4.3. Programmering i MATLAB

Storlek: px
Starta visningen från sidan:

Download "4.3. Programmering i MATLAB"

Transkript

1 4.3. Programmering i MATLAB MATLAB används ofta interaktivt, dvs ett kommando som man skriver, kommer genast att utföras, och resultatet visas. Men MATLAB kan också utföra kommandon som lagrats i filer, kallade M-filer. Vi har redan tidigare stött på M-filer som används för att lagra funktionsdefinitioner. En M-fil innehåller i allmänhet vanliga MATLAB-kommandon, och möjligen referenser till andra M-filer. Filer som innehåller MATLAB-kommandon kallas vanligen skriptfiler, och de kan alstras med ett vanligt editeringsprogram (t.ex. emacs) eller ordbehandlingsprogram. Också från kommandofönstret i MATLAB kan man starta en editor, t.ex. med kommandot!xemacs. Javaversionen av MATLAB har dessutom en inbyggd editor. En M-fil är en fil som har extensionen.m. I MATLAB-systemet ingår ett antal på förhand definierade M-filer, såsom t.ex. demo.m. För att se vilka filer som finns definierade, använder man kommandot what. Alternativt kan man också använda dir. Det finns också några andra filkommandon i MATLAB, såsom cd, delete och type, som fungerar som motsvarande DOS-kommandon. Med kommandot path får man redan på vilka skivkataloger MATLAB söker igenom för att uppsöka M-filer. Introduktion till vetenskapliga beräkningar I, Tom Sundius

2 Om man vill tillägga någon katalog till listan, kan man använda kommandona p = path; path(p, d:\matlab ); Samma effekt ger också kommandot addpath d:\matlab. För att läsa in data från en fil kan man använda kommandot load, t.ex. load fname, som läser in filen fname.mat i formatet m rader med n tal i varje rad och lagrar dem som en m n matris med namnet fname. Det finns också ett kommando save för att lagra data i en skivfil. Mera information om sådana kommandon får man med MATLABs help-kommando. Observera, att load och save normalt använder ett binärt format, som inte går att läsa med ett textediteringsprogram. Med optionen -ascii går det att behandla vanliga textfiler. Man kan alltså skriva en matris x i en fil x.dat med en editor, och därpå läsa in den i Matlab med load -ascii x.dat. MATLAB innehåller ett antal kommandon, som gör det möjligt att använda det som ett programmeringsspråk. Sålunda finns det t.ex. villkorssatser och slingor, som påminner om motsvarande kommandon i Pascal, C och Fortran. Vi skall nämna ett antal av dem och illustrera med exempel. Introduktion till vetenskapliga beräkningar I, Tom Sundius

3 För att göra ett val i MATLAB används if-kommandot, som allmänt kan uttryckas if logiskt uttryck andra kommandon Kommandon, som följer efter if, utförs ast om det logiska uttrycket är sant. Ett logiskt uttryck är oftast en relation av den allmänna formen <aritmetiskt uttryck><relationsoperator><aritmetiskt uttryck>. Det finns sex olika relationsoperatorer: Operator betydelse > större än >= större eller lika med < mindre än <= mindre eller lika med == lika med ~= inte lika med Exempel på sådana relationer är t.ex. a == 0 och x <= 1. Mer komplicerade logiska uttryck får man genom att binda ihop relationer med de logiska operatorerna & (och) (eller) och ~ (negation). Introduktion till vetenskapliga beräkningar I, Tom Sundius

4 Exempel på sådana uttryck är x < 2 & x> 0 och x + y >1 x<y, som är sanna om x = 1 och y = 1, men falska om x = 0 och y = 0. Ett logiskt uttryck kan också definieras som en variabel, t.ex. test = x - y < eps, som sedan kan användas i en if-konstruktion (eps är ett litet tal, som anger relativ noggrannhet): test = x - y < eps if ~test z = x + y Detta betyder alltså, pga negationsoperatorn, att instruktionen efter if kommandot utförs, om testvillkoret inte är uppfyllt. Ett sådant if-kommando kan också skrivas på en rad (om det är kort), men det blir lättare att förstå om man använder flera rader. Som ett exempel skall vi se på en del av ett MATLAB-program, som stryker den första kolumnen i en matris, om alla kolumnens element är noll: Introduktion till vetenskapliga beräkningar I, Tom Sundius

5 >> a=[0:4; 0:4; 0:4; 0:4] a = >> if a(:,1) == 0 a = a(1:4, 2:5) a = Introduktion till vetenskapliga beräkningar I, Tom Sundius

6 if-kommandot kan också kombineras med kommandona else och elseif. Sålunda anger t.ex. if logiskt uttryck instruktioner 1 else instruktioner 2 att kommandona i instruktioner 1 utförs om det logiska uttrycket är sant, medan kommandona i instruktioner 2 utförs om det logiska uttrycket är falskt. I kommandosekvensen if logiskt uttryck 1 instruktioner 1 elseif logiskt uttryck 2 instruktioner 2 kommer kommandona i instruktioner 1 att utföras om logiskt uttryck 1 är sant, medan kommandona i instruktioner 2 kommer att utföras ifall logiskt uttryck 1 är falskt och logiskt uttryck 2 är sant. Observera, att elseif måste skrivas som ett ord. Introduktion till vetenskapliga beräkningar I, Tom Sundius

7 För att upprepa en följd av programinstruktioner har MATLAB två kommandon, nämligen for och while. Med hjälp av dessa kommandon kan man konstruera slingor. En for-slinga kan uttryckas allmänt på följande sätt: for variabel = uttryck instruktioner I likhet med if-kommandot, kan också for-kommandot skrivas på en rad. I slingkonstruktionen ovan anger variabeln en slingvariabel, som tillordnas ett begynnelsevärde, tillskott och slutligt värde som anges av uttrycket till höger. Vanligen används en kolonbeteckning för att ange detta uttryck, t.ex. i:2:j. Som ett enkelt exempel på en for-slinga skall vi betrakta följande kommandosekvens n = 10; t= 1/(i+j-1) ; for i = 1:n for j = 1:n a(i,j) = eval(t); Introduktion till vetenskapliga beräkningar I, Tom Sundius

8 Programmet beräknar en Hilbert-matris av tionde ordningen, vars element ges av formeln A ij = 1 i+j 1. Här anges ett godtyckligt element i matrisen av strängen t, som beräknas (evalueras) med kommandot eval. Observera, att kommandosekvensen innehåller två slingor innanför varandra. Med kommandot while kan man upprepa instruktioner så länge som ett givet logiskt uttryck är sant. Kommandosekvensen avslutas av, liksom for: while logiskt uttryck instruktioner I likhet med for-slingor, kan man också placera while-slingor innanför varandra: while logiskt uttryck 1 instruktioner 1 while logiskt uttryck 2 instruktioner 2 instruktioner 3 Introduktion till vetenskapliga beräkningar I, Tom Sundius

9 Ett enkelt exempel på en while-slinga är följande, som för ett givet tal a beräknar och skriver ut det minsta ickenegativa heltalet n, som uppfyller villkoret 2 n a: n = 0; while 2^n < a n = n + 1; n Som ett annat exempel skall vi se på följande programfragment, som beräknar en serieutveckling för logaritmfunktionen ur formeln X ( 1) i+1 x i ln(1 + x) = : i i=1 lnsum = 0; x = 0.5; i = 1; while abs((x^i)/i) >= eps lnsum = lnsum + ((-1)^(i+1))*((x^i)/i); i = i + 1; >> format long >> lnsum, i-1 Introduktion till vetenskapliga beräkningar I, Tom Sundius

10 lnsum = ans = 46 Detta resultat stämmer väl överens med det exakta värdet av ln 1.5: >> ln = log(1.5) ln = Vi har redan tidigare använt oss av funktionsrutiner i MATLAB. Med hjälp av dem kan användaren definiera sina egna funktioner. Låt oss anta att vi behöver en funktion som utför heltalsdivision. Vi kan då editera en fil, som vi kallar t.ex. div.m: function y = div(n,d); % Heltalsdivision: % Ett exempel på en enkel funktionsrutin: % n = rem(n,d) + y.*d, där rem beräknar resten y = (n-rem(n,d))/d; Introduktion till vetenskapliga beräkningar I, Tom Sundius

11 Funktionsfiler börjar alltid med kommandot function. Observera användningen av %-tecknet för att skriva kommentarer, som förklarar användningen. En utskrift av dessa kommentarer får man med MATLABkommandot help div. Denna funktion kan användas som vilken annan MATLAB-funktion som helst: >> div(4711,5) ans = 942 >> div(511,4) ans = 127 Ett annat exempel på en funktionsfil är ett litet program, som räknar ut en funktionstabell. Låt oss kalla filen functab.m: Introduktion till vetenskapliga beräkningar I, Tom Sundius

12 function Y = Functab(f,a,b,k) % Evaluates a scalar function in [a,b] % at the values x(j) = a + j*k. % The result is a table containing % x-values and f(x) for those x-values. x = a:k:b; z = feval(f,x); Y = [x; z] ; Här har använts kommandot feval med vilket man kan beräkna funktionsvärden. Funktionen är angiven som en sträng f. Programmet kan t.ex. användas på följande sätt för att beräkna en sinustabell: >> tab = Functab( sin,-1,1,0.25); >> tab tab = Introduktion till vetenskapliga beräkningar I, Tom Sundius

13 En funktionsrutin kan också ge ut flera argument. Som ett exempel skall vi se på en rutin stat.m, som beräknar medeltalet och standardavvikelsen av en serie tal: function [medel, stav] = stat(x) % STAT - Medeltal och standardavvikelse % Om x är en vektor, så ger stat(x) medeltalet % [medel, stav] = stat(x) ger både medeltal och standardavvikelse % Om x är en matris, så opererar stat(x) på kolumnerna [m n] = size(x); if m == 1 m = n; % behandlar en radvektor medel = sum(x)/m; stav = sqrt((sum(x.^2) - m*medel.^2)/(m-1)); Observera den inbyggda MATLAB-funktionen size, som beräknar antalet rader och kolumner i argumentmatrisen. Funktionen stat går att tillämpa både på vektorer och matriser, såsom framgår av följande exempel: >> x = [ ]; >> stat(x) ans = Introduktion till vetenskapliga beräkningar I, Tom Sundius

14 >> [x1, x2] = stat(x) x1 = x2 = >> x = [ ] x = >> [x1, x2] = stat(x) x1 = x2 = Introduktion till vetenskapliga beräkningar I, Tom Sundius

15 Som ett exempel på en något mera komplicerad funktionsfil, skall vi studera ett program, som löser en tredjegradsekvation enligt Cardanos metod. Denna metod, som beskrevs av Girolamo Cardano i Ars Magna år 1545, upptäcktes ursprungligen av Scipione del Ferro och Nicolo Tartaglia i början av 1500-talet. function x = cardan(a,b,c) % CARDAN - lösning av en tredjegradsekvation % x^3 + a x^2 + b x + c = 0 % enligt Cardano % % Konstruktion av hjälpstorheter: p = b-a^2/3; q = c-a*b/3 + 2*a^3/27; r=(q/2)^2 + (p/3)^3; % Tre olika fall behandlas: if r > 0 u = -q/2 + sqrt(r); u = sign(u)*(abs(u))^(1/3); v = -q/2 - sqrt(r); v = sign(v)*(abs(v))^(1/3); x = [u+v-a/3 -(u+v)/2-a/3+i*sqrt(3)*(u-v)/2 -(u+v)/2-a/3-i*sqrt(3)*(u-v)/2]; elseif r < 0 % i detta fall är p<0 u = -q/2 + i*sqrt(-r); v = 2*sqrt(-p/3); x = [v*cos(angle(u)/3)-a/3 v*cos(angle(u)/3+2*pi/3)-a/3 v*cos(angle(u)/3+4*pi/3)-a/3]; else % r=0 u = sign(q)*(abs(q)/2)^(1/3); x = [-2*u-a/3 u-a/3 u-a/3]; Introduktion till vetenskapliga beräkningar I, Tom Sundius

16 I programmet uppdelas lösningen på tre fall, beroe på värdet av uttrycket r = ( q 2 )2 + ( p 3 )3. Om detta uttryck är negativt, beror alla rotuttryck av ett komplext tal u, trots att tredjegradsekvationens alla rötter är reella. Funktionen angle(u) ger fasvinkeln för u, dvs φ i u = re iφ. Detta fall, som kallas för casus irreducibilis, studerades av Rafael Bombelli år 1572 och ledde till upptäckten av de komplexa talen. Nedan visas lösningen av Cardanos ekvation x 3 + 6x = 20 enligt denna metod: >> x=cardan(0,6,-20) x = i i >> x.^3+6*x ans = i i Man kan också skriva programfiler, som används interaktivt. Följande exempel visar ett program draw.m som kan användas för att upprita grafen av en funktion, som anges av användaren (observera, att programmet behöver åtminstone MATLAB 4.2): Introduktion till vetenskapliga beräkningar I, Tom Sundius

17 % Ett program som ritar funktioner % och skriver förklarande text disp ( Detta program ritar f(x) inom intervallet [a,b] ); % Läs input: ftext = input( Ange en funktion, t.ex. sin(x) :, f ); a = input( Ange nedre gränsen : ); b = input( Ange övre gränsen : ); % Rita funktionen : clf; fplot(ftext, [a b]); Kommandot disp används för att skriva text på skärmen, medan input läser in ett värde eller en textsträng (som i det första fallet, där f ingår i kommandot, varigenom namnet på funktionen inte behöver omges med apostrofer), och samtidigt skriver ut en text. Kommandot clf anger här att bilden töms innan den ritas på nytt. Programmet startas genom att skriva draw, varpå man kan kommunicera med programmet t.ex. på följande sätt: Introduktion till vetenskapliga beräkningar I, Tom Sundius

18 Detta program ritar f(x) inom intervallet [a,b] Ange en funktion, t.ex. sin(x) : 2.*exp(-x)*cos(x) Ange nedre gränsen : 0 Ange övre gränsen : 2*pi Bilden ser i detta fall ut på följande sätt: Introduktion till vetenskapliga beräkningar I, Tom Sundius

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik

Läs mer

2.4. Teckensträngar och logiska uttryck

2.4. Teckensträngar och logiska uttryck 2.4. Teckensträngar och logiska uttryck I Fortran sparar man text i variabler av typen CHARACTER. För varje tecken reserveras normalt 1 byte i minnet. För att deklarera en teckenvariabel TEXT och samtidigt

Läs mer

Du kan söka hjälp efter innehåll eller efter namn

Du kan söka hjälp efter innehåll eller efter namn Du kan söka hjälp efter innehåll eller efter namn Skalärer x = 2 y = 1.234 pi, inf Ex: Skriver du >> x+100*pi Så blir svaret ans = 316.1593 (observera decimalpunkt.) Vektorer v = [1 2 3 4] radvektor u

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB Introduktion till MATLAB Om laborationen Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker verkar för lätt

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Version för IT-programmet Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska

Läs mer

MATLAB övningar, del1 Inledande Matematik

MATLAB övningar, del1 Inledande Matematik MATLAB övningar, del1 Inledande Matematik Övningarna på de två första sidorna är avsedda att ge Dig en bild av hur miljön ser ut när Du arbetar med MATLAB. På de följande sidorna följer uppgifter som behandlar

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

MATLAB - en kompakt introduktion av Tore Gustafsson

MATLAB - en kompakt introduktion av Tore Gustafsson 6.1.7 1 ÅBO AKADEMI TEKNISKA FAKULTETEN MATLAB - en kompakt introduktion av Tore Gustafsson MATLAB 1 är ett interaktivt programpaket för numeriska beräkningar. Matlab står för matrix laboratory och är

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

Motivering för programmering. F1: Introduktion, Matlabrepetition (kap. 1 2) Att kunna programmera. Interpreterat/kompilerat

Motivering för programmering. F1: Introduktion, Matlabrepetition (kap. 1 2) Att kunna programmera. Interpreterat/kompilerat F1: Introduktion, Matlabrepetition (kap. 1 2) Gemensam intro Kursinnehåll Varför programmera? Egenskaper hos Matlab Kommando-, redigerings-, arbetsplats-, tabell-, guide- och hjälpfönster, kommando-, funktions-,

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna

Läs mer

4.4. Mera om grafiken i MATLAB

4.4. Mera om grafiken i MATLAB 4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den

Läs mer

Programmering i Matlab

Programmering i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Programmering i Matlab Redan i den första introduktionen var det ett par enkla programmeringsexempel. Ni skrev ett script eller skriptfil som beräknade summan

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner

KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner KPP053, HT2016 MATLAB, Föreläsning 1 Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner MATLAB Väletablerat Mycket omfattande program GNU OCTAVE Öppen

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 4 december 2015 Sida 1 / 26

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 4 december 2015 Sida 1 / 26 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 4 december 2015 Sida 1 / 26 Föreläsning 7 Textsträngar. Formatterade utskrifter. Filhantering. Seminarieuppgiften.

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program Dagens föreläsning Programmeringsteknik för Ingenjörer VT05 Föreläsning 3-4 Repetition Datatyper Uttryck Operatorer Satser Algoritmer Programmeringsteknik VT05 2 Repetition Repetition - Programmering i

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 6. Text och filer 1 Textsträngar Uppgift 1.1 Skapa en sträng som innehåller texten: kommer du snart?. Använd length för att kontrollera hur många

Läs mer

Matlabföreläsningen. Lite mer och lite mindre!

Matlabföreläsningen. Lite mer och lite mindre! Inmatning: Här är lite exempel på inmatning i Matlab: >> pi 3.1416 >> format long >> ans 3.141592653589793 Matlabföreläsningen Lite mer och lite mindre! >> format %återställer format (%- tecknet gör att

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Enklast att skriva variabelnamn utan ; innehåll och variabelnamn skrivs ut

Enklast att skriva variabelnamn utan ; innehåll och variabelnamn skrivs ut F5: Filhantering in- och utmatning (kap. 2 och 8) 1 Utskrift på skärm, inläsning från tangentbord (kap. 2) Spara och hämta variabler med save och load (kap. 2) Kommandot textread Mer avancerad filhantering:

Läs mer

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3 Börja programmera Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner Läs inte avsnitt 4.2.3 2010-09-23 Datorlära, fysikexperiment - del 4 1 Jämförande uttryck 2010-09-23

Läs mer

TANA81: Simuleringar med Matlab

TANA81: Simuleringar med Matlab TANA81: Simuleringar med Matlab - Textsträngar och Texthantering. - Utskrifter till fil eller skärm. - Exempel: Slumptal och Simulering. - Exempel: Rörelseekvationerna. - Vanliga matematiska problem. Typeset

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv Datorlära 6 Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv 1 Arbeta med Strängar Strängar skapas med text inom citattecken, enkla eller dubbla.!>> str=

Läs mer

Introduktion till MATLAB Föreläsning 1

Introduktion till MATLAB Föreläsning 1 Introduktion till MATLAB Föreläsning 1 FY021G Ingenjörsvetenskap Magnus.Eriksson@miun.se Reviderad 2007-09-23 1 Dagens agenda MATLAB - vad ska det vara bra för? Arrayer, matriser och vektorer Manipulation

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Programmeringsteknik med C och Matlab

Programmeringsteknik med C och Matlab Programmeringsteknik med C och Matlab Kapitel 2: C-programmeringens grunder Henrik Björklund Umeå universitet Björklund (UmU) Programmeringsteknik 1 / 32 Mer organisatoriskt Imorgon: Datorintro i lab Logga

Läs mer

i LabVIEW. Några programmeringstekniska grundbegrepp

i LabVIEW. Några programmeringstekniska grundbegrepp Institutionen för elektroteknik Några programmeringstekniska grundbegrepp 1999-02-16 Inledning Inom datorprogrammering förekommer ett antal grundbegrepp som är i stort sett likadana oberoende om vi talar

Läs mer

16 Programmering TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5

16 Programmering TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 16 Programmering Skriva program till TI-86... 214 Köra program... 221 Arbeta med program... 223 Hämta och köra assemblerprogram... 226 Arbeta med strängar... 227 TI -86 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 214

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Visual Basic, en snabbgenomgång

Visual Basic, en snabbgenomgång Visual Basic, en snabbgenomgång Variabler och Datatyper En variabel är som en behållare. Olika behållare passar bra till olika saker. I Visual Basic(härefter VB) finns olika typer av behållare för olika

Läs mer

Numeriska Metoder och Grundläggande Programmering för P1, VT2014

Numeriska Metoder och Grundläggande Programmering för P1, VT2014 Numeriska Metoder och Grundläggande Programmering för P1, VT2014 Föreläsning 5: Filhantering i Matlab Mer om datatyper: celltabeller, gles lagring (Kap. 7 & 8 i MATLAB Programming for Engineers, S. Chapman)

Läs mer

Textsträngar från/till skärm eller fil

Textsträngar från/till skärm eller fil Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas DN1212, Numeriska metoder & grundläggande programmering för P1. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas Introduktion till UNIX och MATLAB Del 1: UNIX och

Läs mer

3.3. Symboliska matematikprogram

3.3. Symboliska matematikprogram 3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.

Läs mer

Kapitel 16: Programmering

Kapitel 16: Programmering Kapitel 16: mering Innehåll Komma igång: Volymen av en cylinder...2 Skapa och ta bort program...4 Skriva instruktioner och köra program...5 Redigera program...6 Kopiera och byta namn på program...7 PRGM

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Språket Python - Del 1 Grundkurs i programmering med Python

Språket Python - Del 1 Grundkurs i programmering med Python Hösten 2009 Dagens lektion Ett programmeringsspråks byggstenar Några inbyggda datatyper Styra instruktionsflödet Modulen sys 2 Ett programmeringsspråks byggstenar 3 ETT PROGRAMMERINGSSPRÅKS BYGGSTENAR

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

KPP053, HT2015 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner

KPP053, HT2015 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner KPP053, HT2015 MATLAB, Föreläsning 1 Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner MATLAB Väletablerat Mycket omfattande program GNU OCTAVE Öppen

Läs mer

TMV156/TMV155E Inledande matematik E, 2009

TMV156/TMV155E Inledande matematik E, 2009 TMV156/TMV155E Inledande matematik E, 2009 DATORÖVNING 2 PÅ VÄG MOT PROGRAMMERING Instruktioner Skapa en ny filkatalog ( directory ) Lab2 för denna övning. Gör alltid uppgifterna i script-filer eller funktionsfiler.

Läs mer

Introduktion till programmering. Undervisning. Litteratur och examination. Lärare. Föreläsning 1

Introduktion till programmering. Undervisning. Litteratur och examination. Lärare. Föreläsning 1 Kursinfo Introduktion till programmering Undervisning Föreläsning 1 Kursinformation Inloggning, filsystem, kommandotolk några inledande exempel Föreläsningar Fem föreläsningar, vardera 45 minuter. Allmänna

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning läsvecka 3 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/39 Denna föreläsning (läsvecka 3) Matematisk modellering - fördjupning Modelleringsexempel

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB DN1240, Numeriska metoder för O1. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB Del 1: UNIX och kontoadministration Uppgift 1.1 Ni bör jobba

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi.

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi. Grundläggande programmering 4 stefan@it.uu.se - Huvudprogram och underprogram - Egna funktioner - Olika typer av fel - Lite om effektiv programmering Exempel att testa Programmen för några vardagsproblem

Läs mer

Kapitel 4. Programmet MATLAB

Kapitel 4. Programmet MATLAB Kapitel 4. Programmet MATLAB MATLAB (namnet härlett ur MATrix LABoratory) är ett matematikprogram baserat på matrisalgebra, som blivit mycket använt för fysikaliska och tekniska tillämpningar. Den ursprungliga

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1.

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. Laboration 0 del 1-3 (frivilliga delar) Del 1-3 (dvs upg

Läs mer

SF1546, Numeriska Metoder för O1 Lab0 - frivillig. (dvs uppgifterna behöver inte redovisas!)

SF1546, Numeriska Metoder för O1 Lab0 - frivillig. (dvs uppgifterna behöver inte redovisas!) SF1546, Numeriska Metoder för O1 Lab0 - frivillig. (dvs uppgifterna behöver inte redovisas!) Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns

Läs mer

Kursinnehåll. Introduktion till kursen. Hederskodex. Programmering

Kursinnehåll. Introduktion till kursen. Hederskodex. Programmering DN1212 för P1 Föreläsning 1 Introduktion till kursen De flesta av er kommer att i ert arbete göra en massa tekniska beräkningar För dessa beräkningar behöver ni ett smidigt verktyg så att ni slipper att

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

MATLAB handbok Introduktion

MATLAB handbok Introduktion Department of Physics Umeå University 30 juni 2014 MATLAB handbok Introduktion Marina Wallin Martin Hansson Per Sundholm 1 INTRODUKTION TILL MATLAB 1 1 Introduktion till Matlab Något man som Teknisk fysiker

Läs mer

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program Dagens föreläsning Programmeringsteknik för Ingenjörer VT05 Föreläsning 3-4 Repetition Datatyper Uttryck Operatorer Satser Algoritmer Programmeringsteknik för ingenjörer, VT06 2 Repetition Repetition -

Läs mer

Allmänt om Mathematica

Allmänt om Mathematica Allmänt om Mathematica Utvecklades av Wolfram Research (Stephen Wolfram) på 80-talet Programmet finns bl.a. till Windows, Mac OS X, Linux. Finns (åtminstone) installerat i ASA B121 (Stansen), i matematik

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB stefan@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Exempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer

1.2 Polynomfunktionens tecken s.16-29

1.2 Polynomfunktionens tecken s.16-29 Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

Tentamen för kursen TME135 Programmering i Matlab för M1

Tentamen för kursen TME135 Programmering i Matlab för M1 Tentamen för kursen TME135 Programmering i Matlab för M1 Tid: 18 oktober 2011 kl 8:30-12:30 Lärare: Håkan Johansson, mobil: 0739-678 219, kontor: 772 8575 Tillåtna hjälpmedel: P. Jönsson: MATLAB-beräkningar

Läs mer

f(a + h) = f(a) + f (a)h + f (θ) 2 h2, θ [a, a + h]. = f(a+h) f(a)

f(a + h) = f(a) + f (a)h + f (θ) 2 h2, θ [a, a + h]. = f(a+h) f(a) Vi skall nu se, hur man kan beräkna numeriska derivator. Antag att vi vill beräkna derivatan av f(x) i en punkt x = a, och att dess Taylor utveckling kring denna punkt är f(a + h) = f(a) + f (a)h + f (θ)

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström STOCKHOLMS UNIVERSITET 2001-10-22 MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström GRUNDLÄGGANDE MATLAB-TRÄNING för den som aldrig har arbetat med Matlab förut A. Matlabs allmänna

Läs mer

Multipel tilldelning. Introduktion till programmering D0009E. Föreläsning 6: Iteration. while-satsen. Kom ihåg. Snurror kontra rekursion

Multipel tilldelning. Introduktion till programmering D0009E. Föreläsning 6: Iteration. while-satsen. Kom ihåg. Snurror kontra rekursion Introduktion till programmering D0009E Föreläsning 6: Iteration Multipel tilldelning Helt ok att tilldela en variabel flera gånger: bruce = bruce, bruce = 7 bruce Output: 7 Som tillståndsdiagram: bruce

Läs mer

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek De åtta primitiva typerna Java, datatyper, kontrollstrukturer Skansholm: Kapitel 2) Uppsala Universitet 11 mars 2005 Typ Innehåll Defaultvärde Storlek boolean true, false false 1 bit char Tecken \u000

Läs mer