TAIU07 Matematiska beräkningar med Matlab

Storlek: px
Starta visningen från sidan:

Download "TAIU07 Matematiska beräkningar med Matlab"

Transkript

1 TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna a<=b, a==b och a>b? Uppgift 1.2 Låt a, b, och c vara reella tal. Ange ett uttryck som ger resultatet sant då alla talen är lika, och falskt annars. Pröva om ditt uttryck är korrekt genom att testa några olika värden på parametrarna a, b, och c. Uppgift 1.3 Låt a, b, och c vara reella tal. Ange ett uttryck som ger resultatet sant då alla talen är olika, och falskt annars. Pröva om ditt uttryck är korrekt genom att testa några olika värden på parametrarna a, b, och c. Uppgift 1.4 Låt x vara ett reelt tal. Skriv ett logiskt uttryck som ger värdet sant om 0<x 10. Uppgift 1.5 Skriv in följande data: A= 2 1 1, och, B= Vad blir resultatet av testerna A==B, A =B, och A<=B? Vad blir resultatet av uttrycket A>B A<B? Kan samma uttryck skrivas på ett enklare sätt? Som vi sett blir resultatet av jämförr mellan matriser och vektorer en ny vektor eller matris med nollor eller ettor beroe på om jämförn är sann eller falsk för respektive element. Exempelvis så visar kommandot >> [ 1, 0, -1] > [ 0, 2, 3] ans = att jämförn är sann ast för det första elementet. Detta kan utnyttjas för beräkningar. Uppgift 1.6 Låt x vara en vektor med n = 10 element. Använd en jämför operation och kommandot sum för att hitta antalet positiva element i vektorn x.

2 Uppgift 1.7 Antag att y är en vektor som innehåller n stycken tal. Vi har tidigare använt min för att hitta det minsta elementet i vektorn. Hitta ett sätt att räkna hur många gånger det minsta talet förekommer i vektorn y. I exemplet >> y = [ 1, 3, -1, 4, -1, 5, 3, -1] så skall vi få svaret 3 då talet 1 förekommer på tre platser. Uppgift 1.8 Antag att vi har en vektor x och vill kontrollera om den är sorterad i stigande ordning. Hur skall sum användas tillsammans med en jämföroperation för att testa detta? Tips Med kolon-notation så ger x(2:) en vektor som innehåller allt utom första elementet i vektorn x. 2 Villkorssatser Uppgift 2.1 Antag att vi har beräknat en konstant C. Vi vet att konstanten måste vara positiv. För att vara säker på att beräkningen blev korrekt vill vi testa detta genom att skriva en villkorssats som testar om C verkligen är positiv. Om så inte är fallet skall en varning skrivas ut. Tips Använd disp( Varning: C ej positiv ). Utskrift av text återkommer senare i kursen. Uppgift 2.2 Funktionen f(x) ges av uttrycket x 2, x<0 f(x)= sin(x), 0 x< π 2 1, x π 2 Skriv en villkorssats som beräknar y = f(x) för ett givet x värde. Det är lämpligt att skriva din villkorssats i en M fil. I MATLAB finns en fördefinierad funktion pi som returnerar värdet på π. Testa att ditt program fungerar! Uppgift 2.3 Antag att a = 5 och att variabeln flagga har värdet falskt (dvs flagga=0 i MATLAB). Vad händer i följande fall? if flagga if flagga if a<10 if a<10 a=a+1 a=a+1 a=a-1 a=a-1 Pröva om du är osäker! Uppgift 2.4 Vad skulle ha hänt i uppgiften ovan om a=5, men variabeln flagga istället hade haft värdet sant? 2

3 3 Repetionssatsen for Uppgift 3.1 Skriv ett program som beräknar summan S = 100 k=1 k. Uppgift 3.2 Vad blir x(5) då följande program exekveras? x=zeros(5,1); for k=2:1:5 x(k)=x(k-1)+k Pröva om du är osäker! Uppgift 3.3 (Svår) Exponentialfunktionen kan approximeras bra genom att använda serien e x = 1+x+ x2 2 + x n där vi alltså tar med de första n+1 termerna i summan. Välj n = 10 och skriv en for loop som beräknar summan ovan. Testa ditt program genom att beräkna e 2 genom dels standard funktionen exp och dels ditt program. Tips Då du beräknar termerna i summan behöver du k fakultet. Utnyttja att k! = (k 1)!k och inför en extra variabel där k! lagras och som uppdateras i varje steg i for loopen. Uppgift 3.4 Skriv ett program som bildar den så kallade Hilbert matrisen, dvs en n n matris H, vars element ges av H(i,j) = 1/(i + j 1). Du kan tilldela parametern n ett värde överst i ditt program. Tips Det finns en inbyggd standard funktion, hilb, i MATLAB som du kan använda för att kontrollera att ditt program fungerar. Uppgift 3.5 Antag att vi har en vektor x som innehåller n element. Använd en for-loop för att hitta det minsta elementet i vektorn. Tips Skapa en test vektor x=rand(5,1) och testa så att ditt program fungerar. Uppgift 3.6 Låt c = (1, 2, 1.5) T. Vi vill beräkna polynomet p(x), som ges av n 1 p(x) = c k x k, k=0 för ett antal x-värden sparade i en vektor x. Använd en for-loop för att beräkna polynomets värden. Använd length(c) för att bestämma hur många koefficienter som finns (och därmet polynomets gradtal). Då du är färdigt skall du använda ditt program för att rita en graf över polynomet p(x) = 1 2x+ 1.5x 2 på intervallet 0 x 2. k=0 x k k!. 3

4 Uppgift 3.7 Låt a och b vara två vektorer med n element, och antag att alla element i vektorn b är positiva. Skriv ett program som beräknar värdet, M= max a i. 1 i n b i Uppgift 3.8 Låt A vara en n m matris som innehåller både positiva och negativa element. Beräkna summan av de positiva elementen i matrisen. Tips Som exempel kan du bilda en testmatris med A=rand(5,4)-0.5. Använd [n,m]=size(a); i ditt program för att ta reda på hur stor matrisen är.. Uppgift 3.9 (Svår) En matris sägs vara diagonaldominant om n j=1,j i a ij a ii, i=1,2,...,n, med sträng olikhet för åtminstone en rad i. Skriv ett program som kontrollerar om en matris A är diagonal dominant. Ifåfall skall en utskrift göras till skärmen. Uppgift 3.10 (Svår) Multiplikation mellan två matriser A och B definieras som att C = AB, där c ij = n a ik b kj. k=1 Skriv ett program som beräknar matrisen C. Produkten AB är ast definierad om A och B har dimensioner som passar ihop. Ditt program skall innehålla en villkorssats som testar detta. 4 Simulering och Sannolikhetslära I Matlab finns flera funktioner för att skapa slumptal. Ett exempel är rand som skapar matriser där elementen är slumptal. Skriver vi >> P = rand(10,3); så skapas en 10 3-matris där elementen är likformigt fördelade på intervallet [0, 1]. Det finns även en funktion randi som skapar slumpmässiga heltalsvärden. Uppgift 4.1 Antag att vi kastar 5st tärningar. Hur många sexor kan vi förvänta oss att få? Svara på frågan genom att skapa en matris P där varje element är ett slumpmässigt heltal mellan 1 och 6. Varje kolumn P(:,i) representerar då ett kast med fem tärningar. Använd sum och en jämför för att skapa en vektor där varje element är summan av antalet sexor för respektive omgång med fem tärningskast. Använd sedan mean för att beräkna det genomsnittliga antalet sexor man får vid kast med fem tärningar. 4

5 Uppgift 4.2 (Svår)Antag att en hink innehåller totalt 8 bollar, varav fem är svarta och tre är vita. Vi drar två bollar från hinken och undersöker hur stor sannolikhet det är att vi drar två vita bollar. För att simulera en omgång då vi drar två bollar skall vi göra följande: Då första bollen dras är det 5/8 chans att få en svart och 3/8 chans att få en vit. Använd rand eller randi för att simulera första bollen vi drar. Då vi skall plocka den andra bollen från hinken så beror sannolikheterna på vilken boll vi redan plockat upp. Använd en if-sats för skilja på de två fallen (dvs första bollen blev antingen vit eller svart) och simulera vad som händer när den andra bollen plockas upp. Tips Använd utskrifter av typ disp( Två vita bollar ) för att visa vad som händer. Enklast är att använda nästlade if-satser. 5

6 TAIU07 Matematiska beräkningar med Matlab Facit till Datorlektion 2. 1 Logiska uttryck Uppgift 1.1 Uttrycket a<=b ger resultatet 1, dvs sant, a==b ger 0, dvs falskt. Uttrycket a>b ger falskt. Uppgift 1.2 Exempelvis ( a==b ) & ( a==c ) & ( b==c ). Uppgift 1.3 Exempelvis ( a =b ) & ( a =c ) & ( b =c ). Uppgift 1.4 Uttrycket blir ( 0<x )&( x<=10 ). Uppgift 1.5 De logiska uttrycken ger matriser som svar. De är: , , och Uttrycket kan skrivas som A =B. Resultatet blir Uppgift 1.6 Använd >> AntalPositiva = sum( x > 0 ); Uppgift 1.7 Raderna >> y=[ ] >> n = sum( y == min(y) ) ger svaret n = 3. Uppgift 1.8 Skriv >> sum( x(2:)-x(1:-1) < 0 ) då vektorn x(2:)-x(1:-1) är positiv om x k x k 1 > 0 för alla k, dvs om vektorn är sorterad i stigande ordning. Testa med >> x = 0:10 så fås svaret 0 vilket beryder att inget element ligger i fel ordning.. 6

7 2 Villkorssatser Uppgift 2.1 Använd if C<0 disp( Varning: C ej positiv ) Uppgift 2.2 Exempelvis kan filen funktion.m innehålla raderna: if ( x < 0 ) y=x^2; if ( x < pi/2 ) y=sin(x); y=1; disp(y) Uppgift 2.3 I första fallet fås a=5. I andra fallet fås a=4. Uppgift 2.4 Nu fås istället a=6 i bägge fallen. 3 Repetionssatsen for Uppgift 3.1 Följande MATLAB kommandon beräknar summan S=0; for k=1:100 S=S+k; ; disp(s) % <- används för att lagra en partialsumma Uppgift 3.2 Programmet skapar en kolumnvektor x = ( ) T. x(5) blir alltså 14. Uppgift 3.3 Vi sparar en variabel kfak för att spara k!. Programmet blir x=0.7; % Eller det x-värde man är intresserad av kfak=1;s=1;n=10; for k=1:n kfak=kfak*k; % Blir 1*1 första gången! S=S+x^k/kfak; disp(s) Uppgift 3.4 För att skapa Hilbert matrisen H kan följande program användas. 7

8 N=5; H=zeros(N,N); for i=1:n for j=1:n H(i,j)=1/(i+j-1); ; ; Uppgift 3.5 Vi sparar en variabel x_min som innehåller det hittils minsta elementet vi hittat. Programmet blir då x_min=x(1); n = length(x); for k=2:n if x(k)<x_min x_min=x(k); % Hittat mindre! Uppdatera x_min. disp(x_min) Uppgift 3.6 Vi skapar vektorn c, en vektor med x-värden och beräknar polynomet med c=[ ]; x=0:0.01:2; p=c(1)*x.^0; for k=2:length(c) p=p+c(k)*x.^k; plot(x,p) % ger första termen. elementvis op. ty x är vektor. Uppgift 3.7 Vi skriver M = abs(a(1)/b(1)); for k=2:length(a) if abs(a(k)/b(k))>m M = abs(a(k)/b(k)); disp(m) Uppgift 3.8 Vi använder size för att hitta matrisens storlek. Summan beräknas med [n,m]=size(a);s=0; for i=1:n for j=1:m if A(i,j)>0 S=S+A(i,j); 8

9 disp(s) Uppgift 3.9 Vi behöver två logiska variabler: Den första AllaMindre skall bli falsk om någon rad bryter mot olikheten. Den andra EnStrikt skall bli sann så snart vi hittar en strikt olikhet på någon rad. Programmet blir [n,m]=size(a); AllaMindre = 1; % Alla rader vi undersökt hittils uppfyller olikheten. EnStrikt = 0; % Vi har ännu inte hittat någon strikt olikhet for i=1:n % Undersök rad i. S=0; for j=1:m S=S+abs(A(i,j)); % S blir radsumman ; if S<2*abs(A(i,i)) % Vi har A(i,i) i S också. EnStrikt = 1; if S > 2*abs(A(i,i)) AllaMindre = 0; % Hittat en ogiltig olikhet! break; % Vi behöver inte fortsätta. Vet nu att falskt! % Nu lägger vi ihop resultatet i en ny logisk variabel. DiagDom = AllaMindre & EnStrikt ; if DiagDom, disp( Matrisen är diagonal dominant ), Uppgift 3.10 Givet två matriser A och B skriver vi [n1,m1]=size(a);[n2,m2]=size(b); if m1 ~= n2 % I detta fallet fungerar det inte disp( dimensioner passar ej ); C=zeros(n1,m2); % Skapa C med rätt storlek for i=1:n1 for j=1:m2 % beräkna C(i,j) med formeln. for k=1:m1 C(i,j)=C(i,j)+A(i,k)*B(k,j); 9

10 4 Simulering och Sannolikhetslära Uppgift 4.1 Följande steg löser uppgiften. N=1000; P=randi( [1,6],5,N); % 5xN matris med heltal 1,..,6 V=sum( P == 6, 1 ); % summera över första dimensionen. Dvs raderna. mean(v) Genomsnittet blir ungefär 0.83 sexor. Uppgift 4.2 Programmet I = randi([1 8]); if I <= 5 % Första bollen blev svart. 7 bollar kvar. 4 svarta. I = randi([1 7]); if I <= 4 disp( Två svarta bollar. ) disp( En vit och en svart boll. ); % Första bollen blev vit. 7 bollar kvar. 5 svarta I = randi([1 7]); if I <= 5 disp( En vit och en svart boll. ) disp( Två vita bollar ); 10

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Textsträngar från/till skärm eller fil

Textsträngar från/till skärm eller fil Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: Provkod: TEN1 Hjälpmedel: Inga. Examinator:

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

TMV156/TMV155E Inledande matematik E, 2009

TMV156/TMV155E Inledande matematik E, 2009 TMV156/TMV155E Inledande matematik E, 2009 DATORÖVNING 2 PÅ VÄG MOT PROGRAMMERING Instruktioner Skapa en ny filkatalog ( directory ) Lab2 för denna övning. Gör alltid uppgifterna i script-filer eller funktionsfiler.

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

MATLAB handbok Introduktion

MATLAB handbok Introduktion Department of Physics Umeå University 30 juni 2014 MATLAB handbok Introduktion Marina Wallin Martin Hansson Per Sundholm 1 INTRODUKTION TILL MATLAB 1 1 Introduktion till Matlab Något man som Teknisk fysiker

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Lösningar till tentauppgifterna sätts ut på kurssidan på nätet idag kl 19. Omtentamen i Programmering C, 5p, fristående, kväll, 040110.

Lösningar till tentauppgifterna sätts ut på kurssidan på nätet idag kl 19. Omtentamen i Programmering C, 5p, fristående, kväll, 040110. 1(8) ÖREBRO UNIVERSITET INSTITUTIONEN FÖR TEKNIK Lösningar till tentauppgifterna sätts ut på kurssidan på nätet idag kl 19. Denna tenta kommer att vara färdigrättad On 14/1-04 och kan då hämtas på mitt

Läs mer

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3 Börja programmera Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner Läs inte avsnitt 4.2.3 2010-09-23 Datorlära, fysikexperiment - del 4 1 Jämförande uttryck 2010-09-23

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

Mer om linjära ekvationssystem

Mer om linjära ekvationssystem CTH/GU LABORATION 2 TMV141-212/213 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna laboration fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad

Läs mer

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program Dagens föreläsning Programmeringsteknik för Ingenjörer VT05 Föreläsning 3-4 Repetition Datatyper Uttryck Operatorer Satser Algoritmer Programmeringsteknik för ingenjörer, VT06 2 Repetition Repetition -

Läs mer

Lösningar till linjära problem med MATLAB

Lösningar till linjära problem med MATLAB 5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 22 Mars, 2016 Provkod: TEN1 Hjälpmedel:

Läs mer

Programmeringsteknik med C och Matlab

Programmeringsteknik med C och Matlab Programmeringsteknik med C och Matlab Kapitel 2: C-programmeringens grunder Henrik Björklund Umeå universitet Björklund (UmU) Programmeringsteknik 1 / 32 Mer organisatoriskt Imorgon: Datorintro i lab Logga

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

4.3. Programmering i MATLAB

4.3. Programmering i MATLAB 4.3. Programmering i MATLAB MATLAB används ofta interaktivt, dvs ett kommando som man skriver, kommer genast att utföras, och resultatet visas. Men MATLAB kan också utföra kommandon som lagrats i filer,

Läs mer

Grunderna i stegkodsprogrammering

Grunderna i stegkodsprogrammering Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer

Läs mer

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program Dagens föreläsning Programmeringsteknik för Ingenjörer VT05 Föreläsning 3-4 Repetition Datatyper Uttryck Operatorer Satser Algoritmer Programmeringsteknik VT05 2 Repetition Repetition - Programmering i

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB Introduktion till MATLAB Om laborationen Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker verkar för lätt

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2010-04-06.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Skriv den funktion, draw_figure, som ritar ut en liksidig figur enligt exemplen nedan med så många hörn som anges som parameter till funktionen (den ritar

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner

Läs mer

Matlabföreläsningen. Lite mer och lite mindre!

Matlabföreläsningen. Lite mer och lite mindre! Inmatning: Här är lite exempel på inmatning i Matlab: >> pi 3.1416 >> format long >> ans 3.141592653589793 Matlabföreläsningen Lite mer och lite mindre! >> format %återställer format (%- tecknet gör att

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

4 Sammansatta datatyper

4 Sammansatta datatyper 4 Sammansatta datatyper De enkla datatyper som vi hittills använt är otillräckliga när man ska hantera stora datamängder. Vill man exempelvis läsa in 100 reella mätvärden, som man tillfälligt vill spara

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning läsvecka 3 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/39 Denna föreläsning (läsvecka 3) Matematisk modellering - fördjupning Modelleringsexempel

Läs mer

Enklast att skriva variabelnamn utan ; innehåll och variabelnamn skrivs ut

Enklast att skriva variabelnamn utan ; innehåll och variabelnamn skrivs ut F5: Filhantering in- och utmatning (kap. 2 och 8) 1 Utskrift på skärm, inläsning från tangentbord (kap. 2) Spara och hämta variabler med save och load (kap. 2) Kommandot textread Mer avancerad filhantering:

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 6. Text och filer 1 Textsträngar Uppgift 1.1 Skapa en sträng som innehåller texten: kommer du snart?. Använd length för att kontrollera hur många

Läs mer

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm.

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm. Algoritmanalys Analys av algoritmer används för att uppskatta effektivitet. Om vi t. ex. har n stycken tal lagrat i en array och vi vill linjärsöka i denna. Det betyder att vi måste leta i arrayen tills

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem CTH/GU STUDIO 1 LMA515c - 2016/2017 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna studioövning börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på matriser

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar KPP053, HT2016 MATLAB, Föreläsning 2 Vektorer Matriser Plotta i 2D Teckensträngar Vektorer För att skapa vektorn x = [ 0 1 1 2 3 5]: >> x = [0 1 1 2 3 5] x = 0 1 1 2 3 5 För att ändra (eller lägga till)

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

Lösningar till uppgifterna sätts ut på kurssidan på nätet idag kl 13.00. Omtentamen i Programmering C, 5p, A1, D1, E1, Fri, Pr1, Te/Ek1, 040607.

Lösningar till uppgifterna sätts ut på kurssidan på nätet idag kl 13.00. Omtentamen i Programmering C, 5p, A1, D1, E1, Fri, Pr1, Te/Ek1, 040607. 1(8) ÖREBRO UNIVERSITET INSTITUTIONEN FÖR TEKNIK Lösningar till uppgifterna sätts ut på kurssidan på nätet idag kl 13.00. Denna tenta kommer att vara färdigrättad On 9/6 och kan då hämtas på mitt tjänsterum,

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Föreläsning 1 & 2 INTRODUKTION

Föreläsning 1 & 2 INTRODUKTION Föreläsning 1 & 2 INTRODUKTION Denna föreläsning Vad händer under kursen? praktisk information Kursens mål vad är programmering? Skriva små program i programspråket Java Skriva program som använder färdiga

Läs mer

4.4. Mera om grafiken i MATLAB

4.4. Mera om grafiken i MATLAB 4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den

Läs mer

Tentamen OOP 2015-03-14

Tentamen OOP 2015-03-14 Tentamen OOP 2015-03-14 Anvisningar Fråga 1 och 2 besvaras på det särskilt utdelade formuläret. Du får gärna skriva på bägge sidorna av svarsbladen, men påbörja varje uppgift på ett nytt blad. Vid inlämning

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013 TILLÄMPAD LINJÄR ALGEBRA, DN123 1 DN123 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 213 Skrivtid: 8-13 Tillåtna hjälpmedel: inga Examinator: Anna-Karin Tornberg Betygsgränser: Betyg A B C D E

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Några tips på vägen kanske kan vara bra. Tentaupplägg denna gång TIPS 1: Läs igenom ALLA uppgifterna och välj den du känner att det är den lättaste först. Det kan gärna ta 10-20 minuter. Försök skriva

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

2.4. Teckensträngar och logiska uttryck

2.4. Teckensträngar och logiska uttryck 2.4. Teckensträngar och logiska uttryck I Fortran sparar man text i variabler av typen CHARACTER. För varje tecken reserveras normalt 1 byte i minnet. För att deklarera en teckenvariabel TEXT och samtidigt

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Objektorienterad programmering D2

Objektorienterad programmering D2 Objektorienterad programmering D2 Laboration nr 2. Syfte Att få förståelse för de grundläggande objektorienterade begreppen. Redovisning Källkoden för uppgifterna skall skickas in via Fire. För senaste

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

MATLAB - en kompakt introduktion av Tore Gustafsson

MATLAB - en kompakt introduktion av Tore Gustafsson 6.1.7 1 ÅBO AKADEMI TEKNISKA FAKULTETEN MATLAB - en kompakt introduktion av Tore Gustafsson MATLAB 1 är ett interaktivt programpaket för numeriska beräkningar. Matlab står för matrix laboratory och är

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

Datorlära 3 Octave Workspace ovh mijlö Skriva text på skärmen Värdesiffror Variabler och typer Strängar Makro Vektorer

Datorlära 3 Octave Workspace ovh mijlö Skriva text på skärmen Värdesiffror Variabler och typer Strängar Makro Vektorer Datorlära 1 Introduktion till datasystemet, epost konto, afs hemkonto Introduktion till datorer och datasalar Open Office Calculator Beräkningar med Open Office Calc Diagram med OO Calc Datorlära 2 Utforma

Läs mer

5 Kontinuerliga stokastiska variabler

5 Kontinuerliga stokastiska variabler 5 Kontinuerliga stokastiska variabler Ex: X är livslängden av en glödlampa. Utfallsrummet är S = x : x 0}. X kan anta överuppräkneligt oändligt många olika värden. X är en kontinuerlig stokastisk variabel.

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2005-06-09.kl.08-13 Uppgift 1 ( Betyg 3 uppgift ) Ett plustecken kan se ut på många sätt. En variant är den som ses nedan. Skriv ett program som låter användaren mata in storleken på plusset enligt exemplen

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

Grundläggande programmering med C# 7,5 högskolepoäng

Grundläggande programmering med C# 7,5 högskolepoäng Grundläggande programmering med C# 7,5 högskolepoäng Provmoment: TEN1 Ladokkod: NGC011 Tentamen ges för: Omtentamen DE13, IMIT13 och SYST13 samt öppen för alla (Ifylles av student) (Ifylles av student)

Läs mer

Programmering, grundkurs, 8.0 hp, Elektro, KTH, hösten 2010

Programmering, grundkurs, 8.0 hp, Elektro, KTH, hösten 2010 Föreläsning 6 Kapitel 5 5.1 switch-satsen Vi ser på ett par exempel ur boken: int a; srand(time(0)); a=rand()%6+1; if(a==1) printf("hej Du glade\n"); else if(a==2) printf("god dag\n"); else if(a==3) printf("är

Läs mer