Kombinatorik. Författarna och Bokförlaget Borken, Kombinatorik - 1

Storlek: px
Starta visningen från sidan:

Download "Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1"

Transkript

1 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13 Facit.16 Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran Författarna och Bokförlaget Borken,

2 Teori Multiplikationsprincipen Om du vill ha både en grönsaksrätt och en potatisrätt på Blaise Bistro så kan var och en av fem grönsaksrätter kombineras med en av fyra potatisrätter. Alltså blir det totala antalet val 5 4 = 20. Om man skall göra två val där det första kan utföras på n 1 olika sätt och det andra på n 2 olika sätt (efter det att det första utförts) så har man totalt n 1 n 2 valmöjligheter. Om det finns ytterligare val n 1 n 2 n 3..n k så har man totalt n 1 n 2 n 3.. n k valmöjligheter G1.1 Du har tänkt köpa en ny bil och kan välja mellan tre modeller av en Volvo samt fyra olika färger. Hur många valmöjligheter har du totalt? G1.2 Du vill ha både en grönsaksrätt, en potatisrätt och dessert på Blaise Bistro. Det finns tre sorters desserter. På hur många olika sätt kan du beställa en måltid? G1.3 Registreringsskyltarna i Sverige har tre bokstäver och tre siffror. Antag vidare att man bara använder sig av 25 bokstäver. Hur många skyltar finns det om a) alla tecken får upp upprepas, b) varje tecken bara får användas en gång? G1.4 Adrian har 6 par strumpor, 2 par långbyxor och 3 T-shirts. På hur många olika sätt kan han klä sig i dessa plagg? G1.5 Ett hexadecimalt tal kan skrivas med siffrorna : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. På hur många sätt kan ett sådant tal skrivas med 3 siffror eller färre? G1.6 Henri tippar en stryktipsrad på måfå. På hur många olika sätt kan han tippa en rad? G1.7 Morsealfabetet består av två olika signaler, en kort och en lång. Dessa sätts samman till en signalföljd som får vara högst fem signaler lång. Hur många morsesignaler kan man åstadkomma? 2

3 G1.8 Vilken är sannolikheten för att man får tre hjärter om man drar tre kort ur en kortlek och efter varje dragning lägger tillbaks g kortet? (I modulen Sannolikhetslära ges formeln P= ) m Teori Permutationer Exempel 1 Bostadsrättsföreningen Ekorren skall välja en styrelse bestående av ordförande, vice ordförande, sekreterare och ytterligare en ledamot. Av föreningens 9 medlemmar kan alla tänka sig att ingå i styrelsen. På hur många olika sätt kan styrelsen sättas samman? Lösning Ordförande kan väljas på 9 olika sätt, därefter kan vice ordförande väljas på 8 olika sätt, sekreteraren på 7 olika sätt och till slut den siste ledamoten på 6 olika sätt. Enligt multiplikationsprincipen kan styrelsen väljas på = 3024 olika sätt. Exempel 2 Samma bostadsrättsföreningen skall året därpå välja en ny styrelse och nu kan endast 4 av föreningens medlemmar tänka sig att ingå i styrelsen. På hur många olika sätt kan styrelsen sättas samman? Enligt den generaliserade multiplikationsprincipen kan styrelsen väljas på = 24 olika sätt. Definition Om n är ett positivt heltal så definieras n! (n-fakultet) enligt n! = n(n-1)(n-2) 2 1. Vi definierar vidare 0! =1 I det första exemplet kan vi skriva = ! 9! = 9876 = = = ! (9 4)! Definition Antag att vi har n objekt. (i) Varje ordnad uppräkning av alla n objekt kallas en permutation. (ii) Varje ordnad uppräkning av k st av dessa n objekt kallas en permutation av ordning k. Antalet permutationer av ordning k (av våra n objekt) där 1 k n n! ges av funktionen P(n, k) = (n - k)! 3

4 Antag att a, b och c är tre objekt. Alltså är abc, acb, bac, bca, cab och cba de sex permutationerna P(3, 3) av ordning 3 och ab, ac, ba, bc, ca och cb de sex permutationerna P(3, 2)av ordning 2 och a, b och c de tre permutationerna P(3, 1) av ordning 1. G1.9 Hur många ord med olika bokstäver kan man bilda med bokstäverna N, I, L och S? G1.10 Beräkna P(7, 2). G1.11 Hur många ord kan man bilda genom att ta ut tre bland bokstäverna N, I, L och S? G1.12 En lärare skall testa sina elever på ordkunskap rörande 8 olika ord. På hur många olika sätt kan han skriva dessa 8 ord i följd? G1.13 En palindrom är ett ord som ser likadant ut både framlänges och baklänges som t ex ajabaja. Hur många palindromer med sex bokstäver kan man bilda om ingen bokstav får användas mer än två gånger? G1.14 Visa att P(n, n) = P(n, n-1) a) På hur många sätt kan siffrorna 1, 2, 3, 4 och 5 permuteras? b) Hur många av permutationerna i a) börjar med 3? c) Hur många av permutationerna i a) börjar med 1 och slutar med 5? G1.15 I Elitserien skall varje lag spela mot varje annat lag två gånger. Om serien omfattar 12 lag, hur många matcher har då spelats då serien är färdig? G1.16 På hur många sätt kan fem personer sitta runt ett bord? På hur många sätt kan n personer sitta runt ett bord? G1.17 Finn två heltalslösningar till ekvationen n! + 1 = x 2. G1.18 Antag att vi har siffrorna 1, 2, 4, 5 och 7 som bara får användas en gång vardera. a) Hur många tresiffriga tal kan man bilda? b) Hur många tresiffriga jämna tal kan man bilda? c) Hur många tresiffriga udda tal kan man bilda? 4

5 d) Hur många tresiffriga tal som är delbara med 5 kan man bilda? e) Hur många tresiffriga tal som är delbara med 4 kan man bilda? Fundera på detta! Teori Kombinationer På hur många olika sätt vi kan välja ut k objekt bland n objekt, där 1 k n? Antag att vi har tre objekt a, b och c. Alltså är ab, ac, ba, bc, ca, cb de 3! sex permutationerna av ordning 2. (3 2)! Om den inbördes ordningen av bokstäverna i permutationen inte spelar någon roll så är ab ekvivalent med ba, bc med cb samt ac med ca. Permutationen av objekten a och b (eller b och c, eller a och c) är 2! Alltså blir antalet sätt vi kan välja ut 2 objekt bland 3 objekt: 3! (3 2)! 3! eller 2! (3-2)! 2! Detta värde tecknas n n. (Hur beräknar du k med din miniräknare?) k 5

6 Vårt resonemang för objekten a, b och c gäller oberoende av antalet element, n, och hur många vi väljer ut, k. För värdena n och k blir n! antalet ( n k)! k! Antalet sätt på vilket vi kan välja ut k objekt bland n objekt, där 1 k n skrivs n k (läses: n över k) och är lika med n! (n - k)! k!. G1.19 Ulla har tänkt ta med sig 3 böcker på sin semester. På hur många olika sätt kan detta urval göras om hon har att välja bland 10 olika böcker? G1.20 Beräkna på hur många sätt man kan välja ut 4 objekt bland 10 om ordningen bland de 4 är oviktig. G1.21 Låt oss åter betrakta vår bostadsrättsförening Ekorren som skall välja en styrelse bestående av ordförande, vice ordförande, sekreterare och ytterligare en ledamot. Av föreningens medlemmar kan 9 medlemmar tänka sig att ingå i styrelse. På hur många olika sätt kan styrelsen sättas samman om styrelsen själva får fördela förtroendeposterna? G1.22 I en bägare har vi fem olikfärgade kulor. På hur många olika sätt kan man ta upp tre kulor ur bägaren? G1.23 Ett personalmöte samlar 15 män och 10 kvinnor. En festkommitté på 3 personer ses ut genom sluten omröstning. Vilken är sannolikheten att den bara består av män? G1.24 En matematikskrivning har 39 uppgifter och deluppgifter, som maximalt ger 26 poäng för G och 13 poäng för VG. För att få VG på skrivningen måste man ha 15 G-poäng och 7 VGpoäng. På hur många sätt kan man får precis det antal poäng som behövs för VG? G1.25 På ett plan befinner sig 6 punkter där inga tre punkter ligger på en rät linje. Hur många trianglar kan du rita med hjälp av dessa 6 punkter? 6

7 G1.26 Med hjälp av mängden A = {a, b, c} kan vi bilda mängden av alla delmängder till A. Dessa är {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, }. De är alltså 2 3 = 8 stycken. Visa att en godtycklig mängd på n element har 2 n delmängder. G1.27 Bilden nedan visar en oktav. Vi antar att en hand bara når över en oktav. Ett ackord är en kombination av tre eller flera toner som ljuder samtidigt. Vad är antalet unika ackord som kan spelas med en hand (alla är kanske inte fysiskt möjliga att utföra)? G1.28 Bilden på första sidan i modulen Mängdlära visar hur mängden {1, 2, 3, 4, 5} kan illustreras i 52 uppdelningar. Kan du teckna svaret för mängden {1, 2, 3, 4}? 7

8 Modell Dragning utan återläggning & sannolikheter Exempel En urna innehåller tre svarta och fyra vita kulor. Man tar på måfå och utan återläggning tre kulor ur urnan. Beräkna sannolikheten för att man får två svarta och en vit kula. Man kan plocka 7 ut tre kulor bland sju på olika sätt (= n). 3 3 Antalet sätt att plocka ut två svarta kulor bland tre är. Antalet sätt 2 4 att plocka ut en vit kul bland fyra är. Alltså är antalet sätt att 1 3 plocka ut två svarta och en vit 2 4. Sannolikheten för två svarta g och en vit är = = n Låt oss definiera det n:te katalantalet som C n 1 2n = n 1 n + De sju första katalantalen är C 0, C 1,..C 6 = 1, 1, 2, 5, 14, 42, 132. Kontrollera några av dessa beräknade katalantal. 8

9 G1.29 Johan har fyra semesterveckor per år. På hur många olika sätt kan han få sin semester? De behöver inte ligga i följd. G1.30 Johan har fem semesterveckor per år. På hur många olika sätt kan han få sin semester, om han måste välja två semesterveckor under 12 sommarveckor? G1.31 En urna innehåller två röda, tre blå kulor och två vita kulor. Man tar på måfå två kulor ur urnan. Beräkna sannolikheten för a) två röda kulor b) två blå kulor c) en röd och en blå kula d) en röd och två vita. G1.32 Jevgenij har tvättat strumpor och lagt sex par i en låda, av vilka två par är röda, två par blå och två par gröna. Bortsett från färgen är de tolv strumporna lika och väl blandade. Nästa morgon, när det är mörkt ute och ljuset strejkar, tar han på måfå två strumpor ur lådan. Beräkna sannolikheten för att han får två strumpor av samma färg. G1.33 Åtta personer i en bostadsrättsförening skall få varsin parkeringsplats. De åtta platserna lottas ut bland dessa personer. Beräkna sannolikheten för att ett gift par som har varsin bil får två platser bredvid varandra. 9

10 G1.34 Man drar två kort ur en kortlek. Bestäm sannolikheten för följande händelser: a) man får två hjärter b) man får en ruter och en spader c) man får en kung och en dam. G1.35 En person byter sina sommardäck mot vinterdäck och placerar dem på måfå. Vad är sannolikheten för att däcken hamnar på samma plats som föregående vinter? G1.36 På hur många olika sätt kan man ta fem kort ur en kortlek, en s k pokerhand? a) Vad är sannolikheten att få en Royal flush (ess, kung, dam, knekt, tia i samma färg) när man tar fem kort? b) Vad är sannolikheten att få en Straight flush, fem kort i samma färg och direkt ordningsföljd när man tar fem kort? c) Vad är sannolikheten att få Fyrtal, som t ex kan vara fyra 7:or? V1.37 I en enkätundersökning deltog 500 personer. Av dessa var 310 st gifta, 110 st var gifta och under 25 år, 60 st var ogifta och 25 år eller äldre. Hur många var under 25 år? V1.38 I en påse ligger det 10 röda kulor och 20 svarta kulor, alla av samma storlek. Du plockar på måfå fem stycken kulor. Hur stor är sannolikheten att du får minst fyra röda kulor? 10

11 Teori Duvslageprincipen Om du placerar 6 duvor i 5 duvslag så måste åtminstone ett duvslag hysa mer än en duva. Om n + 1 objekt skall placeras i n fack eller lådor, så måste minst ett fack ha två eller flera av dessa objekt. Om n k + 1 objekt skall placeras i n fack eller lådor, så måste minst ett fack ha k + 1 eller flera av dessa objekt. G1.40 Varför måste det i en grupp på 55 stycken personer som är högst 50 år gamla finnas åtminstone två som är födda samma år? G1.41 In en bägare har du nio tärningar. Hur många måste du ta upp för att säkert få upp två med samma antal ögon? G1.42 In en bägare har du tjugo tärningar. Hur många måste du ta upp för att säkert få upp tre med samma antal ögon? G1.43 Visa att om 13 punkter placeras i rutnätet här bredvid så måste två av dem ha ett avstånd på högst 2 från varandra. 11

12 V1.44 Visa att om 9 punkter placeras slumpmässigt i en rektangel med sidorna 9 cm och 12 cm så måste det finnas minst två punkter vars inbördes avstånd är högst 5 cm. V1.45 Jevgenij har tvättat strumpor och lagt sex par i en låda, av vilka två par är röda, två par blå och två par gröna. Bortsett från färgen är de tolv strumporna lika och väl blandade. Nästa morgon, när det är mörkt ute och ljuset strejkar, tar han på måfå två strumpor ur lådan. Hur många måste han minst ta för att få ett par av samma färg? V studenter skrev en diktamen. Johan gjorde 13 fel, alla andra gör mindre än 13 fel. Bevisa att minst två elever gjorde lika många fel. V

13 Teori Pascals triangel och Mosertal Om vi skulle beräkna (a + b) n för allt större värden på n med våra kunskaper i algebra från tidigare kurser så skulle det bli ganska tidskrävande. (a + b) 0 1 (a + b) 1 a + b (a + b) 2 a 2 + 2ab + b 2 (a + b) 3 a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 3 (a + b) 5 a 5 + 5a 4 b + 10a 3 b a 2 b 3 + 5ab 4 + b 4 Vi anar utifrån tabellen ovan att: (a + b) 6 = a 6 + a 5 b + a 4 b 2 + a 3 b 3 + a 2 b 4 + ab 5 + b 6 Dvs summan av gradtalen för a och b i varje term är 6. Hur får vi nu koefficienterna till de olika ab-termerna? Jo, (a + b) 6 = (a + b)(a + b)(a + b)(a + b)(a + b)(a + b) a 6 termen får vi genom att ta ett a från varje parentes. Detta kan bara göras på ett sätt. Alltså är koefficienten till a 6 en etta. a 5 b termen får genom att välja ut ett b från de parenteserna. 6 Detta kan göras på = 6 olika sätt. Koefficienten till a 5 b en sexa. 1 a 4 b 2 termen får genom att välja ut två b:n från de parenteserna. 6 Detta kan göras på = 15 olika sätt. Alltså är koefficienten till 2 a 4 b 2 talet femton. 13

14 6 Vi får till slut: (a + b) 6 = 0a a 5 b + a 4 b a 2 b 4 + ab 5 + b (a + b) 6 = a 6 + 6a 5 b + 15a 4 b a 3 b a 2 b 4 + 6ab 5 + b 6 6 a 3 b Binomialsatsen fås genom att föra liknande resonemang för godtyckliga värden n. (a + b) n = n 0 a n + n 1 a n-1 b n k an-k b k n Koefficienterna n kallas binomialkoefficienter k n bn Med Pascals triangel kan man lätt hitta koefficienterna till (a + b) n, hur? Detta sätt att beräkna koeficienterna kan även fås med Pascals formel: n-1 n-1 n + = k-1 k k 14

15 Mosertal Placera fyra sju punkter på en cirkel. Fördela punkterna någorlunda jämnt runt periferin som i figuren nedan. Förena varje punkt med alla övriga punkter. Man kan dra 21 kordor (Varför just 21?) som delar in cirkeln i 57 (ett Mosertal) områden. Genom att summera de färgade raderna i Pascals triangel får vi Moser-talen: 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, som motsvaras av antalet punkter på cirkeln: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... G1.48 Använd Pascals triangel för att fylla i det som fattas i identiteten nedan: (a + b) 9 = a 9 + a 8 b + a 7 b a 6 b 3 + a 5 b 4 + a 4 b 5 + a 3 b 6 + a 2 b 7 + ab 8 + b 9 G1.49 Vad är värdet på 8 enligt Pascals triangel? 3 V1.50 Bevisa Pascals formel. G1.51 Verifiera att antalet kordor för en regelbunden sexhörning inuti en cirkel har 15 kordor samt att antalet områden är? G1.52 Bestäm tredje och fjärde termen i binomialutvecklingen av (3a + 4b) 7. V1.53 n n Visa att 2 + = n

16 Facit G1.1 Du har 3 4 valmöjligheter. G =60 G1.3 a) = b) = G1.4 På = 36 olika sätt. G1.5 Det finns 3 16 = 4096 olika tal med tre eller färre siffror. G = olika sätt G = 62 G1.8 gynnsamma fall P = = = möjliga fall G G1.10 7! P(7, 2) = Pnk (, ) = = 42 5! G = 24 G1.12 8! = G = G1.14 P(n, n) = n! n! = = n! och ( n- n)! 0! P(n, n-1) = n! n! = = n! Alltså är P(n, n) = P(n, n-1). ( n-[ n 1])! 1! G matcher G respektive (n 1)! G1.17 Heltalslösningar får vi om n! + 1 är en jämn kvadrat. Prövningar ger n = 4 med lösningarna x = ±5 (även n = 5 med lösningarna x = ±11) G1.18. a) 60 b) c) 36 d) 12 e) Ett tal är delbart med 4 om talet i de två sista siffrorna är delbart med 4, dvs talen 12, 24, 52 och 72, fyra möjligheter därefter återstår tre siffror. Alltså blir resultatet 4 3 2=24

17 G = G = G1.20 G1.23 G = G = ! 3 g 12!3! P 91 = = = = = = = n 25 25! !3! = G = 20 3 G1.26 För varje element finns det två möjligheter, en delmängd innehåller elementet eller inte. Eftersom vi har n element i mängden får vi 2 n delmängder. G1.27 G1.28 G = = = = G = G1.31. a) b) 2 g 2 1 P = = = n g 2 1 P = = = n g P = = = n g P = = = n

18 G1.32 Han ar 4 3 möjligheter att ta två röda eller två blå eller två gröna strumpor. 3 (4 3) Det finns totalt 12 strumpor. Alltså är P= G1.33 Det finns sju möjligheter (=g) att få platser bredvid varandra. Det finns möjligheter att välja ut två godtyckliga platser. Alltså är P = G1.34 a) = b) 13 = c) = 0, g 1 G1.35 P = = m g 4 g 9 G1.36 a) P = = 0, b) P = = 0, m 52 m g 4 13 c) P = = 0, m 52 5 V

19 V = 0, G1.40 Efter att ha tagit ut 50 personer så har alla olika ålder eller åtminstone två samma ålder och då är saken klar. Om alla har samma ålder så kommer den femtioförsta få en ålder som redan är upptagen. G stycken G stycken G1.43 Om 16 punkter har tagit upp alla rutorna så måste den 17:de hamna i en V1.44 upptagen ruta. Längsta avståndet till den punkten kan vara diagonalen 2. V strumpor V1.46 Låt oss låtsas att eleverna är "duvor" och lägg dem i 14 hål numrerade 0, 1, V1.47 2,..., 13, beroende på antalet gjorda fel. I hålet 0 sätter vi de elever som gjort något fel, i hål 1 dem som gjort exakt 1 fel, i hål 2 som gjort 2 fel, och så vidare. Hål 13 upptas endast av Jimmy. Alltså måste något hål upptas av minst två elever. V1.48 1, 9, 36, 84, 126, 126, 84, 36, 9, 1 V

20 V1.50 V1.51 n-1 n-1 ( n-1)! ( n-1)! VL.. = k-1 + k = + = ( n- k)!( k-1)! ( n-1- k)! k! k( n-1)! + ( n- k)( n-1)! ( n-1)![ k+ ( n- k)] n! = = = V.S.B ( n- k)! k! ( n- k)! k! ( n- k)!( k)! V V1.53 n n 2( n-1) n 2n 2 2 n V.S.B 2 + = + =

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}

{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om kombinatorik Mikael Hindgren 24 september 2018 Vad är kombinatorik? Huvudfråga: På hur många sätt kan en viss operation utföras? Några exempel: Hur många gånger

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

Matematik 5 Kap 1 Diskret matematik I

Matematik 5 Kap 1 Diskret matematik I Matemati 5 Kap 1 Disret matemati I Inledning Konretisering av ämnesplan (län) http://www.ioprog.se/public_html/ämnesplan_matemati/strutur_äm nesplan_matemati/strutur_ämnesplan_matemati.html Inledande ativitet

Läs mer

32 Skriv med siffror. 33 Vilket tal ska stå istället för rutan? 34 Skriv talen i storleksordning. Börja med det minsta.

32 Skriv med siffror. 33 Vilket tal ska stå istället för rutan? 34 Skriv talen i storleksordning. Börja med det minsta. Målgången I det här kapitlet får du möjlighet att repetera och träna mer på det du hittills lärt dig om > taluppfattning > räknesätten > bråk > procent > sannolikhetslära > algebra > geometri > statistik

Läs mer

Hur många registreringsskyltar finns det som inte innehåller samma tecken mer än en

Hur många registreringsskyltar finns det som inte innehåller samma tecken mer än en Föreläsning 10 Multiplikationsprincipen Additionsprincipen Permutationer Kombinationer Generaliserade permutationer och kombinationer. Binomialsatsen Multinomialsatsen Lådprincipen (Duvslagsprincipen)

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

75059 Stort sorteringsset

75059 Stort sorteringsset 75059 Stort sorteringsset Aktivitetsguide Detta set innehåller: 632 st sorteringsföremål 3 st snurror 6 st sorteringsskålar 1 st sorteringsbricka i plast 1 st siffertärning Detta sorteringsset har tagits

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

A B C D E. 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. A B C D E

A B C D E. 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. A B C D E N G A RA Kängurutävlingen 2015 Benjamin Trepoängsuppgifter 1 Vilken figur är skuggad till hälften? Slovakien 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder är inte

Läs mer

Distriktsfinal. Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift)

Distriktsfinal. Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift) Distriktsfinal Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare! OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Läs mer

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Riksfinal Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare OBS Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Fullständiga

Läs mer

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss? 1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

8-4 Ekvationer. Namn:..

8-4 Ekvationer. Namn:.. 8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar

Läs mer

UPPGIFT 2 KVADRATVANDRING

UPPGIFT 2 KVADRATVANDRING UPPGIFT 1 LYCKOTAL Lyckotal är en serie heltal, som hittas på följande sätt. Starta med de naturliga talen: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13... Sök upp det första talet i serien, som är större

Läs mer

Årgång 85, 2002. Första häftet

Årgång 85, 2002. Första häftet Elementa Årgång 85, 2002 Årgång 85, 2002 Första häftet 4060. Dorotea, Fredrika, Nora och Ulrika har tillsammans 117 glaskulor. Uppgifterna om hur många kulor var och en äger är ytterst knapphändiga. Man

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor Matte Direkt Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer Safari 1A Lärarhandledning MS Enhetsdel Sist i varje kapitel finns ett avsnitt som i första hand tar upp enheter. Här i årskurs 1 handlar

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Permutationer med paritet

Permutationer med paritet 238 Permutationer med paritet Bernt Lindström KTH Stockholm Uppgift. Att studera permutationerna av talen 1 2... n och indelningen i udda och jämna permutationer ur olika aspekter. Permutationer är särskilt

Läs mer

Exempel på tentamensuppgifter i LMA100, del 1

Exempel på tentamensuppgifter i LMA100, del 1 Exempel på tentamensuppgifter i LMA100, del 1 Diskret matematik 1. Givet är de 7 bokstäverna i ordet APPARAT. Hur många olika ord (= bokstavspermutationer) kan man bilda av dem med (a) 7 bokstäver (b)

Läs mer

UPPGIFT 1 KANINER. Håkan Strömberg 1 Pär Söderhjelm

UPPGIFT 1 KANINER. Håkan Strömberg 1 Pär Söderhjelm UPPGIFT 1 KANINER Kaniner är bra på att föröka sig. I den här uppgiften tänker vi oss att det finns obegränsat med hannar och att inga kaniner dör. Vi ska försöka simulera hur många kaninhonor det finns

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..

Läs mer

Lösningar till Algebra och kombinatorik

Lösningar till Algebra och kombinatorik Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +

Läs mer

Högskoleverket NOG 2006-10-21

Högskoleverket NOG 2006-10-21 Högskoleverket NOG 2006-10-21 1. Rekommenderat dagligt intag (RDI) av kalcium är 0,8 g per person. 1 dl mellanmjölk väger 100 g. Hur mycket mellanmjölk ska man dricka för att få i sig rekommenderat dagligt

Läs mer

Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många.

Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många. Multilink-kuber Varför kuber i matematikundervisningen? Multilink-kuber eller motsvarande material kan utnyttjas till snart sagt alla områden inom matematikundervisningen, i hela grundskolan och även upp

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

Komvux/gymnasieprogram:

Komvux/gymnasieprogram: Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

formler Centralt innehåll

formler Centralt innehåll Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR KOMBINATORIK I kombinatoriken sysslar man huvudsakligen med beräkningar av antalet sätt på vilket element i en given lista kan arrangeras i dellistor. Centrala frågor i kombinatoriken är: " Bestäm antalet..."

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

1Mer om tal. Mål. Grundkursen K 1

1Mer om tal. Mål. Grundkursen K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform

Läs mer

Lösningsförslag Cadet 2014

Lösningsförslag Cadet 2014 Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag

Läs mer

Matematik B (MA1202)

Matematik B (MA1202) Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt

Läs mer

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken. Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det

Läs mer

Programmeringsolympiaden 2008 Kvalificering

Programmeringsolympiaden 2008 Kvalificering Programmeringsolympiaden 2008 Kvalificering TÄVLINGSREGLER Tävlingen äger rum på ett av skolan bestämt datum under sex timmar effektiv tid. Tävlingen består av sex uppgifter som samtliga ska lösas genom

Läs mer

ANDRA BASER ÄN TIO EXTRAMATERIAL TILL. Matematikens grunder. för lärare. Anders Månsson

ANDRA BASER ÄN TIO EXTRAMATERIAL TILL. Matematikens grunder. för lärare. Anders Månsson ANDRA BASER ÄN TIO EXTRAMATERIAL TILL Matematikens grunder för lärare Anders Månsson Extramaterial till boken Matematikens grunder för lärare (art.nr. 38994), Anders Månsson. Till Tallära-kapitlet: Andra

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

Konsten att bestämma arean

Konsten att bestämma arean Konsten att bestämma arean Lektion Ett (Matematiskt område - Talmängder) Vad är viktigast? Introducera tanken om att felet skulle kunna vara viktigare än svaret. Vad väger äpplet? Gissa. Jämför med mätvärdet

Läs mer

Uppgifter 6: Kombinatorik och sannolikhetsteori

Uppgifter 6: Kombinatorik och sannolikhetsteori Grunder i matematik och logik (2017) Uppgifter 6: Kombinatorik och sannolikhetsteori Marco Kuhlmann Kombinatorik Nivå A 6.01 En meny består av tre förrätter, fem huvudrätter och två efterrätter. På hur

Läs mer

Kombinatorik och sannolikhetslära

Kombinatorik och sannolikhetslära Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i

Läs mer

en femma eller en sexa?

en femma eller en sexa? REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

1. 20 identiska bollar skall delas ut till fem flickor och fem pojkar. På hur många olika sätt kan detta ske om

1. 20 identiska bollar skall delas ut till fem flickor och fem pojkar. På hur många olika sätt kan detta ske om 1 Matematiska Institutionen KTH Lösning till några övningar inför lappskrivning nummer 4 Diskret matematik för D och F vt0 1 0 identiska bollar skall delas ut till fem flickor och fem pojkar På hur många

Läs mer

Något om kombinatorik

Något om kombinatorik Något om kombinatorik 1. Inledning Kombinatoriken är den gren av matematiken som försöker undersöka på hur många olika sätt något kan utföras. Det kan vara fråga om mycket olika slag av problem. Kombinatoriska

Läs mer

Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén

Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén Matematikboken UTMANINGEN Lennart Undvall Kristina Johnson Conny Welén ISBN 978-91-47-08519-4 2011 Lennart Undvall, Kristina Johnson, Conny Welén och Liber AB Projektledare och redaktör: Sara Ramsfeldt

Läs mer

Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre).

Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre). Räkna till 10 Mål: Eleverna skall kunna räkna till 10, i stigande och sjunkande ordningsföljd. Antal elever: minst 10 elever. Koner med talen 1 till 10.( använd konöverdrag och skriv 10 på en lapp på 0-käglan)

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss.

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss. 8-2 Förenkling av uttryck. Namn: eller Konsten att räkna algebra och göra livet lite enklare för sig. Inledning I föregående kapitel lärde du dig vad ett matematiskt uttryck är för någonting och hur man

Läs mer

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996 Tidsbunden del Anvisningar Provperiod 10 maj - 1 juni 1996. Provtid Hjälpmedel Provmaterialet 120 minuter utan rast. Miniräknare och formelsamling. Formelblad

Läs mer

Under min praktik som lärarstuderande

Under min praktik som lärarstuderande tomoko helmertz Problemlösning i Japan och Sverige Japansk matematikundervisning skiljer sig på många sätt från svensk. Vilka konsekvenser får det för hur elever i respektive länder löser problem? Tomoko

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

(1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror.

(1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror. 1. En skolklass har gjort en tidning. Hur många sidor har tidningen? (1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror. (2) Tryckkostnaden är 25 öre per sida och klassen

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

KOMBINATORIK OCH BINOMIALSATSEN

KOMBINATORIK OCH BINOMIALSATSEN KOMBINATORIK OCH BINOMIALSATSEN PERMUTATIONER (Ordnade listor med n element, så kallade n- tipplar) 1. (permutationer av n olika element) Vi betraktar ordnade listor med n olika element,,, Varje bestämd

Läs mer

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.

Läs mer

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar

Läs mer

Uppgift 1. Kylskåpstransporter

Uppgift 1. Kylskåpstransporter Uppgift 1. Kylskåpstransporter 1. Här kan du se de två bilarna lastade med kylskåp på väg mot stormarknaden En fabrik som tillverkar kylskåp ska leverera ett större parti med n, 1 n 1000, kylar till en

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Något om permutationer

Något om permutationer 105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar

Läs mer

Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK

Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Multiplika tion Multiplikation, 5-tabellen Att multiplicera är detsamma som att addera samma tal flera gånger. Det kallar vi upprepad addition. 3 5 kan

Läs mer

För att använda sifferkrypto använder man en rektangel om 5 gånger 6 bokstäver.

För att använda sifferkrypto använder man en rektangel om 5 gånger 6 bokstäver. Nämnarens kryptoskola 8. Sifferkrypto lärarsida För att använda sifferkrypto använder man en rektangel om 5 gånger 6 bokstäver. Siffror från 0 till 5 ovanför och 5 till 9 till vänster om rektangeln anger

Läs mer

9 NAVIGATIONSUTRUSTNING

9 NAVIGATIONSUTRUSTNING 9 NAVIGATIONSUTRUSTNING 9.1 Kompass Kompassen skall vara fast monterad och balansupphängd. Kompassen skall vara devierad. Deviationstabell skall finnas. Extra kompass bör finnas. SXK Västkustkretsen, Tekniska

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Kursinformation 13 föreläsningar: Måns Thulin, mans.thulin@statistik.uu.se 3 h: normalt 2 h föreläsning + 1 h räknestuga 7 räkneövningar:

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2015-01-31 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland

A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland Trepoängsproblem 1. Några av bildens ringar bildar en kedja där den ring som pilen pekar på ingår. Hur många ringar finns det i denna kedja? A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland 2. I en triangel har två sidor

Läs mer

Programmeringsolympiaden 2012 Kvalificering

Programmeringsolympiaden 2012 Kvalificering Programmeringsolympiaden 2012 Kvalificering TÄVLINGSREGLER Tävlingen äger rum på ett av skolan bestämt datum under sex timmar effektiv tid. Tävlingen består av sex uppgifter som samtliga ska lösas genom

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts.

http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts. Dokumentet är från sajtsidan Matematik: som ingår i min sajt: http://www.leidenhed.se/matte.html http://www.leidenhed.se Minst och störst Senaste revideringen av kapitlet gjordes 2014-05-08, efter att

Läs mer

Några tips på hur man kan arbeta med fjärilar i skola och förskola

Några tips på hur man kan arbeta med fjärilar i skola och förskola Några tips på hur man kan arbeta med fjärilar i skola och förskola 1. Hur ser en fjäril? har så kallade fasettögon som är sammansatta av upp till 17 000 delögon. Detta ger fjärilen ett mosaikseende. Måla

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

3 Grundläggande sannolikhetsteori

3 Grundläggande sannolikhetsteori 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket

Läs mer

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning

Läs mer

Kvalitetsarbete. Kungshöjdens förskola. Förskolor Syd Munkedals kommun Majvor Kollin Lena Klevgård Jenny Pettersson

Kvalitetsarbete. Kungshöjdens förskola. Förskolor Syd Munkedals kommun Majvor Kollin Lena Klevgård Jenny Pettersson Kvalitetsarbete Kungshöjdens förskola 2014 Förskolor Syd Munkedals kommun Majvor Kollin Lena Klevgård Jenny Pettersson Innehåll Grundfakta och förutsättningar... 3 Kartläggning av barnens intressen...

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer