Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Lösningsanvisningar till de icke obligatoriska workoutuppgifterna"

Transkript

1 Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar algoritmens stabilitet och har inget med konditionstalet att göra. (c) Rätt. Utan pivotering är algoritmen instabil och då kan avrundningsfel ackumuleras så att noggrannheten i den beräknade lösningen blir mycket dålig. 8. (a) Hela sista raden i Í består av nollor. Därmed kan vi dra slutsatsen att koefficientmatrisen i denna uppgift är singulär och att systemet saknar entydig lösning. Elimineringen i högerledet resulterar i att sista ekvationen i ÍÜ = blir 0 = 0. Slutsatsen blir att ekvationssystemet har oändligt många lösningar. (b) Att Matlab hittar en lösning är en effekt av flyttalsräkning. I flyttalsberäkningar blir inte sista ekvationen riktigt 0 = 0. Om man tittar på element Í 33 ser man att sista elementet inte blir 0, utan och man kan anta att det finns avrundningsskräp i någon decimal. Det gör att Matlab felaktigt löser problemet. Däremot varnar Matlab att konditionstalet är väldigt högt. Om man beräknar det exakta (Matlabs backslash använder en uppskattning av konditionstalet) konditionstalet så ser man att det ligger på storleksordningen vilket, när dubbel precision används, betyder att matrisen kan vara singulär. Det här är ett exempel på att man inte okritiskt kan acceptera lösningar från programvaror, utan man måste ha kunskaper i hur beräkningsprogramvaror faktiskt fungerar. 9. (a) Givet att endast de två termerna skilda från 0 är behäftade med mätfel blir relativa felet i högerledet ( )( ) (b) Relativt fel i Ü är enligt känd formel högst produkten av konditionstalet och relativa felet i högerledet. Nu är enligt uppgiften ÓÒ() Tillsammans med svaret i föregående deluppgift ger detta att relativa felet i Ü är högst ca Detta är mindre än 1 % fel. (c) Om konditionstalet är 10 6 blir relativa felet i Ü högst ca Felet kan alltså vara större än 1 % i detta fall. 1

2 10. Om man utnyttjar LU-faktorisering ger det väsentligt kortare exekveringstid när vi vill lösa en följd av av ekvationssystem där alla systemen har samma koefficientmatris och de olika högerleden inte är kända samtidigt. (Det kan till exempel vara så att varje nytt högerled beror på lösningar till tidigare system i följden av ekvationssystem.) Man utför LU-faktorisering av matrisen en gång, sedan utför man framåtoch bakåtsubstitution för varje högerled. De relevanta parametrarna för att uttrycka tidsvinsten är Ñ (antalet ekvationssystem som ska lösas), Ò ( är en Ò Ò-matris) och Ø (ungefärlig exekveringstid för en flyttalsoperation). Tiden för att lösa varje nytt system med gausseliminering och bakåtsubstitution blir ca Ñ (23)Ò 3 + Ò 2 Ø. Tiden för att först göra LUfaktorisering och därefter lösa varje nytt system med framåtsubstitution och bakåtsubstitution blir ca (23)Ò 3 Ø + Ñ Ò 2 + Ò 2 Ø. Tidsvinsten då LU-faktorisering blir alltså ca (Ñ 1)(23)Ò 3 ÑÒ En tridiagonal matris har strukturen: = ¼ Ò 1 Ò 1 Ò 1 Ò Ò De underdiagonala elementen kommer att nollställas i eliminationsprocessen. Elementen på diagonalen förändras enligt = ØÓÖ 1 = 2 Ò De överdiagonala elementen förändras inte alls eftersom ½ = ØÓÖ 0 = = 2 Ò 1 Högerledet uppdateras som vanligt genom = ØÓÖ 1 = 2 Ò Vi tänker oss nu för enkelhets skull att vi lagrar diagonalerna i vektorer e, d respektive f och högerledet b. Algoritmen för Gausselimination blir då % Gausselimination av matris och högerled for k = 2:n faktor = e((k)/d(k-1) d(k) = d(k) - faktor*f(k-1): b(k) = b(k) - faktor*b(k-1); end 2

3 Sedan utförs bakåtsubstitution, där vi för varje rad Ò Ò enbart har tre element att hantera. Det blir då: 1 1 nu % Bakåtsubstitution x(n) = b(n)/d(n); for k = n-1: -1:1 x(k) = (b(k) - f(k)*x(k+1))/d(k); end 12. Se lösningsförslaget ovan. LU-faktorisering innehåller enbart elimination av koefficientmatrisen (högerledet elimineras i framåtsubstitutionen). Vi tittar alltså enbart på elimineringen av koefficientmatrisen, och i lösningen ovan sker det i de två första raderna inuti for-loopen (beräkning av faktor och av d(k)). Antalet flyttalsoperationer i dessa två rader är sammanlagt 3 (en division, en multiplikation och en subtraktion). For-loopen går Ò 1 varv så det totala antalet flyttalsoperationer för LU-faktoriseringen blir (Ò 1) 3 3Ò. 13. Sätt inledningsvis piv = 1:n. Ändra vidare i algoritmen för LU-faktorisering så att piv(k) och piv(i) används som radindex i koefficientmatrisen. När två rader ska byta plats med varandra håller vi ordning på detta genom att låta värdena piv(i) och piv(k) byta plats med varandra i piv. På så vis kommer raderna i koefficientmatrisen att bearbetas i rätt ordning (enligt radpivoteringen) utan att vi fysiskt behöver byta plats på raderna i koefficientmatrisen. 14. Operationen È ersätts av att vi tar elementen i i den ordning som anges av piv. I övrigt behövs inga förändringar av algoritmen. 3

4 Integraler 6. I uppgift 3c var steglängden 1 = 14 och diskretiseringsfelet upskattades med tredjedelsregeln till ca Absolutbeloppet av diskretiseringsfelet var alltså något mindre än , vilket innebär att integralen approximerades med en korrekt decimal. Vi söker nu steglängden 2 = (14) så att absolutbeloppet av diskretiseringsfelet blir (vilket innebär sex korrekta decimaler). Diskretiseringsfelet i trapetsmetoden är proportionellt mot 2. Det medför att när ändras med en faktor, till, så ändras felet med en faktor 2. För att lösa uppgiften ska du alltså finna det värde på som gör att = Detta ger att Den sökta steglängden är alltså ca (14) Om vi vill göra en motsvarande analys för fallet med Simpsons formel så ska vi utnyttja att diskretiseringsfelet då är proportionellt mot 4. Om vi med Simpsons formel skulle ha fått diskretiseringsfelet med steglängd 14, så skulle steglängden för att få sex korrekta decimaler bli (14) där 4 = (a) Av de metoder vi behandlat kan vi förvänta oss att Simpsons formel ger den noggrannaste lösningen. Simpsons formel tillämpad på våra data blir: É ( ) = 066 (b) Vi behöver ta hänsyn till diskretiseringsfelet och funktionsfelet. Diskretiseringsfelet kan vi uppskatta med 15-delsregeln. Då behöver vi räkna ut Simpson-värdet för steglängden 0.5: É 05 3 ( ) = 066 Diskretiseringsfelet enligt 15-delsregeln blir då: ( )15 = 0. Absolutbeloppet av funktionsfelet är enligt känd formel högst ( ), där [ ] är integrationsintervallet och är en övre gräns för felet i de enskilda funktionsvärdena. I vårt fall är = 1 0. Funktionsvärdena är enligt uppgiftstexten givna med två korrekta decimaler, så = Slutsatsen blir att funktionsfelet är högst (1 0) = Totalt blir felet summan av diskretiseringsfelet och funktionsfelet. Enligt de uppskattningar vi gjort ovan blir absolutbeloppet av det totala felet i vårt fall alltså högst ca Detta innebär att É har beräknats med ca två korrekta decimaler. 4

5 8. Vi ska först härleda 15-delsregeln. Diskretiseringsfelet vid beräkning av en integral med Simpsons metod kan skrivas som Á = Ë() + (), där Á är den exakta integralen, Ë() är den beräknade integralen med Simpsons metod och () betecknar diskretiseringsfelet. För Simpsons metod beror () av som ( (4) eller Ç( 4 ). Vi beräknar integralen med två steglängder, och 2 och får då Á = Ë() + () = Ë() + Ç( 4 ) Á = Ë(2) + (2) = Ë(2) + Ç((2) 4 ) = Ë(2) + 16Ç( 4 ) Om vi antar att (4) är ungefär lika vid beräkning med de två olika steglängderna medför det att Ë() + Ç( 4 ) Ë(2) + 16Ç( 4 ) vilket ger Ç( 4 ) vilket skulle visas. Ë(2) Ë() 15 dvs () Ë(2) Ë() 15 Förutom diskretiseringsfel införs också funktionsfel. Härledning av övre gräns för detta fel: Vi konstaterar först att det vi talar om är Ë() Ë(), där Ë() är Simpsons formel med exakta funktionsvärden och Ë() är Simpsons formel med de faktiskt använda funktionsvärdena, som kan vara behäftade med avrundnings- och/eller mätfel. Vi betecknar de exakta funktionsvärdena med (Ü) och de approximativa med (Ü). Enligt föregående uppgift är (Ü) (Ü). Vi får Ë() Ë() = 3 [((Ü 0) (Ü0 )) + 4 Triangelolikheten ger nu 2 Ò 2 =24 Ë() Ë() 3 [(Ü 0) (Ü0 ) Ò 2 =24 Ò = 3 ¼ Ò 1 =13 ((Ü ) (Ü )) + ((Ü ) (Ü )) + ((Ü Ò ) (ÜÒ ))] Ò 1 =13 (Ü ) (Ü ) + (Ü ) (Ü ) + (Ü Ò ) (ÜÒ )] = Ò 2 + 2Ò 2 2 = 3Ò = Ò 3 Ò 2 = ½ 5

