Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet Laboration 4 Regressionsanalys HT 2007 2 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns i SPSS vad

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Introduktion till PSPP

Introduktion till PSPP Introduktion till PSPP Centrum för Primärvårdsforskning (CPF) 2015-02-09 Mir Nabi Pirouzi Fard www.cpf.se 1 Introduktion PSPP är ett program för statistisk analys av data. En manual i pdf-format för hur

Läs mer

Regressions- och Tidsserieanalys - F5

Regressions- och Tidsserieanalys - F5 Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?

Läs mer

Differentiell psykologi: Moment I: Lärandemål, instuderingsuppgift och instuderingsfrågor

Differentiell psykologi: Moment I: Lärandemål, instuderingsuppgift och instuderingsfrågor Differentiell psykologi: Moment I: Lärandemål, instuderingsuppgift och instuderingsfrågor Inledning Välkommen till kursen i differentiell psykologi och det första momentet om psykometri och statistik.

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

Psykologi som vetenskap

Psykologi som vetenskap Psykologi som vetenskap Begrepp och metoder Forskningsetik Av Jenny Wikström, KI till Psykologprogrammet HT10 Kurslitteratur: Myers Psychology, Kap.1 Kurs: Introduktion till psykologi 7,5 hp Psykologi

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Att använda Weka för språkteknologiska problem

Att använda Weka för språkteknologiska problem Att använda Weka för språkteknologiska problem Systemet WEKA (Waikato Environment for Knowledge Acquisition) är en verktygslåda med olika maskininlärningsalgoritmer, metoder för att behandla indata, möjligheter

Läs mer

Bygga linjära modeller! Didrik Vanhoenacker 2007

Bygga linjära modeller! Didrik Vanhoenacker 2007 Bygga linjära modeller! Didrik Vanhoenacker 2007 1 Bygga enkla modeller Tänk att vi ska försöka förstå vad som styr hur många blommor korsblommiga växter har. T ex hos Lomme och Penningört. Hittills har

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

Laborationer i statistik för A:1, Lab 1

Laborationer i statistik för A:1, Lab 1 Mittuniversitetet 2006-08-31 1 Laborationer i statistik för A:1, Lab 1 Laborationsanvisningar Genomförande Gå igenom laborationen i basgruppen och diskutera vilka lärandemål ni eventuellt behöver tillföra

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 8

ÖVNINGSUPPGIFTER KAPITEL 8 ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår

Läs mer

Frånvaromönster - annorlunda under mästerskap?

Frånvaromönster - annorlunda under mästerskap? AM 110 SM 1503 Frånvaromönster - annorlunda under mästerskap? Patterns of absenteeism different during major sporting events? I korta drag Temarapporten för andra kvartalet 2015 beskriver frånvaro från

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.

Läs mer

Ofullständig justering vid regressionsanalys

Ofullständig justering vid regressionsanalys Ofullständig justering vid regressionsanalys Examensarbete för kandidatexamen i matematik vid Göteborgs universitet Kandidatarbete inom civilingenjörsutbildningen vid Chalmers Fredrik Sangberg Henrik Imberg

Läs mer

kodnr: 2) OO (5p) Klassindelningar

kodnr: 2) OO (5p) Klassindelningar kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0 1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen a 1 x 1 + a 2 x 2 + a n x n = b, med givna tal a 1,..., a n och b. Ett linjärt ekvationssystem

Läs mer

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer