MMA132: Laboration 2 Matriser i MATLAB

Storlek: px
Starta visningen från sidan:

Download "MMA132: Laboration 2 Matriser i MATLAB"

Transkript

1 MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen för laboration 1 till hands då många av övningarna för den här laborationen liknar det ni gjorde i laboration 1. Det är enklast för dig och för läraren om du gör varje övning i denna laboration i en egen m-fil. Exempel 2: Villkor och loopar Detta är den del av laborationshandledningen till laboration 1 som hör till övning 4 som flera inte hann med. Du kan börja laboration 2 med att göra denna övning. Tidigare i kursen har vi talat om iterativa metoder för lösning av linjära ekvationer (intervallhalveringsmetoden, Newton-Raphson metoden, sekantmetoden och fixpunktsmetoden). Alla dessa metoder byggde på att göra en enkel beräkning flera gånger efter varandra. I denna del skall vi lära oss hur vi kan få MATLAB att arbeta iterativt. for-loopar Ett sätt att få MATLAB att upprepa en viss beräkning flera gånger är att använda en for-loop. En for-loop konstrueras på följande sätt: for index variabel t.ex. i = lista t.ex. list utför den beräkning som vi vill göra. Oftast så skjuts de in lite för att det ska bli tydligt vad som är inuti och vad som är utanför for-loopen. Kommandona körs en gång per element i listan list och om i dyker upp i något kommando så kommer det att vara motsvarande värde i list. Om man vill skriva ett program som utför en beräkning n gånger kan man skriva for i = 1:n som man vill köra n gånger. Låt oss testa att skriva en for-loop genom att skriva en funktion som räknar ut fakulteten av ett tal. n! = n (n 1) (n 2) En m-fil för detta kan se ut som följer (prova gärna och se om du kan skriva den på ett annat sätt): function f = factorial_calc(n) % factorial_calc beräknar fakulteten % av ett positivt heltal med hjälp av % en for-loop % 0! = 1 1

2 f = 1; % Här multipliceras värdena 1 till n % med varandra i en for-loop. % Notera att för MATLAB så betyder % 1:n och [1:1:n] samma sak for i = 1:n % i kommer att variera från 1 till n % Första varvet kommer f = 1*1 % Andra varvet kommer f = 1*2 % Tredje varvet kommer f = 2*3 % Tredje varvet kommer f = 6*4 o.s.v f = f*i; Om du byter ut i = 1:n mot i = 1:2:n kommer du att få en funktion som räknar ut produkten av alla udda tal mellan 1 och n f(n) = m (m 2) där m = n om n är udda och m = n 1 om n r jämn Om vi istället vill skriva en funktion som räknar ut produkten av alla element i en lista så kan vi enkelt ordna det function f = list_prod(list) % Beräknar produkten av alla elementen i list f = 1; for i = list f = f*i; Jämför den här funktionen med funktionen för fakultet och se till att du förstår skillnaden. I MAT- LAB finns det också färdiga funktioner för fakultet och produkt av elementen i en lista, de heter factorial respektive prod. Villkor När man utför numeriska beräkningar är det inte alltid man vet i förväg hur många gånger man vill utföra en beräkning utan man vill enkelt fortsätta tills svaret är tillräckligt bra. Man kan få MATLAB att kolla hur bra en lösning är åt oss. Först vill vi kunna jämföra tal med varandra, det finns det ett antal olika kommandon för i MATLAB a < b a < b a mindre än b a <= b a b a mindre än eller lika med b a > b a > b a större än b a >= b a b a större än eller lika med b a == b a = b a lika med b Tabell 1: Tabell över olika kommandon för att jämföra saker i MATLAB. 2

3 Det finns en viktig skillnad mellan a = b och a == b. När bara ett likhetstecken, =, används säger vi att vi vill spara värdet till höger i variabeln till vänster. När två likhetstecken används, ==, så jämför värdet i variabeln på höger sida med variabeln på vänster sida och ser om dom är lika. När vi skriver a == b så kommer resultatet att bli antingen 0 (om a b) eller 1 (om a = b). Prova och skriv följande i kommandofönstret: 1 < <= 12 3*5 == 15 Blir svaren vad du förväntade dig? Om man jämför två listor med varandra så kommer jämförelserna att göras elementvis. Vi kan också använda jämförelser för att bara göra något när ett visst villkor är uppfyllt med hjälp av en if-sats. if-satser skrivs på följande vis: if jämförelse bara skall utföras om jämförelsen är sann (villkoret är uppfyllt) Det finns också en variant av if-satsen där vi kan få MATLAB att bete sig på olika sätt beroe på om villkoret är uppfyllt eller inte. if else jämförelse bara skall utföras om jämförelsen är sann (villkoret är uppfyllt) bara skall utföras om jämförelsen är falsk (villkoret är inte uppfyllt) Vi kan bygga ut funktionen för fakultetsberäkning som vi tidigare skrev: function f = factorial_calc(n) % factorial_calc beräknar fakulteten % av ett positivt heltal med hjälp av % en for-loop % 0! = 1 f = 1; % Kontrollera att n är ett positivt tal if n > 0 % Här multipliceras värdena 1 till n % med varandra i en for-loop. % Notera att för MATLAB så betyder % 1:n och [1:1:n] samma sak for i = 1:n 3

4 % i kommer att variera från 1 till n % Första varvet kommer f = 1*1 % Andra varvet kommer f = 1*2 % Tredje varvet kommer f = 2*3 % Tredje varvet kommer f = 6*4 o.s.v f = f*i; % Vad skall vi göra om n inte är positivt else % Kommandot disp skriver ut text i % kommandofönstret disp('n måste vara större än 0') f = 0; while-loopen Nu när vi vet hur jämförelser fungerar kan vi också få MATLAB att fortsätta göra samma sak, om och om igen tills ett visst villkor har uppfyllts. Detta görs enklast med en så kallad while-loop: while jämförelse utf ör den beräkning som vi vill göra. MATLAB kommer att utföra dessa om och om igen tills jämförelsen inte är sann längre. Med en while-loop kan man enkelt implementera de iterativa metoder som vi användes för attt lösa icke-linjära ekvationer i kapitel två och gruppuppgift 1. Nedan finns en enkel implementation av Newton-Raphson metoden för att lösa x 3 2x = 0. function y = newton_raphson(x) % Funktion som numerisk löser % x^3-2*x^2+1 = 0 % med Newton-Raphsons metod och % startvärde x. % Här bestämmer vi att vi vill ha % 3 korrekta decimaler i vårt svar. eps = ; % Vi låter y vara den 'nya lösningen' % och x vara den 'gamla lösningen'. % Vi få ta till ett litet knep för att % se till att MATLAB skall räkna fram % en ny lösning minst en gång. x_new = x; x = x_new + 2*eps; % Här använder vi Newton-Raphsons metod. % Vi avgör hur bra uppskattningen är % genom att jämföra de två senaste iterationerna. while abs(x_new-x) > eps 4

5 % Vår 'nya lösning' blir vår 'gamla lösning' % inför nästa varv. x = x_new; % Beräkning av funktionens värde och derivata % för den gamla lösningen. f = x^3-2*x^2+1; f_p = 3*x^2-4*x; % Beräkning av ny lösning. x_new = x - f/f_p; Notera att denna implementation inte skyddar mot Newton-Raphson metodens instabilitet överhuvudtaget. Det betyder att man kan välja ett startvärde x sådant att man aldrig hittar någon lösning. Detta innebär att programmet aldrig kommer att sluta köra. Om du skulle råka ge ett sådant startvärde och MATLAB slutar svara, tryck på ctrl-c så kommer du att avbryta körningen 1. Har du tid över under laborationen så får du gärna prova att förbättra funktionen (tips: du kan använda en if-sats och kommandot return för att sätta ett maximalt antal interationer), eller skriva en ny funktion som använder sig av sekantmetoden istället. Om du tittar på kursens Blackboard-sida finns också ett par lite mer avancerade implementationer av Newton-Raphsons metod och sekantmetoden (under Laborationer Laboration 1 Intressanta m-filer) om du är intresserad. Övning 1 (övning 4, laboration 1) Skriv en MATLAB-funktion som använder sekantmetoden för att lösa icke-linjära ekvationer. Funktionen skall ta fyra argument, f, x0, x1, tol. f skall vara en funktion, x0 och x1 skall vara första gissningar och tol skall vara den tillåtna felgränsen E f. Funktionen skall kunna följande: Returnera en punkt x sådan att f(x) = 0 ± E f med sekantmetoden. Om funktionen inte hittat en tillräckligt bra lösning efter 1000 iterationer så skall den ge upp. Extra utmaning om du vill: Funktionen skall rita upp f(x) över ett lämpligt intervall och markera alla gissningar som sekantmetoden har givit. 1 Om du använder FreeMat så avbryter du skript och funktioner med ctrl-b 5