6 Eftersom = ( )Ò följer nu att Ë() Ë() ( ), vilket skulle bevisas. 9. Ett allmänt förstagradspolynom har formen (Ü) = Ü. Uppgiften går ut på att bestämma 0 och 1 så att formeln i uppgiften gäller med exakt likhet för förstagradspolynom. Notera att eftersom det handlar om att härleda trapetsformeln, så betecknar Ü 0 integrationsintervallets nedre gräns,, och Ü 1 den övre gränsen,. Det vill säga 0 och 1 ska bestämmas så att: Detta kan skrivas om som ( Ü) dx = 0 ( ) + 1 ( ) 0 ( ) + 1 ( 2 2 )2 = 0 ( ) + 1 ( ) För att detta ska stämma måste = = ( 2 2 )2 I detta ekvationssystem betraktas och som givna. Genom att lösa ekvationssystemet får vi fram vi fram värden på de obekanta 0 och 1, närmare bestämt: 0 = 1 = ( )2. När vi sätter in dessa värden i formeln i uppgiften ser vi att resultatet har blivit trapetsformeln. Uppgiften visar alltså ett alternativt sätt att härleda trapetsformeln. Simpsons formel kan härledas på motsvarande vis. Den är exakt för tredjegradspolynom. 10. Givet integrationsgränserna och, antalet delintervall Ò samt en Matlab-funktion som beskriver integranden (Ü), så kan trapetsformeln implementeras på följande vis: x = linspace(a,b,n+1) fx = f(x) coeff = [1 2*ones(1,n-1) 1] trap = (b-a)/2*coeff*fx 6

7 Ickelineära ekvationer 4. Tänkbara svårigheter: Startgissning Ü 0 nära kurvans minimipunkt gör att Ü 1 hamnar långt från nollställena. Ett olyckligt val av startgissning enligt ovan kan göra att iterationsprocessen divergerar. Om man skulle råka välja minimipunkten som startgissning så blir det division med noll. Det finns två lösningar i närheten av Ü = 1, den ena mindre än och den andra större än 1. Om man är ute efter en specifik lösning och råkar välja startgissningen för långt ifrån den, så kan eventuellt få konvergens mot den andra lösningen i stället. 5. Beträffande bisektionsmetoden vet vi att den övre gränsen för absolutbeloppet av felet halveras i varje iteration. Det innebär att det krävs log 2 (10) 33 iterationer för att felet ska delas med 10 (vilket innebär att vi har fått ytterligare en korrekt decimal). I uppgift 1 gav bisektionsmetoden en lösning med en korrekt decimal. För att få 12 korrekta decimaler skulle vi alltså behöva åstadkomma ytterligare 11 korrekta decimaler, vilket skulle kräva ca iterationer. Eftersom det måste vara ett helt antal iterationer blir svaret att det krävs ytterligare 37 iterationer. Beträffande Newton-Raphsons metod vet vi att konvergenshastigheten är kvadratisk. Tumregelsmässigt kan vi då säga att när vi är nära en lösning så fördubblas antalet korrekta decimaler i varje iteration. I uppgift 1 gav Newton-Raphson en lösning med två korrekta decimaler. Efter ytterligare två iterationer kommer vi då att ha ca 8 korrekta decimaler. Sedan ger nästa iteration teoretiskt ytterligare en fördubbling av antalet korrekta decimaler. Svaret är alltså att det krävs ytterligare tre iterationer för att vi ska ha nått minst 12 korrekta decimaler. 6. Vi betraktar Ý som givet och vill beräkna Ô Ý. Första steget är att formulera en ekvation till vilken Ô Ý är en lösning. Ett naturligt val är Ü 2 Ý = 0. Vi tillämpar nu Newton-Raphsons metod på denna ekvation och får: Ü +1 = Ü (Ü 2 Ý)2Ü Efter förenkling blir detta: Ü +1 = (Ü + ÝÜ ) 2 Vi provar formeln för fallet då Ý = 3. Enligt uppgiften ska vi ha tre signifikanta siffror vilket innebär att absolutbeloppet av relativa felet 7

