Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem"

Transkript

1 Laboration 0: Del 2 Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem I den här filen får ni en kort introduktion till hur man hanterar och räknar med matriser i R, vilket ni kommer att ha nytta av i kursens laborationsuppgifter. I kursen Statistisk analys har ni stött på datastrukturen data.frame, vilket är en sorts tabell där kolumnerna kan vara av olika typer heltal (integer) i en, decimaltal (numeric) i en annan, textsträngar (character) i en tredje, och kanske faktorer (factor) i en fjärde. Matriser är lite annorlunda: i dem måste alla kolumner och rader vara av samma typ, t.ex. numeric. Definiera matriser Ibland måste vi skapa en matris för hand, t.ex. när ni tvingas mata in en som är definierad i en bok eller en labbinstruktion. Låt säga att ni ska definiera matrisen ( ) A = i R. Det kan ni göra på följande vis: A <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE) A # visa matrisen [1,] [2,] Som första argument till funktionen matrix ger jag datan jag vill ha i matrisen; här skriver jag in vektorn c(1, 2, 3, 4, 5, 6) (som jag också kan få genom att skriva 1:6) på ett sådant sätt att man enkelt ser hur matrisen bör se ut. Jag säger att matrisen ska ha två rader med nrow och tre kolumner med ncol. Dock kommer matrisen inte se ut som jag vill om jag inte också säger till funktionen matrix att data ska fylla ut matrisen radvis (default är att fylla ut kolumnvis). Jämför med matrix(1:6, nrow = 2, ncol = 3) [1,] [2,] Ibland vill man ha en matris fylld av t.ex. ettor. En sån kan man enkelt skapa utan att behöva ange varje element var för sig. Iställer skriver man bara 1

2 ettor <- matrix(1, nrow = m, ncol = n) om man vill ha en m n-matris fylld med ettor, kallad ettor. Vill man skapa en diagonalmatris kan man göra det med funktionen diag, som i följande exempel: diag(1:3, nrow = 5, ncol = 3) [1,] [2,] [3,] [4,] [5,] Vanligare är att man skapar en kvadratisk diagonalmatris, kanske med samma värde längs hela diagonalen. Ett exempel är enhetsmatrisen: diag(1, nrow = 3, ncol = 3) [1,] [2,] [3,] Vektorer Vi är vana vid att skapa vektorer genom att t.ex. skriva c(1, 2, 3) eller 1:3. När vi skriver ut en sådan vektor ser det ut på följande vis: 1:3 [1] Om vi vill kan vi göra om en sådan vektor specifikt till en radvektor eller en kolumnvektor, genom att använda funktionen matrix. Vektorerna räknas då som matriser med en rad eller kolumn, respektive. En radvektor kan skapas genom matrix(1:3, nrow = 1) [1,] och en kolumnvektor genom matrix(1:3, ncol = 1) [,1] [1,] 1 [2,] 2 [3,] 3 2

3 Transponera matriser och vektorer Vill man transponera en matris eller vektor i R så kan man använda funktionen t, som följande exempel illustrerar: A <- matrix(1:6, nrow = 3, ncol = 2, byrow = TRUE) # 3 rader, 2 kolumner t(a) # 2 rader, 3 kolumner [1,] [2,] Detsamma gäller vektorer: radvektor <- matrix(1:3, nrow = 1) t(radvektor) [,1] [1,] 1 [2,] 2 [3,] 3 och en kolumnvektor genom kolumnvektor <- matrix(1:3, ncol = 1) t(kolumnvektor) [1,] För vektorer definierade på vanligt vis, genom t.ex. funktionen c eller :, så ser vi att transponaten av dem blir radvektorer: t(1:5) [,4] [,5] [1,] Transponerar vi dem två gånger, vilket bör ge oss det vi startade med, får vi alltså en kolumnvektor: t(t(1:5)) [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 [5,] 5 3

4 Hämta element ur matriser och vektorer (slicing) Vektorer Ibland vill man hämta ut ett eller flera element ur en vektor eller matris. Låt säga att vi har vektorn v <- 11:15 v # visa vektorn [1] Säg att vi nu vill hämta ut det första elementet i vektorn. Det kan vi göra genom att skriva v[1] [1] 11 Index för vektorer, matriser osv. börjar på 1 i R, så v[1] är det första elementet i v, v[2], är det andra, osv. Ett sätt att få det sista elementet är att skriva v[length(v)]. Vill vi hämta alla element förutom det första i v så ger vi ett negativt index: v[-1] [1] Detsamma gäller om vi vill hämta t.ex. alla förutom det första och det andra: v[-c(1, 2)] [1] Vektorn -c(1, 2) är densamma som c(-1, -2) eftersom minustecknet multipliceras in som -1 i vektorn. Akta er dock för att skriva v[-1:2] eftersom vektorn som skapas av -1:2 inte är densamma som c(-1, -2), som man kanske kan tro, utan är istället c(-1, 0, 1, 2), och att försöka köra v[-1:2] kommer att resultera i ett fel (Error). Matriser Vi kan hämta element ut matriser på liknande sätt. Har vi en matris A och skriver A[i, j] så kommer elementet på rad i och kolumn j att hämtas. Skriver vi A[c(i, k), j] så hämtas elementen på rad i och rad k, i kolumn j, som en vektor. Skriver vi A[c(i, k), c(j, m)] så får vi stället en 2 2-matris, och det går givetvis att generalisera detta till indexvektorer (som t.ex. c(i, k) ovan) av större längd än 2. Ibland vill man hämta ut en hel rad eller kolumn ur en matris som en vektor. Det kan man göra genom att lämna ett tomt index, som följande exempel illustrerar 4

5 A <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE) A # visa matrisen [1,] [2,] Hämta ut rad 2 som en vektor: A[2, ] # notera det tomma indexet för kolumner [1] Hämta ut kolumn 3 som en vektor: A[, 3] # notera det tomma indexet för rader [1] 3 6 Matrismultiplikation För att multiplicera en m n-matris A med en n k matris B så använder vi matrismultiplikationsoperatorn %*% i R, som följande exempel demonstrerar: A <- matrix(1:6, nrow = 3, ncol = 2, byrow = TRUE) B <- matrix(0:3, nrow = 2, ncol = 2, byrow = TRUE) A %*% B [,1] [,2] [1,] 4 7 [2,] 8 15 [3,] Att multiplicera med vektorer fungerar på samma vis. skriver vi t.ex. Vill vi multiplicera med en vektor på höger sida v <- 1:2 A %*% v [,1] [1,] 5 [2,] 11 [3,] 17 Vi hade fått samma resultat om vi hade definierat v <- matrix(1:2, ncol = 1). Multiplikation på vänster sida fungerar likadant: 5

6 v <- matrix(1:3, nrow = 1) # radvektor v %*% A [,1] [,2] [1,] Här hade vi alltså fått samma resultat om vi hade skrivit v <- 1:3. Ekvationssystem Vill vi lösa ekvationssystemet Ax = y, där A är en m m-matris, x är en m 1-vektor (kolumnvektor) och y är en m 1-vektor, så använder vi funktionen solve i R, som följande exempel visar: A <- matrix(1:4, nrow = 2, ncol = 2, byrow = TRUE) y <- c(-1, 3) x <- solve(a, y) x # visa lösningen [1] 5-3 Prova att lösa systemet för hand och se om du får samma lösning x. Egenvärden och egenvektorer Om A är en kvadratisk matris så kallas (det möjligen komplexa) talet λ för ett egenvärde till A om det finns en vektor v av passande längd sådan att Av = λv. Vektorn v är egenvektorn som svarar mot egenvärdet λ. Detta kanske ni minns från linjär algebra. Vi kan enkelt räkna ut egenvärden och motsvarande egenvektorer i R, genom att använda funktionen eigen. Följande exempel demonstrerar: A <- matrix(c(1, 2, 0, 3), nrow = 2, ncol = 2, byrow = TRUE) egen_lista <- eigen(a) # Funktionen returnerar en lista egen_varden <- egen_lista$values egen_vektorer <- egen_lista$vectors Det första egenvärdet är alltså egen_varden[1] [1] 3 och motsvarande egenvektor hittas i den första kolumnen av matrisen egen_vektorer: egenvektor1 <- egen_vektorer[, 1] egenvektor1 [1]

7 Egenvektorerna som funktionen eigen ger är normaliserade på sådant sätt att deras längd är lika med 1. Som ni kanske minns från linjär algebra så är en egenvektorer inte unika. Om v 1 är en egenvektor som motsvarar egenvärdet λ 1 till matrisen A, så är också cv 1 en egenvektor motsvarande samma egenvärde, för c 0. Som vi såg ovan var elementen i egenvektorn egenvektor1 identiska. Kanske det vore snyggare om vi multiplicerade/delade egenvektor1 med ett tal som gör att båda elementen tar värdet 1 istället: egenvektor1 <- egenvektor1 / egenvektor1[1] egenvektor1 [1] 1 1 Ett annat alternativ vore att låta summan av elementen i egenvektor1 vara t.ex. lika med 1. Detta kan vi åstadkomma på följande sätt: egenvektor1 <- egenvektor1 / sum(egenvektor1) egenvektor1 [1] Skriva matriser i LaTeX Följande exempel visar hur man skriver en matris i LaTeX. Du kan alltså kopiera koden nedan till ett R Markdown-dokument och sedan knitta. $$ \mathbf{p} = \begin{pmatrix} 0 & 0.25 & 0.75 \\ 0.16 & 0.01 & 0.83 \\ 0.24 & 0.47 & 0.29 \end{pmatrix} $$ Detta kommer synas som P = Vill man ha matriser med hakparenteser, dvs [ ], istället, så kan man skriva bmatrix istället för pmatrix. Övningsuppgifter Uppgift 1 Med kod, definiera matrisen A = ( 1 )

8 genom att använda funktionen matrix och matrisen ( ) 1 0 D = 0 1 genom att använda funktionen diag, och bilda sedan matrisen C = A D, där A är transponatet av A. Dubbelkolla resultatet genom att utföra uträkningen för hand. Uppgift 2 Lös följande ekvationssystem genom att definiera en matris A och en vektor y, och använda funktionen solve för att hitta lösningen (vektorn) x = (x 1, x 2, x 3 ) : 2x 1 + x 2 + 3x 3 = 1 2x 1 + 6x 2 + 8x 3 = 3 6x 1 + 8x x 3 = 5 Jämför med lösningen du får när du löser systemet för hand. Uppgift 3 Om A är en kvadratisk matris, så kan vi definiera potenser av A rekursivt genom A 1 = A och A n+1 = AA n för n > 1. Vi skulle också kunna definiera A 0 = I, där I är enhetsmatrisen. Skapa nu en funktion mpower <- function(a, n) {... } som tar som argument en (kvadratisk) matris A och ett heltal n större än (eller lika med ditt val) 0, och returnerar A upphöjt till n i överensstämmelse med definitionen ovan. OBS! Din funktion behöver dock inte vara rekursiv, som i definitionen som gavs ovan. Den kan lika gärna vara iterativ, i vilket fall du kanske behöver använda dig av någon slags loop. Prova gärna att skriva både en rekursiv och en iterativ funktion. 8

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A 1 a Bestäm de komplexa koefficienterna a, b och c så att polynomet Pz z 3 + az 2 + bz + c har nollställena

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Avsnitt 2. Matriser. Matriser. Vad är en matris? De enkla räknesätten

Avsnitt 2. Matriser. Matriser. Vad är en matris? De enkla räknesätten Avsnitt Matriser Vad är en matris? De enkla räknesätten Matrismultiplikation Produkt av en rad med en kolumn Produkt av rader med en kolumn Produkt av rader med kolumner När är matrismultiplikationen definierad?

Läs mer

Mat Grundkurs i matematik 3-II

Mat Grundkurs i matematik 3-II Mat-53 Grundkurs i matematik 3-II G Gripenberg Aalto-universitetet december Ekvationssytem och matrisräkning 3 Gauss metod, LU-uppdelning 3 Egenvärden 4 Projektioner 9 Principalkomponenter Differentialekvationssystem

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Mer om linjära ekvationssystem

Mer om linjära ekvationssystem CTH/GU LABORATION 2 TMV141-212/213 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna laboration fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

Mat Grundkurs i matematik 3-II

Mat Grundkurs i matematik 3-II Mat-1.1532 Grundkurs i matematik 3-II G. Gripenberg Aalto-universitetet 23 november 2010 1 Matriser....................... 4 Grundläggande definitioner.............. 4 LU-uppdelningen..................

Läs mer

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 734-4 3 3 För studenter på distans och campus Linjär algebra maa Skrivtid: 9:-:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II PER ALEXANDERSSON Sammanfattning. Detta är en samling kompletterande uppgifter till Linjär Algebra II för lärare. Exemplen är av varierande svårighetsgrad och

Läs mer

1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).

1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0). TM-Matematik Mikael Forsberg Linjär algebra mk4a Övningstenta LA-. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, ), x = (,, ) och x = (,, ).. För alla värden på parametern

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Algoritm, potensmetoden

Algoritm, potensmetoden Algoritm, potensmetoden Algoritm för att finna största reella egenvärde och tillhörande egenvektor till en reell matris. givet en startvektor x 0 i = 0 y i+1 = A x i x i+1 = y i+1 / y i+1 2 λ i+1 = x T

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Textsträngar från/till skärm eller fil

Textsträngar från/till skärm eller fil Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m.

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m. Fredagen 006 Avbildningar Låt A vara matrisen () = 0 0 Till varje vektor X i R får vi vid matrismultiplikationen AX en vektor i R Mera explicit, om X = x x x x är en given punkt i R, då får vi punkten

Läs mer

Kapitel 4. Programmet MATLAB

Kapitel 4. Programmet MATLAB Kapitel 4. Programmet MATLAB MATLAB (namnet härlett ur MATrix LABoratory) är ett matematikprogram baserat på matrisalgebra, som blivit mycket använt för fysikaliska och tekniska tillämpningar. Den ursprungliga

Läs mer

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Tillämpad Matematik II Övning 2

Tillämpad Matematik II Övning 2 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2010-04-06.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Skriv den funktion, draw_figure, som ritar ut en liksidig figur enligt exemplen nedan med så många hörn som anges som parameter till funktionen (den ritar

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Avsnitt 4, Matriser ( =

Avsnitt 4, Matriser ( = Avsnitt Matriser W Beräkna AB då ( a A ( - b A B B ( 8 7 6 ( - - - och Först måste vi försäkra oss om att matrismultiplikationen verkligen går att utföra För att det ska gå måste antalet kolumner i den

Läs mer

Tentamen TEN1 HI1029 2014-05-22

Tentamen TEN1 HI1029 2014-05-22 Tentamen TEN1 HI1029 2014-05-22 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Laboration i Matlab. Uppgift 1. Beskrivning

Laboration i Matlab. Uppgift 1. Beskrivning aboration i atlab Uppgifterna i denna laboration kan innehålla fsik och matematik som ni inte känner till, men det kommer ni inte att behöva för att kunna lösa uppgifterna. Uppgifterna är skrivna så att

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Lösningar till linjära problem med MATLAB

Lösningar till linjära problem med MATLAB 5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

jsp?d=&a=827474&sb2231i0=1_

jsp?d=&a=827474&sb2231i0=1_ Ingenjörsrollen Från DNs kultursidor http://www.dn.se/dnet/jsp/polopoly. jsp?d=&a=827474&sb2231i0=1_827 474 Jag läste till en examen i teknisk fysik på KTH för att jag trodde att matematiken och siffrorna

Läs mer

MATLAB - en kompakt introduktion av Tore Gustafsson

MATLAB - en kompakt introduktion av Tore Gustafsson 6.1.7 1 ÅBO AKADEMI TEKNISKA FAKULTETEN MATLAB - en kompakt introduktion av Tore Gustafsson MATLAB 1 är ett interaktivt programpaket för numeriska beräkningar. Matlab står för matrix laboratory och är

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

K 4-1. Introduktion till Egenvärden och SVD. Egenvärdesproblemet. Egenvektorn. Egenskaper

K 4-1. Introduktion till Egenvärden och SVD. Egenvärdesproblemet. Egenvektorn. Egenskaper Introduktion till Egenvärden och SVD Har detta något egenvärde? Egenvärdesproblemet Lösning till system av ODE s Egenvärdena är den viktigaste egenskapen i praktiskt taget alla dynamiska system, ofta med

Läs mer

Begrepp :: Determinanten

Begrepp :: Determinanten c Mikael Forsberg 2008 1 Begrepp :: Determinanten Rekursiv definition :: Kofaktorutveckling Låt oss börja definiera determinanten för en 1 1 matris A = (a). En sådan matris är naturligtvis bara ett vanligt

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Kapitel 15: Data/Matrix Editor

Kapitel 15: Data/Matrix Editor Kapitel 15: Data/Matrix Editor 15 Översikt över Data/Matrix Editor... 226 Översikt över list-, data- och matrisvariabler... 227 Starta en Data/Matrix Editor-session... 229 Mata in och visa cellvärden...

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Linjär algebra med MATLAB

Linjär algebra med MATLAB INGENJÖRSHÖGSKOLAN Matematik Fredrik Abrahamsson, Anders Andersson Innehåll Linjär algebra med MATLAB 1 Grundläggande begrepp 1 1.1 Introduktion...................................... 1 1.2 Genomförande

Läs mer

Föreläsning REPETITION & EXTENTA

Föreläsning REPETITION & EXTENTA Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 7 Anton Grensjö grensjo@csc.kth.se 14 oktober 2015 Anton Grensjö ADK Övning 7 14 oktober 2015 1 / 28 Översikt Kursplanering Ö6: Algoritmkonstruktion F19:

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON Sammanfattning. Detta kompendie är främst avsett som ett komplement till Tengstrands Linjär algebra med vektorgeometri, [Ten05]. Materialet innehåller

Läs mer

Matematik F Ett försök till kursmaterial

Matematik F Ett försök till kursmaterial Matematik F Ett försök till kursmaterial Olle the Greatest Donnergymnasiet, Sverige Skrivet i L A TEXε juni 005 Innehåll Inledning 4 Matematisk grammatik 5. Skriva matematik...........................

Läs mer

Uppgift 1 (vadå sortering?)

Uppgift 1 (vadå sortering?) 2011-06-08.kl.14-19 Uppgift 1 (vadå sortering?) Du skall skriva ett program som sorterar in en sekvens av tal i en vektor (en array ) enligt en speciell metod. Inledningsvis skall vektorn innehålla endast

Läs mer

Linjär algebra. Lars-Åke Lindahl

Linjär algebra. Lars-Åke Lindahl Linjär algebra Lars-Åke Lindahl 2009 Fjärde upplagan c 2009 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. v 1 Linjära ekvationssystem

Läs mer

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid:

Läs mer

Metodanrop - primitiva typer. Föreläsning 4. Metodanrop - referenstyper. Metodanrop - primitiva typer

Metodanrop - primitiva typer. Föreläsning 4. Metodanrop - referenstyper. Metodanrop - primitiva typer Föreläsning 4 Metodanrop switch-slingor Rekursiva metoder Repetition av de första föreläsningarna Inför seminariet Nästa föreläsning Metodanrop - primitiva typer Vid metodanrop kopieras värdet av en variabel

Läs mer

Algebrans fundamentalsats

Algebrans fundamentalsats School of Science and Technology SE-701 8 Örebro, Sweden Algebrans fundamentalsats Ett linjäralgebraiskt bevis Andreas Thore Örebro Universitet Akademin för naturvetenskap och teknik Matematik C, 61 75

Läs mer

Objektorienterad programmering i Java I

Objektorienterad programmering i Java I Laboration 4 Objektorienterad programmering i Java I Uppgifter: 1 Beräknad tid: 6 9 timmar Att läsa: Kapitel 7, 8 (stränghantering, arrayer och Vector) Utdelat material (paket) Syfte: Att kunna använda

Läs mer

Värmedistribution i plåt

Värmedistribution i plåt Sid 1 (6) Värmedistribution i plåt Introduktion Om vi med konstant temperatur värmer kanterna på en jämntjock plåt så kommer värmen att sprida sig och temperaturen i plåten så småningom stabilisera sig.

Läs mer

Basbyte (variabelbyte)

Basbyte (variabelbyte) Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Onsdagen 17 november 2010. Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Onsdagen 17 november 2010. Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Onsdagen 17 november 2010 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

(1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0) och (2, 2, 1, 8)

(1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0) och (2, 2, 1, 8) 1 Matematiska Institutionen KTH Tentamen på kursen SF1604 (och B1109, för D1, Mars 9, 008, kl: 9:00-14:00 Inga hjälpmedel ät tillåtna 1 poäng totalt eller mer ger minst omdömet Fx 1 poäng totalt eller

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

Motivering för programmering. F1: Introduktion, Matlabrepetition (kap. 1 2) Att kunna programmera. Interpreterat/kompilerat

Motivering för programmering. F1: Introduktion, Matlabrepetition (kap. 1 2) Att kunna programmera. Interpreterat/kompilerat F1: Introduktion, Matlabrepetition (kap. 1 2) Gemensam intro Kursinnehåll Varför programmera? Egenskaper hos Matlab Kommando-, redigerings-, arbetsplats-, tabell-, guide- och hjälpfönster, kommando-, funktions-,

Läs mer

C++ Funktioner 1. int summa( int a, int b) //funktionshuvud { return a+b; //funktionskropp } Värmdö Gymnasium Programmering B ++ Datainstitutionen

C++ Funktioner 1. int summa( int a, int b) //funktionshuvud { return a+b; //funktionskropp } Värmdö Gymnasium Programmering B ++ Datainstitutionen C++ Funktioner 1 Teori När programmen blir större och mer komplicerade är det bra att kunna dela upp programmet i olika delar som gör specifika saker, vilket kan göra programmet mer lättläst. Ett sätt

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:

Läs mer

4 Sammansatta datatyper

4 Sammansatta datatyper 4 Sammansatta datatyper De enkla datatyper som vi hittills använt är otillräckliga när man ska hantera stora datamängder. Vill man exempelvis läsa in 100 reella mätvärden, som man tillfälligt vill spara

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design 1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll

Läs mer

Effektiva Lagringsmetoder för Glesa Matriser

Effektiva Lagringsmetoder för Glesa Matriser DEGREE PROJECT, IN COMPUTER SCIENCE, FIRST LEVEL STOCKHOLM, SWEDEN 2015 Effektiva Lagringsmetoder för Glesa Matriser DANI POTRUS KTH ROYAL INSTITUTE OF TECHNOLOGY www.kth.se Effektiva Lagringsmetoder för

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Grundläggande kommandon

Grundläggande kommandon Allmänt om Matlab Utvecklades på 70-talet som ett lättanvänt gränssnitt till programbiblioteken LINPACK (linjär algebra) och EISPACK (egenvärdesproblem), ursprungligen skrivna i Fortran. En kommersiell

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

Föreläsning M: Introduktion till MATLAB

Föreläsning M: Introduktion till MATLAB Föreläsning M: Introduktion till MATLAB (Föreläsningen är gjord för kursen TDDD87 som har ett litet MATLAB-moment instucket emellan Ada-laborationer. Studenterna känner till, variabler, satser, typer,

Läs mer

Datorlära 3 Octave Workspace ovh mijlö Skriva text på skärmen Värdesiffror Variabler och typer Strängar Makro Vektorer

Datorlära 3 Octave Workspace ovh mijlö Skriva text på skärmen Värdesiffror Variabler och typer Strängar Makro Vektorer Datorlära 1 Introduktion till datasystemet, epost konto, afs hemkonto Introduktion till datorer och datasalar Open Office Calculator Beräkningar med Open Office Calc Diagram med OO Calc Datorlära 2 Utforma

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013 TILLÄMPAD LINJÄR ALGEBRA, DN123 1 DN123 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 213 Skrivtid: 8-13 Tillåtna hjälpmedel: inga Examinator: Anna-Karin Tornberg Betygsgränser: Betyg A B C D E

Läs mer