6 Matriser i MATLAB MATLAB är en förkortning av MATrix LABoratory. Detta namn valdes eftersom MATLAB är mycket bra på att hantera matriser. Listor i MATLAB är egentligen matriser med bara 1 rad (eller bara 1 kolonn). Prova att skriva A = [1 2 3; 0 1 6; 7 8 1] i kommandofönstret. Prova nu att skriva B = [ ] i kommandofönstret. Jämför de två matriserna med varandra. Det är också enkelt att transponera och invertera matriser. Prova att skriva C = A och D = inv(a) i kommandofönstret. Fundera ut vilket kommando som gör vad. Man kan också lösa linjära ekvationssystem med MATLAB. Ekvationssystemet Ax = y där A är den matris som vi tidigare lagrade i variabel A och kan lösas genom att skriva y = [1;2;3]; x = A\y 1 y = 2 3 i kommandofönstret. Om du vill kan även använda inversen du räknade ut tidigare för att lösa systemet. Lös ekvationssystemet Övning 2 1,456x 1 + 2,846x 2 + 0,987x 3 = 1,983 2,238x 1 7,998x 2 + 3,226x 3 = 4,762 3,738x 1 + 0,937x 2 = 2,116 6

7 Implementering av Jacobis metod i MATLAB Om du tittar på sidan 3.14 i kompiumet så skrivs formeln för en iteration med Jacobis metod på matrisform i ekvation (3.35). Denna formel är enkel att implementera i MATLAB. Formeln är skriven sådan att du skall dela upp matrisen A i tre andra matriser A = L + D + R. Detta kan du göra på flera olika sätt. Ett sätt är att plocka ut varje element ur matrisen för sig och stoppa in i en annan matris. För att plocka ut ett specifikt element ur en matris skriver du A(i,j) där A är matrisens namn (variabeln) och i och j är rad respektive kolonn. Du kan också sätta ett specifikt element i en matris till ett visst värde, x genom att skriva A(i,j) = x. Nedan syns ett exempel: % Här definierar vi en 3 x 3 matris A = [ ]; % Här kommmer: % c = 2 % d = 7 % e = 5 c = A(1,2) d = A(3,1) e = A(2,2) % Nu har vi ändrat matrisen A % så att vi på diagonalen har % värdet 10 istället för 5 A(2,2) = 10 % OBS! Notera att e = 5 fortfarande! Med följande kod kan du plocka ut diagonalen från en 2 2 matris. % Funktion som kan plocka ut diagonalen % ur vilken 2 x 2 matris som helst function D = diagonal(a) D = [ A(1,1) 0 0 A(2,2)]; Att skriva en funktion som den ovan för större matriser blir dock besvärligt. Pröva därför kommandot diag som kan göra två saker: 1) om du skriver x = diag(a) där A är en matris så blir x en lista med diagonalelementen i A. 2) om du skriver A = diag(x) där x är en lista så blir A en kvadratisk matris med diagonalelementen från x och noll överallt annars. Tips: Pröva vad som händer om du använder diag två gånger i rad. För att plocka ut L och R, testa kommandona triu och tril. Nu är vi redo att implementera iterationssteget i Jacobis metod. 7

8 Övning 3 Skriv en funktion som heter jacobi och som tar emot tre argument: en matris, M, en svarsvektor, y, och en ungefärlig lösning, x, och skickar tillbaka en ny gissning framräknad med Jacobis metod. För att testa er funktion kan ni skriva: M = [8 1 3; ; ] y = [119; 131; 167] x0 = [10; 10; 10] x1 = jacobi(m,y,x0) Om ni får resultatet x1 = så fungerar er funktion som den ska. Det går bra att anta att alla matriser som skickas in är 3 3 matriser. Eftersom Jacobis metod är en iterativ metod så vill vi naturligtvis använda den flera gånger på raken. I nästa övning skall vi skriva en version av Jacobis metod där vi matar in hur många iterationer vi vill göra. Det enklaste sättet att göra detta är med en for-loop på det sätt som demonstreras i factorial_calcexemplet på sidan 3. Övning 4 Skriv en ny funktion (hitta på ett bra namn själv) som kan ge en ungefärlig lösning på ett linjärt ekvationsystem med hjälp av Jacobis metod. Metoden skall ta en matris, en svarsvektor, en ungefärlig lösning och ett heltal, n, som inargument och skicka tillbaka en ny ungefärlig lösning framräknad med n iterationer av Jacobis metod. Tips: återanvänd lösningen till övning 3. Kom också ihåg att använda en strikt diagonaldominant matris när ni testar funktionen (Som en extra utmaning till den som vill: se till att funktionen kollar om matrisen är diagonaldominant och låter bli att räkna om den inte är det). 8

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem

Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem Laboration 0: Del 2 Benjamin Kjellson 2016 03 21 Introduktion till matriser, vektorer, och ekvationssystem I den här filen får ni en kort introduktion till hur man hanterar och räknar med matriser i R,

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Matlabföreläsningen. Lite mer och lite mindre!

Matlabföreläsningen. Lite mer och lite mindre! Inmatning: Här är lite exempel på inmatning i Matlab: >> pi 3.1416 >> format long >> ans 3.141592653589793 Matlabföreläsningen Lite mer och lite mindre! >> format %återställer format (%- tecknet gör att

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

JavaScript del 3 If, Operatorer och Confirm

JavaScript del 3 If, Operatorer och Confirm JavaScript del 3 If, Operatorer och Confirm Under förra uppgiften så kollade vi på hur användaren kan ge oss information via promt(), vi använde den informationen både för att skriva ut den och för att

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Användarhandledning Version 1.2

Användarhandledning Version 1.2 Användarhandledning Version 1.2 Innehåll Bakgrund... 2 Börja programmera i Xtat... 3 Allmänna tips... 3 Grunderna... 3 Kommentarer i språket... 4 Variabler... 4 Matematik... 5 Arrayer... 5 på skärmen...

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner

KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner KPP053, HT2016 MATLAB, Föreläsning 1 Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner MATLAB Väletablerat Mycket omfattande program GNU OCTAVE Öppen

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Programmering i C++ En manual för kursen Datavetenskaplig introduktionskurs 5p

Programmering i C++ En manual för kursen Datavetenskaplig introduktionskurs 5p Programmering i C++ En manual för kursen Datavetenskaplig introduktionskurs 5p Skriven av Michael Andersson Introduktion Programmering I högnivåspråk fokuserar på själv problemet (algoritmen) istället

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13 LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem CTH/GU STUDIO 1 LMA515c - 2016/2017 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna studioövning börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på matriser

Läs mer

Föreläsning 9 Exempel

Föreläsning 9 Exempel Föreläsning 9 Exempel Intervallhalveringsmetoden DA2001 (Föreläsning 9) Datalogi 1 Hösten 2013 1 / 24 Föreläsning 9 Exempel Intervallhalveringsmetoden Newton-Raphsons metod DA2001 (Föreläsning 9) Datalogi

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Laboration i Matlab. Uppgift 1. Beskrivning

Laboration i Matlab. Uppgift 1. Beskrivning aboration i atlab Uppgifterna i denna laboration kan innehålla fsik och matematik som ni inte känner till, men det kommer ni inte att behöva för att kunna lösa uppgifterna. Uppgifterna är skrivna så att

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Introduktion till programmering SMD180. Föreläsning 9: Tupler

Introduktion till programmering SMD180. Föreläsning 9: Tupler Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning läsvecka 3 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/39 Denna föreläsning (läsvecka 3) Matematisk modellering - fördjupning Modelleringsexempel

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!)

Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna

Läs mer

For-sats/slinga. Notis

For-sats/slinga. Notis Notis I koden för exemplen förekommer kommentarer. Kommentarer i Matlabkoden identieras med prexet %. Kommentarer är text/kod som Matlab bortse från. Alltså all text/kod som ligger till höger och på samma

Läs mer

1 Iteration. 1.1 for-satsen

1 Iteration. 1.1 for-satsen 1 Iteration Iteration innebär en upprepning, repetition av satser. Vi har nu sett hur en villkorssats kan välja att utföra ett satsblock beroende på om ett villkor är uppfyllt, selektion. För selektion

Läs mer

Objektorienterad programmering Föreläsning 2

Objektorienterad programmering Föreläsning 2 Objektorienterad programmering Föreläsning 2 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda Inläsning av data via dialogrutor Repetitioner (While-satsen och For-satsen) Nästlade

Läs mer

Dagens program. Programmeringsteknik och Matlab. Viktiga datum. Ett första exempel. Programmall, vad behöver vi i ett javaprogram?

Dagens program. Programmeringsteknik och Matlab. Viktiga datum. Ett första exempel. Programmall, vad behöver vi i ett javaprogram? Programmeringsteknik och Matlab Övning 2 Dagens program Övningsgrupp 2 (Sal Q22/E32) Johannes Hjorth hjorth@nada.kth.se Rum 4538 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d1312

Läs mer

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv Datorlära 6 Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv 1 Arbeta med Strängar Strängar skapas med text inom citattecken, enkla eller dubbla.!>> str=

Läs mer

Visual Basic, en snabbgenomgång

Visual Basic, en snabbgenomgång Visual Basic, en snabbgenomgång Variabler och Datatyper En variabel är som en behållare. Olika behållare passar bra till olika saker. I Visual Basic(härefter VB) finns olika typer av behållare för olika

Läs mer

Mer om linjära ekvationssystem

Mer om linjära ekvationssystem CTH/GU LABORATION 2 TMV141-212/213 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna laboration fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad

Läs mer

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3 Börja programmera Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner Läs inte avsnitt 4.2.3 2010-09-23 Datorlära, fysikexperiment - del 4 1 Jämförande uttryck 2010-09-23

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Använda Python Laboration 1 GruDat, DD1344

Använda Python Laboration 1 GruDat, DD1344 Använda Python Laboration 1 GruDat, DD1344 Örjan Ekeberg 14 oktober 2008 Målsättning Målet med denna laboration är att du ska prova på att använda Python, framförallt interativt. Du ska också lära dig

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Värmedistribution i plåt

Värmedistribution i plåt Sid 1 (6) Värmedistribution i plåt Introduktion Om vi med konstant temperatur värmer kanterna på en jämntjock plåt så kommer värmen att sprida sig och temperaturen i plåten så småningom stabilisera sig.

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar KPP053, HT2016 MATLAB, Föreläsning 2 Vektorer Matriser Plotta i 2D Teckensträngar Vektorer För att skapa vektorn x = [ 0 1 1 2 3 5]: >> x = [0 1 1 2 3 5] x = 0 1 1 2 3 5 För att ändra (eller lägga till)

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström STOCKHOLMS UNIVERSITET 2001-10-22 MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström GRUNDLÄGGANDE MATLAB-TRÄNING för den som aldrig har arbetat med Matlab förut A. Matlabs allmänna

Läs mer

Programmeringsteknik med C och Matlab

Programmeringsteknik med C och Matlab Programmeringsteknik med C och Matlab Kapitel 2: C-programmeringens grunder Henrik Björklund Umeå universitet Björklund (UmU) Programmeringsteknik 1 / 32 Mer organisatoriskt Imorgon: Datorintro i lab Logga

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

2D1210, Numeriska Metoder, GK I för V 2.

2D1210, Numeriska Metoder, GK I för V 2. Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6

Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Laboration 2 Objektorienterad programmering i Java I Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Syfte: Att kunna använda sig av olika villkors- och kontrollflödeskonstruktioner

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Programmera i C Varför programmera i C när det finns språk som Simula och Pascal??

Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? C är ett språk på relativt låg nivå vilket gör det möjligt att konstruera effektiva kompilatorer, samt att komma nära

Läs mer

MAM283 Introduktion till Matlab

MAM283 Introduktion till Matlab Rum: A3446 E-post: ove.edlund@ltu.se Hemsida: www.math.ltu.se/ jove Översikt: Matlab i MAM283 Några fakta Introduktion till Matlab. Omfattning: 0,4 p En föreläsning och tre datorövningar Examineras genom

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Programmering i C, 7,5 hp

Programmering i C, 7,5 hp Programmering i C, 7,5 hp Föreläsning 4 VÄLKOMNA! 31 switch-satsen Antag att vi har en heltalsvariabel a som skall styra programflödet Antag vidare att a kan anta tex 5 olika värden 1,2,3,4,5 printf( Mata

Läs mer