8 bör vara högst ca Vi uppskattar absolutbeloppet av relativa felet med (Ü Ü 1 )Ü. Med Ü 0 = 3 får vi: Ü (Ü Ü 1 )Ü Efter tre iterationer kan vi alltså säga att Ô 3 = 173 med tre signifikanta siffror. Med formeln ovan kan man få en mycket noggrann approximation av Ô Ý efter bara ett fåtal iterationer om man väljer startgissningen på ett smart vis. Om man skriver Ý 0 som ett flyttal i normaliserad form så blir Ý = Ñ 2, där 1 Ñ 2. Då kan vi konstatera att Ô Ý = Ô Ñ 2 2. Vi kan enkelt räkna ut 2 2 om är jämn. Om vi antar att 2 12 finns förberäknad och lagrad i datorn kan vi även räkna ut 2 2 för udda värden på. Vidare innebär normaliseringen att Ñ = 1 +, där 0 1. Taylorutveckling ger då att Ô Ñ Genom att sätta Ü 0 = ( ) 2 2 får vi alltså en mycket noggrann startgissning. Om vi tillämpar ovanstående på Ý = 3 får vi följande. I basen 2 är Ý = Startgissningen blir då Ü 0 = i bas 2. I bas 10 blir detta Ü 0 = Om vi itererar med detta som utgångspunkt får vi: Ü (Ü Ü 1 )Ü Observera att de två sista iterationerna gav samma resultat. I detta fall skulle det alltså ha räckt med tre iterationer för att beräkna Ô 3 mycket noggrant. Resultatet Ü 3 överensstämmer i samtliga decimaler med det resultat som operationen sqrt(3) ger i Matlab. 9. Uppskattningen är densamma som vi använde i beräkningarna i uppgift 6 ovan. Den bygger på att absoluta felet kan uppskattas med skillnaden mellan Ü och Ü 1. För att få en approximation av relativa felet dividerar man sedan approximationen av absoluta felet med Ü. Vi visar nu att Ü Ü 1 är en approximation av absoluta felet Ü Ü 1, där Ü betecknar den exakta men okända lösningen till 8

9 (Ü) = 0. Eftersom Ü är en lösning till problemet gäller att (Ü ) = 0. Det ger sambandet: (Ü 1 ) = (Ü ) (Ü 1 Nu använder vi medelvärdessatsen och får att: (Ü 1 ) = (Ü ) (Ü 1 = ¼ ()Ü Ü 1 där är en (okänd) punkt mellan Ü och Ü 1. Ur sambandet ovan följer att Ü Ü 1 = (Ü 1 ) ¼ () När vi är nära Ü är det rimligt att anta att ¼ () ¼ (Ü 1 ). Om vi sätter in detta i sambandet ovan får vi att det absoluta felet approximeras av (Ü 1 ) ¼ (Ü 1 ). Slutligen noterar vi att när Newton- Raphsons metod används så är (Ü 1 ) ¼ (Ü 1 ) = Ü Ü 1. Därmed har vi visat att Ü Ü 1 är en approximation av absoluta felet Ü Ü 1. Notera att vi i algoritmen använder denna uppskattning för att bedöma om Ü (inte Ü 1 ) är tillräckligt noggrann. Vid konvergens vet vi att noggrannheten ökar väsentligt för varje ny iteration, så felet i Ü kommer i praktiken att vara betydligt mindre än det uppskattade felet för Ü while ~(ea <= es iter >= maxit) xrold = xr; xr = xr - func(xr)/dfunc(xr); iter = iter + 1; if xr ~= 0, ea = abs((xr-xrold)/xr)*100: end end Observera att villkoret i while-loopen ovan även kan formuleras så här: eq > es & iter < maxit 11. Bedömningen av om det tentativa värdet var tillräckligt bra bör bestå av två delar: Värdet ligger fortfarande kvar i intervallet [ ] Det uppskattade felet i approximationen har minskat Båda dessa villkor bör vara uppfyllda för att det tentativa värdet ska accepteras. Det första villkoret är enkelt att testa och behöver inte motiveras närmare. Det andra villkoret förutsätter att vi har ett sätt att uppskatta felet i det tentativa värdet. Därvid kan vi exempelvis använda den feluppskattning som visades i uppgift 9 ovan. Vi utför den uppskattningen 9

10 för Ü (+1) och jämför med motsvarande uppskattning för Ü () (som vi gjorde när Ü () beräknades och som vi antar att vi har sparat i en variabel). Om denna jämförelse tyder på att Ü (+1) är noggrannare än Ü () så anser vi att det andra villkoret ovan är uppfyllt. Som teoretisk motivering för denna del kan du använda samma resonemang som i uppgift 9. 10

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Använd gausseliminering med radpivotering. Spara minnesutrymme genom att lagra både Ä och Í i den datastruktur som inledningsvis innehåller

Använd gausseliminering med radpivotering. Spara minnesutrymme genom att lagra både Ä och Í i den datastruktur som inledningsvis innehåller ÏÇÊÃÇÍÌ ÏÓÖ ÓÙØ ÍÔÔ Ø Ö Ø ÐÐ ÖĐ Ò Ò Ú Ø Ò Ô Á Ë ÔØ ¾¼½ ÁÒ Ø ØÙØ ÓÒ Ò ĐÓÖ Ò ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ Om Workout Detta häfte innehåller uppgifter som ingår i de s k workout-passen i kursen Beräkningsvetenskap I.

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!)

Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna

Läs mer

Varning!!! Varning!!!

Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

7 november 2014 Sida 1 / 21

7 november 2014 Sida 1 / 21 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

Kort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!

Kort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Lösningsförslag till tentamensskrivningen i Numerisk analys

Lösningsförslag till tentamensskrivningen i Numerisk analys Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med

Läs mer

Block 1. 5 augusti 2003 Sammanfattning 1 (11) Teknisk databehandling DV1 vt Begrepp

Block 1. 5 augusti 2003 Sammanfattning 1 (11) Teknisk databehandling DV1 vt Begrepp 5 augusti 23 Sammanfattning 1 (11) Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvgen 2 Postadress: Box 337 751 5 Uppsala Telefon: 18 471

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Kapitel 4. Iterativ lösning av ekvationer

Kapitel 4. Iterativ lösning av ekvationer Kapitel 4. Iterativ lösning av ekvationer Vi skall nu undersöka, har man löser numeriskt ekvationer av formen f(x) = 0. Dylika ekvationer kallas också olinjära, eftersom funktionen oftast har ett olinjärt

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

file:///c:/users/engström/downloads/resultat.html

file:///c:/users/engström/downloads/resultat.html M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8

Läs mer

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Feluppskattning och räknenoggrannhet

Feluppskattning och räknenoggrannhet Vetenskapliga beräkningar III 10 Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare.

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0

Läs mer

Kapitel 2. Feluppskattning och räknenoggrannhet

Kapitel 2. Feluppskattning och räknenoggrannhet Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare. Liksom vid beräkningar för hand

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t

Läs mer

8 Minsta kvadratmetoden

8 Minsta kvadratmetoden Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU MVE5-7/8 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man kan lösa system av icke-linjära ekvationer. Därefter skall vi se på optimering utan bivillkor. Vi skall

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

5.7. Ortogonaliseringsmetoder

5.7. Ortogonaliseringsmetoder 5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

3.6 De klassiska polynomens ortogonalitetsegenskaper.

3.6 De klassiska polynomens ortogonalitetsegenskaper. Vetenskapliga beräkningar III 34 3.6 De klassiska polynomens ortogonalitetsegenskaper. I nedanstående tabell anges egenskaperna för några av de vanligaste ortogonala polynomen. Polynomen är normerade så,

Läs mer

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2

Läs mer

Existens och entydighet

Existens och entydighet Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland

Läs mer

Avsnitt 4, Matriser ( =

Avsnitt 4, Matriser ( = Avsnitt Matriser W Beräkna AB då ( a A ( - b A B B ( 8 7 6 ( - - - och Först måste vi försäkra oss om att matrismultiplikationen verkligen går att utföra För att det ska gå måste antalet kolumner i den

Läs mer

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13 LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

Uppgift 1 R-S. Uppgift 2 R-M. Namn:...

Uppgift 1 R-S. Uppgift 2 R-M. Namn:... 2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag 26-3-27 Obs! Muntliga delen redovisas vid ett miniseminarium. Notera!

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12

DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12 DN11+DN114+DN115+DN140+DN141+DN143 mfl Tentamen i Grundkurs i numeriska metoder Del (av ) Lördag 01-0-04, kl 9-1 Skrivtid 3 tim. Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgräns (inkl bonuspoäng):

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

8.5 Minstakvadratmetoden

8.5 Minstakvadratmetoden 8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer