Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08"

Transkript

1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen Enkel linjär regression Multipel linjär regression 1 Förberedelseuppgifter Som förberedelse till laborationen bör du repetera normalfördelningsdiagram, läsa igenom hela regressionsstencilen och hela laborationshandledningen. Till laborationens start har du med dig lösningar till förberedelseuppgifterna. 1. Ange modellen för enkel linjär regression med normalfördelade fel. Hur skattar man, och 2? Vilken fördelning får och? Hur gör man konfidensintervall för, ochñ0 = + x 0? Hur kan man testa huruvida linjens lutning är 0? 2. Vad är ett prediktionsintervall och hur räknas det ut? 3. Vad är ett kalibreringsintervall och hur kan det konstrueras? 4. Residualanalys är ett centralt moment i all regressionsanalys. Hur bör residualerna se ut vid en korrekt regressionsanalys? Ange några tekniker för att kontrollera detta. 5. Ange modellen för multipel linjär regression på matrisform. Hur ser normalekvationerna ut och hur löser man dessa? Vad blir kovariansmatrisen för? 6. Lös uppgift ST35. 2 Enkel linjär regression Vid enkel linjär regression söker man anpassa en rät linje till datamaterialet, dvs modellen är y i = + x i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi kommer i den följande framställningen att arbeta med matrisformuleringen av modellen, Y = X +, där de ingående matriserna har följande form: y 1 1 x 1 y 2 Y =., X = 1 x 2 ( ).., 2 = och = 1.. y n 1 x n n Vi skall använda MATLAB-funktionenÖ Ö som skattar parametrar, beräknar konfidensintervall för dem, beräknar residualer och litet till. Gör ÐÔÖ Ö för att se vad funktionen gör. Uppgift: AnvändÖ Ö för att räkna uppgift ST35. En n 1-kolumn med ettor fås med ÓÒ Ò ½µoch två kolumner ½och ¾läggs bredvid varandra med ½ ¾.

2 2 Laboration 5, Matstat AK för CDE, VT Fallgropar För att illustrera vådan av att okritiskt anpassa en linjär modell till ett givet datamaterial har F. J. Anscombe konstruerat ett datamaterial, som ser ut på följande sätt: observation x 1, x 2, x 3 y 1 y 2 y 3 x 4 y Ù ÔÐÓØ ¾¾½µ ÔÐÓØ Ü½ ݽ ³ ³µ Datamaterialet finns lagrat i filen Ò ÓÑ ºÑ Øoch kan laddas in i MATLAB med kommandot ÐÓ Ò ÓÑ. Med kommandotû Ófår du reda på aktuella variabler i minnet. En lämplig början är alltid att ta sig en titt på datamaterialet. Börja med att plottaý½motü½, dvs Plotta sedan y 2 mot x 2, y 3 mot x 3, samt y 4 mot x 4 (mha kommandot Ù ÔÐÓØkan du få varje plot för sig i ett och samma fönster det ger en bra överblick). Vi skall nu helt aningslöst till var och en av datamängderna anpassa en linjär modell enligt ½ ÓÒ Þ Ü½µµÜ½ y i = + x i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi börjar med att konstruera matrisen X (enligt notationen i det inledande avsnittet ovan) för den Ø ½ Ø ½ ݽ första datamängden på följande sätt: Med MATLABs inbyggda minsta-kvadrat-lösare kan vi snabbt och enkelt få fram vår skattning av som ݽ Ø ½ Ø ½ Ø Ù ÔÐÓØ ¾¾½µ Denna ÓÐ vänsterdivision med matrisen ½innebär att MATLAB beräknar vänsterinversen till ½, och om ÔÐÓØ Ü½ ݽ ص systemet är överbestämt bestämmer MATLAB automatiskt minsta-kvadrat-lösningen. Nu kan vi bestämma den skattade regressionslinjen och sedan rita in denna ovanpå punktdiagrammet över det första datamaterialet. Är det rimligt att teckna sambandet mellan den förklarande variabelnü½och den beroende variabeln ݽsom ett linjärt samband? För att studera hur väl vår modell stämmer med givna data beräknar vi först vektorn av residualer. Om modellen är korrekt skall residualerna ungefärligen (vi använder skattade parametrar) vara observationer av likafördelade stokastiska variabler. För att undersöka hur det förhåller sig med detta utför vi en residualanalys enligt beskrivningen i kurslitteraturen. Vi kan t ex plotta residualerna gentemot den förklarande variabeln.

3 ÙÖ Ù ÔÐÓØ ¾¾½µ Ö ½ ݽ¹Ý½ Ø ÔÐÓØ Ü½ Ö ½ ³ ³µ Laboration 5, Matstat AK för CDE, VT08 3 Ò ÓÑ Om vårt modellantagande är korrekt skall vi inte kunna skönja någon systematisk variation i diagrammet. Kan du finna något beroende? Nu vill vi göra motsvarande för de övriga tre datamaterialen, dvs lösa ekvationssystemen, skatta regressionslinjerna och rita ut residualerna. För att du ska slippa göra alla dessa kommandon finns de sammanställda i MATLAB-filen Ò ÓÑ ºÑ. Skriv alltså för att få skattningar och plottar och besvara sedan följande frågor: Uppgift: Jämför värdena på de skattade koefficienterna för var och en av fyra regressionslinjerna. Studera och jämför residualplottarna för de fyra olika fallen. Vad har denna lilla studie att förtälja den som helt slentrianmässigt och okritiskt vill använda en linjär regressionsmodell? 3 Ù ÔÐÓØ Polynomregression ÔÐÓØ Ó¾µ i filenó¾º Ø, och den kan laddas in i MATLAB med kommandotðó Ó¾º Ø. Datamaterialet som du skall arbeta med i detta avsnitt är koldioxidhalter uppmätta över en vulkan varje månad under en period av 32 år, dvs totalt finns = 384 mätvärden. Materialet finns Mätvärdena hamnar då i en vektor med namnetó¾. Plotta mätvärdena. Det Þ Þ ÖÓ ½¾ ¾µ finns uppenbarligen en kraftig periodicitet (årsvariation) i mätningarna, och en sådan låter sig inte så lätt fångas med en polynomiell regressionsfunktion. Detta problem kan lösas på flera sätt. Ett är att införa en sinus-funktion som modellerar variationen, ett annat är att differentiera datasekvensen, dvs undersöka z i = y i y i 1 i stället för y-värdena själva. Vi skall dock välja den mycket Þ µ Ó¾ enkla lösningen att medelvärdesbilda över varje år. Detta fordrar litet trixande i MATLAB. Först ÔÐÓØ Þµ skapar vi en matris med bara nollor. Sedan överför vi mätvärdena till denna matris. Ý Ñ Ò Þµ Värdena ió¾överförs här kolonnvis, så att första kolonnen iþinnehåller mätvärdena från första året osv. Kontrollera gärna detta. Vi kan nu använda funktionenñ Òför att beräkna årsmedelvärdena.

4 Ý Ý³ 4 Laboration 5, Matstat AK för CDE, VT08 Slutligen vill vi att mätvärdena skall finnas i en kolonnvektor för att regressionsberäkningarna skall se ut som vanligt. Ü ½ ¾µ³ Kom ihåg att³betecknar transponat. Vi har nu skapat den mätvärdesvektor vi skall arbeta med. Vi skapar även en vektor med den förklarande variabeln (årtalet, räknat från lämplig nollpunkt). ÔÐÓØ Ü Ý ³Ó³µ (Utrycket skapar en radvektor med värden från till isteg om.) Plotta mätvärdena. Uppenbarligen är den periodiska variationen borta, vilket också var syftet med medelvärdesbildningen. Vi skall nu göra polynomregression på materialet, dvs vår modell är y i = 0 + 1x i + 2x 2 i kx k i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Som modellen är skriven ovan är den olinjär, ty ett polynom är inte en linjär funktion, men vi kan göra den linjär genom att införa de nya förklarande variablerna x ij = x j i för j = 1,..., k, i = 1,..., n, och skriva y i = 0 + 1x i1 + 2x i kx ik + i, i = 1,..., n. Detta är den modell vi skall arbeta med. ÐÔÖ Ö ½ ÓÒ Þ ÜµµÜ 3.1 Enkel linjär regression Ø ½ Ø ½ ÒØ Ö ½ Ö ½ ÒØ Ø Ø Ö Ö Ý ½ ¼º¼ µ Vi ÔÐÓØ Ü Ý ³Ó³ Ü ½ Ø ½µ börjar med att anpassa en linjär funktion till datamaterialet, dvs polynomets ordningsgrad k = 1. Skattningarna ÔÐÓØ Ö ½ ³ ³µ av 0 och 1 erhålles med hjälp av funktionenö Ö. Uppgift: Verkar en rät linje vara en tillfredsställande regressionsmodell? Diagrammet visar att residualerna i mitten av mätserien tycks komma från en annan fördelning är residualerna i början och slutet av densamma. Alternativt finns en stark korrelation mellan störningarna vilket strider mot oberoendeantagandet. Vi drar alltså slutsatsen att en enkel linjär regressionsmodell inte passar det aktuella datamaterialet.

5 Laboration 5, Matstat AK för CDE, VT08 5 ܽ Ü 3.2 ܾ ܺ ¾ Kvadratisk regression Nästa steg är att försöka anpassa en kvadratisk funktion till mätvärdena, dvs vi använder ordningstalet ¾ ÓÒ Þ ÜµµÜ½Ü¾ k = 2 för regressionspolynomet. Först skapar vi vektorer som innehåller de förklarande variablerna x i1 = x i och x i2 = xi 2. Ø ¾ Ø ¾ ÒØ Ö ¾ Ö ¾ ÒØ Ø Ø Ö Ö Ý ¾ ¼º¼ µ ÔÐÓØ Ü Ý ³Ó³ Ü ¾ Ø ¾µ Sedan ÔÐÓØ Ö ¾ ³ ³µ samlar vi de förklarande variablerna i matrisen ¾. Vi kan nu beräkna skattningarna av 0, 1 och 2. Uppgift: Verkar den kvadratiska modellen vara bättre än den linjära? Kan residualerna tänkas komma från samma fördelning? ÒÓÖÑÔÐÓØ Ö ¾µ Vi skall nu undersöka om residualerna eventuellt kan komma från en normalfördelning. Detta kan vi göra genom att plotta dem i ett normalfördelningsdiagram. Uppgift: Verkar det rimligt att anta normalfördelade störningar? Är väntevärdet av dessa lika med 0? Undersök detta både genom att titta på normalfördelningsdiagrammet och genom att använda funktionenñ Ò. ¾ ÙÑ Ö ¾º ¾µ»¾ Skatta felens varians 2 genom att dela residualkvadratsumman med n 3 = 29. Avsluta med att studera de 95 %-iga konfidensintervallen för 0, 1 och 2 (finns i Ø ¾ ÒØ). Uppgift: Är 2 signifikant skild från 0, dvs om H 0 : 2 = 0 och H 1 : 2 0, kan vi då förkasta H 0 (på nivån 5 %)? I så fall kan vi med gott samvete anta den kvadratiska modellen före den linjära. På samma sätt kan man gå vidare och testa om en tredjegradsterm i regressionsfunktionen är relevant. Vi skall nu använda en färdigskriven funktionö Ù och låta den göra grovjobbet. Undersök med ÐÔ-kommandot vad funktionenö Ù gör och vad den har för inparametrar.

6 ÐÔÖ Ù Ö Ù Ü Ýµ 6 Laboration 5, Matstat AK för CDE, VT08 Undersök de olika möjligheternaö Ù ger dig att studera en regressionsmodell och välj olika gradtal i modellen. Uppgift: Fick du några varningsmeddelanden i kommandofönstret? Vad kan det i så fall bero på? Uppgift: Gör en bedömning av figurerna och utskriften med de skattade parametrarna och konfidensintervallen och avgör vilken polynommodell som är mest adekvat. 4 Multipel regression I och med att vi redan vid enkel linjär regression arbetat med matrismodeller, erbjuder multipel linjär regression inget nytt vad beträffar parameterskattningarna. Vi får utöka matrisen X med ytterligare en kolonn för varje ny förklarande variabel, men minsta-kvadrat-problemet löser vi på samma sätt som tidigare. 4.1 Cementdata I detta smått klassiska experiment (beskrevs i Industrial And Engineering Chemistry redan 1932) har man i 13 försök mätt värmeutvecklingen i stelnande cement som funktion av viktprocenten av några ingående ämnen. I filen Ñ ÒØfinns följande variabler kolonnvis: cem1 viktprocent av 3CaO Al 2 O 3 cem2 viktprocent av 3CaO SiO 2 cem3 viktprocent av 4CaO Al 2 O 3 Fe 2 O ÐÓ Ñ Òغ Ø 3 cem4 viktprocent av 2CaO SiO Ñ ÒØ 2 värme utvecklad värme i kalorier per gram cement ÓÖÖÓ Ñ Òص Vissa av de fyra cementvariablerna samvarierar kraftigt med varandra vilket påverkar regressionsanalysen. Utnyttja gärnaóööó, som räknar ut korrelationsmatrisen. Plotta de olika cementva- Ü Ñ ÒØ ½ µ Ñ ÒØ µ riablerna mot värme och även de olika cementvariablerna mot varandra. ÐÔÔÐÓØÑ ØÖ Ü ÔÐÓØÑ ØÖ Ü Ñ Òص Uppgift: Vilka variabler verkar samvariera?

7 Laboration 5, Matstat AK för CDE, VT08 7 ÓÒ ½ ½µÜ Ø Ø Ö ¹ Ø Ø ¾ ÙÑ Ö º ¾µ» Börja Î Ø Ø ¾ ÒÚ ³ µ med att bestämma en full regressionsmodell med värme som responsvariabel och samtliga fyra cementvariabler ÔÐÓØ Ö ³Ó³µ som förklarande variabler: Uppgift: Vilka regressionskoefficienter är signifikant skilda från noll? Ser det bra ut? (t-kvantiler kan fås medø ÒÚ ½¹¼º¼»¾ µsom ger t 0.05/2 (f )-värdet) Ø Ø Ø Ø ÒØ Ö Ö ÒØ Ø Ø Ö Ö ¼º¼ µ Givetvis kunde vi också använt funktionenö Ö direkt ÐÔ Ø ÔÛ Ø ÔÛ µ Förmodligen är du inte alls nöjd med den fulla regressionsmodellen du just bestämt för cementdata, t ex samvarierade några av de förklarande variablerna kraftigt och kanske skall inte alla vara med. Försök komma fram till en bra regressionsmodell, vilket ju inte är helt lätt... Funktionen Ø ÔÛ kan vara till stor hjälp vid modellvalet Uppgift: Vilken modell kom du fram till? 5 Kalibrering av flödesmätare (om du hinner) Bakgrund Kalibrering av en flödesmätare genomförs oftast i en speciell kalibreringsrigg. Här finns en referensmätare eller referensmetod för att mäta flödet. För att erhålla en god bild av hur den testade flödesmätaren fungerar utförs kalibreringen vid ett stort antal flöden. Tyvärr kan man även vid kalibrering råka ut för situationer där den testade mätaren störs av testförhållandena. Om t.ex. pulsationer uppträder i flödet kommer detta att negativt påverka resultaten för den testade mätaren. Detta visar sig oftast vid låga flödeshastigheter, då ultraljudsmätare tenderar att överskatta flödeshastigheten. Detta orsakas av att vi erhåller en laminär flödesprofil i röret, vilket medför att en ultraljudsmätare kan överskatta flödet med upp till 33% vid fullt utbildad laminär strömning.

8 8 Laboration 5, Matstat AK för CDE, VT08 Vid låga flöden ser vi även att vi har stora fluktuationer i resultaten. Detta beror troligen på att vi har flödespulsationer i flödesriggen vilka kommer att orsaka fluktuerande resultat för ultraljudsflödesmätaren, bland annat orsakat av s.k. aliasproblem (d.v.s mätsystemet arbetar med en för låg sampelfrekvens i förhållande till frekvenserna hos det uppmätta). Vid höga flöden uppträder troligen kavitation (ett slags bubbelbildning) inne i ultraljudsflödesmätaren vilket kan förklara de positiva felen och den ökade spridningen för strömningshastigheter över 6.3 m/s. Metod Vi har nu tillgång till data från en kalibrering av en ultraljudsflödesmätare. Datamaterialet, som kommer från institutionen för värme- och kraftteknik, omfattar 71 mätningar och är lagrat i matrisen ÐÓÛ, där varje rad innehåller data från en mätning, variabeln ܾavser referensflödesmätningar från kalibreringsriggen och ݾavser respektive flöden uppmätta med den testade ultraljudsflödesmätaren (flödeshastigheterna givna i enheten m/s). Den använda kalibreringsriggen använder kontinuerlig vägning av det genomströmmande vattnet för att bestämma ett massflöde som sedan kan räknas om till medelhastighet i röret, vilket är vad ultraljudsmätaren mäter. Tanken är här att vi med hjälp av de gjorda mätningarna med givare och referens skall skatta parametrarna i en enkel linjär regressionsmodell. Vi antar då att referensmätningarnas fel kan försummas i jämförelse med ultraljudsgivarens (varför måste vi bekymra oss om detta?) och att ultraljudsgivarens fel är oberoende, likafördelade och har väntevärdet noll. ÐÓ ÐÓÛºÑ Ø För att studera detta datamaterial ska vi använda funktionenö Ù vars finesser du förhoppningsvis redan bekantat dig med. Observera att du t.ex. automatiskt kan rita ut konfidensintervall och Ö Ù Ü½ ݽµ prediktionsintervall genom att markera i tillämplig ruta. För att bilden skall bli tydligare börjar vi med att studera en liten delmängd av materialet, 10 talpar av flödesmätningar som ges i variablerna ܽoch ݽ. Använd nu funktionen interaktivt för att göra följande beräkningar: Beräkna det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40m/s. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40m/s. Identifiera dessa två intervall i figuren och förklara vad det är som skiljer dem åt. Notera också värdena på de två intervallen eftersom du ska använda dem senare i laborationen. När vi sedan skall använda den kalibrerade ultraljudsmätaren, innebär det i princip att vi läser baklänges i kalibreringskurvan. Antag att vi med ultraljudsmätaren får mätvärdet 0.48m/s. Beräkna ett 95%-igt konfidensintervall för den sanna flödeshastigheten (dvs det värde som kalibreringsriggen skulle ge). Identifiera i figuren de kurvor som används vid den grafiska bestämningen av detta konfidensintervall och förklara varför det är just dem, man skall använda.

9 Laboration 5, Matstat AK för CDE, VT08 9 När vi enligt det ovanstående beräknat olika konfidens- och prediktionsintervall har vi stillatigande förutsatt att mätfelen hos ultraljudsmätaren är normalfördelade med konstant varians. Var i beräkningarna utnyttjas detta antagande? Om vi vill använda kalibreringskurvan i seriösa sammanhang måste vi först utföra en modellvalidering, dvs vi måste kontrollera att den linjära regressionsmodellen ger en adekvat beskrivning av sambandet. Vi kan bland annat validera modellen genom en grafisk residualanalys. Vid en sådan residualanalys får följande tre diagram, som alla kan fås iö Ù, anses vara standard: Residualer gentemot observerade eller predikterade y-värden. Ö Ù Ü¾ ݾµ Residualer gentemot den oberoende variabelns värden. Residualer i normalfördelningsdiagram. Detta skall vi nu ta itu med, men låt oss göra detta med en modell anpassad till hela datamaterialet. Då kan vi också passa på att studera vissa andra egenskaper hos de olika intervallskattningarna. Upprepa nu beräkningarna från första frågepunkten ovan, dvs Beräkna det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40m/s. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40m/s. Skriv ner de båda intervallen. Jämför intervallbredderna baserade på de 10 mätningarna med motsvarande intervallbredder för den modell som är anpassad till alla de 71 mätpunkterna, Nu är det inte säkert att du lyckats pricka in precis samma x-värde i de två fallen, men vissa allmänna iakttagelser bör ändå vara möjliga. Jämför de två konfidensintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Jämför de två prediktionsintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Innan vi törs använda den skattade regressionslinjen för prediktion, måste vi naturligtvis förvissa oss om att modellen är adekvat. Ger plottarna anledning att förkasta modellen eller anser du att du på goda grunder kan använda den skattade regressionslinjen för kalibrering av ultraljudsmätaren?

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?

3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras? LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT16 Laboration 5: Regressionsanalys Syftet med den här laborationen

Läs mer

Laboration 5: Regressionsanalys

Laboration 5: Regressionsanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 5 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 5: Regressionsanalys Syftet med den här laborationen är att

Läs mer

3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?

3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras? LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 5: Regressionsanalys Syftet med den här laborationen är

Läs mer

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3. Envariabelanalys med Matlab Under denna kurs kommer vi framförallt att använda Matlab som verktyg i Envariabelanalys. Bl.a skall vi se hur man mha Matlab kan vi rita kurvor i xy-planet, rita grafer till

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Datorövning 5 Regression

Datorövning 5 Regression Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5 HP FÖR E, HT-15 Datorövning 5 Regression Syftet med den här laborationen är att du skall bli

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de

Läs mer

6 Skattningar av parametrarna i en normalfördelning

6 Skattningar av parametrarna i en normalfördelning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATIONER DEL II, HT-11 MATEMATISK STATISTIK FÖR BIO-, KEMI- OCH NANOTEKNIK För att få tillgång till de datafiler som hänvisas till

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

ÊØÓÒÐÐ ÔÖÓÙØÓÒ Ú ÖÒ ÒÐÖ ØÐÐ ÑÓÐØÐÓÒÖ ÖÖ ÚÙ ¹ºØº ÔÖ ÒÖ ¼½½¾ÜÜÜÜ ÀÒ Ö ¹ÞºØº ÔÖ ÒÖ ¼½¾½ÜÜÜÜ ÒÖ Ö ÓÒ ¹ÖºØº ÔÖ ÒÖ ½¾¼ÜÜÜÜ Ú ÇÐÖØ ¹Óкغ ÔÖ ÒÖ ¼¼ÜÜÜÜ ÒÖ ËÝ ¹ ºØº ÔÖ ÒÖ ¾½¼¼½ÜÜÜÜ Ö Ö ÓÒ ¹ÖºØº ÔÖ ÒÖ ¼¾ÜÜÜÜ ÈØÖ

Läs mer

Æ ÃÌÀ ØÝ ÔÓĐ Ò ¾ ¾ ½ ½¼ ÈÊ Ì¹Ä ĐÓ Ø Ò» ¾½¼ ¼ Ñ ÜØÖ ÙÔÔ Ø ßµ Á ½¼½ ÐÝ Ò Ò Ú ÐÓØ Ä Đ Ë ÆÎÁËÆÁÆ ÊÆ Á Á¹ÍÈÈ Á ÌËÀ Đ Ì Ì Đ ÇÊËÌ Î ÖÙ Ð Ö Ø ÓÒ Î Đ ÖÑ ÒØ Ö Ò ÑÙÐ Ö Ò Ú Ò Ñ Ø Ñ Ø ÑÓ Ðк Ò ØÙÒØ È Ð ÒÒ Ðк ØØ ÐÓØ

Läs mer

1 Syfte. 2 Enkel lineär regression MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Lineära regressionsmodeller i allmänhet

1 Syfte. 2 Enkel lineär regression MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Lineära regressionsmodeller i allmänhet * ) LUNDS TEKNISK HÖGSKOL MTEMTIKCENTRUM MTEMTISK STTISTIK MTEMTISK STTISTIK K ÖR L MS HT- " # 1 Syfte Detta projekt handlar om regressionsanalys och är uppdelad i två delar Del ett handlar om enkel lineär

Läs mer

¾ ½½¾ Ø Ó Á ÖÙÒ ÙÖ Ñ Â Ú ¾¼¼¾ ¾¼¼ Ä ÙÖ ¾ ÒÒ ÙÖ ÓÑ ØØ Ö ¾ Ó ÑÓÑ ÒØ Ö ÓÚ º Ò Ö Ö ÓÑ Ó ÒÒ Ö Ú ØØ Ö Ô ÒÒ º Ö Ò Ò Ù Ô Ö Ò Ø Ù ØØ ØØ Ò Ö ÙØ Ø Ö ÒÖ ÔÔÓÖØ Ö Ø Ä Ó Æ ÑÒ ººººººººººººººººººººººººººººººººººººººººººººººººººººº

Läs mer

¾ ½½¾ Ø ÐÓ Á ÖÙÒ ÙÖ Ñ Â Ú ¾¼¼¾ ¾¼¼ Ä ÙÖ ½ ÒÒ Ð ÙÖ ÓÑ ØØ Ö ÓÐ ÑÓÑ ÒØ Ö ÑÓÑ ÒØ ¾ ÐÐ Ö ÓÚ º Ì Ñ ÒÒ Ø ÐÐ Ú Ö Ö ÓÚ Ò Ò Ó Ø ÐÐ ØØ Ù Ö Ú ØØ Ò ÖÒ Ò ÐÖ Ö º Ö Ò Ò ÙÐÐ Ô Ö Ò Ø ÐÐ Ù ØØ ØØ Ò Ö ÙÐØ Ø Ö ÒÖ ÔÔÓÖØ Ö Ø

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Ë Ñ ÙÒ Ø ÆÝ ÍØ Â Ö ØØ ĐÓÖØÖÓ Ò Ø Ú Ñ ÙÒ Ø ÒÝ ØÝÖ Ð ØØ Ú Ö ÓÑ Ö ØĐÓÖ ĐÓÖ Ùع غ ØØ Đ Ö Ò ÒÝ ÔÓ Ø Ó Ò Ø ØĐ ÐÐ Ú Ö ÑĐÓØ Ø ÍÔÔ Ð Ñ ØØ Öº Î ÑÑ ÑĐÓØ ÐĐÓØ ØØ ÔÓ Ø Ò ÓÑ Ö ØĐÓÖ ÙØ Ú ØÝÖ Ð Ò Ó Ò¹ Ò Ú Ö Đ Ö Ò Ú Ö

Läs mer

Alternativ vattenbehandling

Alternativ vattenbehandling Alternativ vattenbehandling Effekter, mekanismer och perspektiv på vattenkvalitet Lasse Johansson Institutet för Ekologisk Teknik Forskningsrapporter 2 Göteborg - 2005 ÐØ ÖÒ Ø Ú Ú ØØ Ò Ò Ð Ò Ø Ö Ñ Ò Ñ

Läs mer

Laboration 4 Regressionsanalys

Laboration 4 Regressionsanalys Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

Utveckling av metod och prototyp för detektering av lastförskjutning

Utveckling av metod och prototyp för detektering av lastförskjutning 2004:076 CIV EXAMENSARBETE Utveckling av metod och prototyp för detektering av lastförskjutning MIKAEL KARLSSON PER WESTIN CIVILINGENJÖRSPROGRAMMET Institutionen för Systemteknik EISLAB Embedded Internet

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5

Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Datorlaboration 5 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de vanligaste beroendemåtten

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av A.3 Skattningarnas fördelning...

5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av A.3 Skattningarnas fördelning... UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI LINJÄR REGRESSION OCH STOKASTISKA VEKTORER MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Innehåll 4 Enkel linjär

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007 Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik version 7 februari Datorlaboration 3 1 Inledning I denna laboration behandlas

Läs mer

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade) 5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Lösningar till linjära problem med MATLAB

Lösningar till linjära problem med MATLAB 5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Frisörer och Faktorer

Frisörer och Faktorer Frisörer och Faktorer Seth Nielsen Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:1 Matematisk statistik Juni 2011 www.math.su.se Matematisk statistik

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Begrepp Värde (mätvärde), medelvärde, median, lista, tabell, rad, kolumn, spridningsdiagram (punktdiagram)

Begrepp Värde (mätvärde), medelvärde, median, lista, tabell, rad, kolumn, spridningsdiagram (punktdiagram) Aktivitetsbeskrivning Denna aktivitet är en variant av en klassisk matematiklaboration där eleverna får mäta omkrets och diameter på ett antal cirkelformade föremål för att bestämma ett approximativt värde

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler Introduktion Den första delen av laborationen baserar sig på mätdata som skapades i samband med en medicinsk studie där en ny metod för att mäta ögontryck utvärderas. Den nya metoden som testas, Applanation

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015

FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 HEMSIDA Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms032/

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Instruktioner till arbetet med miniprojekt II

Instruktioner till arbetet med miniprojekt II Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II, 17 maj 2013 Instruktioner till arbetet med miniprojekt II Innan ni börjar arbeta vid Datorlaboration

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av β... 11

5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av β... 11 UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI LINJÄR REGRESSION OCH STOKASTISKA VEKTORER MATEMATISK STATISTIK AK FÖR F, E, D, I, C, Π; FMS 012 JOAKIM LÜBECK, MARS 2014 Innehåll 4 Enkel linjär regression

Läs mer

Dekomponering av löneskillnader

Dekomponering av löneskillnader Lönebildningsrapporten 2013 133 FÖRDJUPNING Dekomponering av löneskillnader Den här fördjupningen ger en detaljerad beskrivning av dekomponeringen av skillnader i genomsnittlig lön. Först beskrivs metoden

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna

Läs mer

Datorövning 1 Statistik med Excel (Office 2010, svenska)

Datorövning 1 Statistik med Excel (Office 2010, svenska) Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Datorövning 1 Enkel linjär regressionsanalys

Datorövning 1 Enkel linjär regressionsanalys Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Föreläsning 14: Försöksplanering

Föreläsning 14: Försöksplanering Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer