Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI"

Transkript

1 TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: Provkod: TEN1 Hjälpmedel: Inga. Examinator: Fredrik Berntsson Maximalt antal poäng: 18 poäng. För godkänt krävs 8 poäng. Jourhavandelärare Fredrik Berntsson (telefon ) Besök av jourhavande lärare sker ungefär och Resultat meddelas via epost senast tisdag 1:a April. Lösningsförslag finns på kurshemsidan efter tentans slut. Visning av tentamen sker på Examinators kontor onsdag den 1:a April, klockan (Hus B, Ing , Plan-3, A-korr). Lycka till!

2 Redovisning Lös först uppgifterna i Matlab. Då du har en färdig lösning skriv då ner vad du gjort på papper. Redovisa även eventuella resultat du fick då körde dina Matlab kommadon. (2p) 1: Följande MATLAB script är tänkt att ersätta en matris A med dess transponat utan att använda en temporär matris. [n,n] = size(a); for i = 1:n for j = i:n A(i,j) = A(j,i); A(j,i) = A(i,j); Förklara vad som går fel och gör de förändrningar som behövs för att få förväntat resultat. (3p) 2: Vi vill studera funktionen f(x) = 1.2 cos(x 2 )/2+x+2x 2, på intervallet 1 x 1, och undersöka var dess minimum inträffar. a) Skapa en vektor x som innehåller N = 100 jämt utspridda tal på intervallet [ 1, 1]. Beräkna även en vektor f med motsvarande funktionsvärden och utnyttja dessa vektorer för att plotta funktionen på aktuellt intervall. b) Använd Matlab kommandot min för att hitta det minsta värdet i vektorn f. Detta approximerar funktionens minsta värde på intervallet. Hitta även det x-värde där funktionen antar sitt minsta värde. c) Markera punkten (x min,f min ) du hittat i b) uppgiften i den graf du ritat upp i a) uppgiften med ett rött +. (3p) 3: Normen av en vektor beräknas enligt formeln x 2 = x 2 1 +x x2 n, där n är vektorns längd. a) Skriv en Matlab funktion MinNorm med en vektor x som inparameter och resultatet av normberäkningen som utparameter. b) Skapa de två vektorerna x = (0,2, 3,6) T och y = ( 1,2,6) T i Matlab och använd funktionen MinNorm för att beräkna deras normer. Tips I Matlab finns en inbyggd funktion norm som utför precis denna beräkning. Du kan använda den för att kontrollera att du gjort rätt men får inte utnyttja den för att lösa uppgiften. 2

3 (3p) 4: Vi vill beräkna summan S = k=0 1 1+k 2, approximativt på datorn. Vi avbryter summeringen då nästa term är liten i förhållande till den beräknade partialsumman, dvs t k /S k < tol, där S k är en partialsumma, t k är term k, och tol= 10 6 är en tolerans. Skriv ett Matlab script som beräknar summan med angivet avbrotts kriterium. Redovisa det beräknade värdet på summan och det program du använder. (3p) 5: Vi vill anpassa ett andragrads polynom, så bra som möjligt till följande tabell: y = p(x) = c 1 +c 2 x+c 3 x 2, x y a) Formulera ovanståe som ett överbestämt ekvations system, Ac = b, där c = (c 1,c 2,c 3 ) T, och lös detta med minsta kvadrat metoden. b) Efter att vi beräknat coefficienterna c i polynomet vill vi plotta resultatet. Skriv ett script som plottar det polynom som som har coefficienter c 1, c 2, och c 3, på intervallet 1 < x < 4. Rita även ut de punker (x,y) som gavs i tabellen med +. (4p) 6: I ett tärningsspel slår vi tre tärningar i följd. Får vi en sexa får vi slå tärningen en extra gång. Målet är att få så hög total summa som möjligt. Exempelvis slår vi tärningen tre gånger och får 3, 6, och 5. Vi får då ett extra kast som ger ytterligare en 6:a och vi slår därför ännu en gång och får 2. Denna spelopmgång ger därför totalt = 22 poäng. a) Skriv en funktion SpelOmgang som använder slumptalsgeneratorn randi, eller rand, för att utföra en spelomgång. Totalsumman skall vara utparameter. b) Använd funktionen SpelOmgang för att simulera N = 1000 spelomgångar. Beräkna genomsnittlig poäng för en omgång av tärningsspelet. 3

4 Lösningsförslag till Övningstentan för : Problemet är att vi skriver över elementet A(i,j)=A(j,i);. Vi måste spara undan det i en tillfällig variabel först. Ändra alltså till. [n,n] = size(a); for i = 1:n for j = i:n tmp = A(i,j); A(i,j) = A(j,i); A(j,i) = tmp; 2: a) Vi skapar vektorn, beräknar funktionsvärden, och plottar med kommandona >> N=100; x=-1+2*(0:n-1)/(n-1); >> f=1.2-cos(x.^2)/2+x+x.^2; >> plot(x,f) b) Vi hittar minimim med kommandot 3: a) Funktionen blir b) Vi får >> [m,k]=min(f);disp(m),disp(x(k)) >> hold on,plot( x(k),f(k), r+ );,hold off function [S]=MinNorm( x ) S=0; for i=1:length(x) S=S+x(i)^2; ; S=sqrt(S); >> MinNorm([0,2,-3,6] ) 7 >> MinNorm([-1,2,6] ) : Då det inte är klart hur många termer som skall tas med så skriver vi en while sats: S=1;k=1; term=1; tol=10^-6; while term/s>tol term=1/(1+k^2); k=k+1; 4

5 S=S+term; ; disp(s) vilket get S= : a) Vi får ett överbestämt ekvationssystem som skapas med kommandona >> x = [ ] ; y=[ ] ; >> A = [ x.^0 x x.^2 ]; b=y; c=a\b; Vi får c = ( , ) T. b) Beräkna nu polynomet för ett antal x-värden och plotta detta tillsammans med punkterna med kommandot >> xx=-1:0.1:4; pp=c(1)+c(2)*xx+c(3)*xx.^2; >> plot( xx,pp, b,x,y, r+ ); 6: a) Funktionen SpelOmgang kan exempelvis skrivas som function [S]=SpelOmgang() N=3; % Antalet återståe kast. S=0; % Summan hittils. while N>0 Kast=randi(6); N=N-1; % Slå tärningen. Minska N. S=S+Kast; if Kast==6, % Öka antalet kast om vi fick sexa. N=N+1; b) Simulera 1000 omgångar med N=1000;S=zeros(N,1); for i=1:n, S(i)=SpelOmgang(); mean(s) Tänk på att då simuleringen är slumpmässig får man olika svar varje gång. 5

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet

Läs mer

Programexempel: tärningsspel

Programexempel: tärningsspel Programexempel: tärningsspel Skriv ett program som låter en användare spela detta tärningsspel: Spelaren gör första tärningsslaget och får samma poäng som tärningen visar. Sedan fortsätter spelet enligt

Läs mer

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan. Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

NATIONELLA MATEMATIKTÄVLING

NATIONELLA MATEMATIKTÄVLING NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen

Läs mer

TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 By, Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-01-11

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998. Tidsbunden del Nationellt kursprov i Matematik kurs B ht 1998 sida 1 (av 7) Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen

Läs mer

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter

Läs mer

Tentamen i Tillämpad matematisk statistik LMA521 för EPI och MI den 14 dec 2011

Tentamen i Tillämpad matematisk statistik LMA521 för EPI och MI den 14 dec 2011 Tentamen i Tillämpad matematisk statistik LMA5 för EPI och MI den dec Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg 3, minst 3 poäng för och minst poäng för 5. Eaminator:

Läs mer

Lösningar och kommentarer till uppgifter i 3.2

Lösningar och kommentarer till uppgifter i 3.2 Lösningar och kommentarer till uppgifter i 3.2 Så har vi då nått fram till sista avsnittet före tentamen. Uppgifterna i detta avsnitt är ganska trevliga, därför att de ofta har en, åtminstone påhittad,

Läs mer

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007

Läs mer

Funktioner forts. F3: Funktioner (kap. 5) Parametrar. findgear.m forts

Funktioner forts. F3: Funktioner (kap. 5) Parametrar. findgear.m forts F3: Funktioner (kap. 5) Funktionsfil, funktionsanrop in- och utparametrar, anropsin- och anropsutparametrar lokala, globala och persistenta variabler lokala funktioner return variabelt antal parameterar,

Läs mer

Datorövning 2 Diskret fördelning och betingning

Datorövning 2 Diskret fördelning och betingning Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen

Läs mer

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar...

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Två konstiga klockor

Två konstiga klockor strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier

Läs mer

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 april 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Tentamen i Programmering grundkurs och Programmering C

Tentamen i Programmering grundkurs och Programmering C 1 of 6 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Programmering grundkurs och Programmering C för D1 m fl, även distanskursen

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

Tillämpad UNIX. Laborations-PM Christian von Schultz, 2009. 1 Programpaket och processhantering

Tillämpad UNIX. Laborations-PM Christian von Schultz, 2009. 1 Programpaket och processhantering Tillämpad UNIX Laborations-PM Christian von Schultz, 2009 1 Programpaket och processhantering 1. Ladda ner survivor.tar.gz från kurshemsidan och packa upp den. Uppackningskommando: 2. Du har just packat

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998 2

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998 2 freeleaks NpMaB ht1998 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

MATLAB handbok Introduktion

MATLAB handbok Introduktion Department of Physics Umeå University 30 juni 2014 MATLAB handbok Introduktion Marina Wallin Martin Hansson Per Sundholm 1 INTRODUKTION TILL MATLAB 1 1 Introduktion till Matlab Något man som Teknisk fysiker

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

2005-01-31. Hävarmen. Peter Kock

2005-01-31. Hävarmen. Peter Kock 2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Flervariabelanalys E2, Vecka 2 Ht08

Flervariabelanalys E2, Vecka 2 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 2 Ht08 12.2 Gränsvärden och kontinuitet. 12.3 Partiella derivator, tangentplan och normaler till funktionsytor. 12.4 Högre ordningens derivator. 12.5

Läs mer

Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0

Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0 2) Ställ upp ett ekvationssystem för situationen

Läs mer

Matematikboken. alfa. Lennart Undvall Christina Melin Jenny Ollén

Matematikboken. alfa. Lennart Undvall Christina Melin Jenny Ollén Matematikboken alfa Lennart Undvall Christina Melin Jenny Ollén Matematikboken Alfa ISBN 978-91-47-10193-1 Författare: Lennart Undvall, Christina Melin och Jenny Ollén 2011 författarna och Liber AB Illustrationer:

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

De två första korten Tidig position

De två första korten Tidig position De två första korten Tidig position Hold em är ett positionsspel, och förmodligen mer än någon annan form av poker. Det beror på att knappen anger spelarnas turordning under satsningsrundorna. (Enda undantaget

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.

Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6. Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat

Läs mer

TIMREDOVISNINGSSYSTEM

TIMREDOVISNINGSSYSTEM TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Budgethantering Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning

Läs mer

Introduktion till programmering D0009E. Välkomna!

Introduktion till programmering D0009E. Välkomna! Introduktion till programmering D0009E Välkomna! 1 Kursinformation Läsperiod 3 2014, 7,5 poäng (hp) Ansvarig institution: System- och Rymdteknik Föreläsare/lektionslärare och Examinator: Fredrik Bengtsson

Läs mer

Volymer av n dimensionella klot

Volymer av n dimensionella klot 252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Övningshäfte Algebra, ekvationssystem och geometri

Övningshäfte Algebra, ekvationssystem och geometri Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning

Läs mer

Tentamen. Makroekonomi NA0133. Juni 2016 Skrivtid 3 timmar.

Tentamen. Makroekonomi NA0133. Juni 2016 Skrivtid 3 timmar. Jag har svarat på följande fyra frågor: 1 2 3 4 5 6 Min kod: Institutionen för ekonomi Rob Hart Tentamen Makroekonomi NA0133 Juni 2016 Skrivtid 3 timmar. Regler Svara på 4 frågor. (Vid svar på fler än

Läs mer

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan?

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? Miniräknare ej tillåten Namn:... Klass/Grupp:... Del I 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? a 0 1 2 Svar: a = (1/0) 3. Vilka koordinater har punkten

Läs mer

G VG MVG. Betygskriterier Matematik B MA1202 50p. Respektive programmål gäller över kurskriterierna

G VG MVG. Betygskriterier Matematik B MA1202 50p. Respektive programmål gäller över kurskriterierna Betygskriterier MA1202 50p Respektive programmål gäller över kurskriterierna MA1202 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår skolas

Läs mer

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29 Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-11-29 Inlärningsnivåer i matematik 1. Intuitiv tänka, tala 2. Konkret göra och pröva 3. Representationsformer synliggöra

Läs mer

Regler för onlinespel Bingo

Regler för onlinespel Bingo Regler för onlinespel Bingo 2012-11-05 Innehållsförteckning 1 INLEDNING 3 1.1 TILLÄMPLIGA VILLKOR 3 1.2 ALLMÄNT OM BINGO 3 1.3 GILTIGHETSTID FÖR REGLER FÖR ONLINESPEL BINGO 3 1.4 DEFINITIONER 3 1.4.1 GEMENSAMMA

Läs mer

Distribuerade Informationssystem VT-04

Distribuerade Informationssystem VT-04 Distribuerade Informationssystem VT-04 2 Projekt Kassasystem DS är ett stort varuhus som består av ett flertal fristående butiker. Varje butik i DS säljer sina egna varor samt varor som är specifika för

Läs mer

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9 Kängurutävlingen genomförs 9 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas, däremot

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0) Varje tal nedan motsvaras av en markerad punkt på tallinjen.

a) Ange ekvationen för den räta linjen L. (1/0/0) Varje tal nedan motsvaras av en markerad punkt på tallinjen. Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

Texturbild. Lagerpaletten du kommer arbeta med ser du till höger. 1. Kopiera bakgrunden till ett nytt lager och gör den svartvit.

Texturbild. Lagerpaletten du kommer arbeta med ser du till höger. 1. Kopiera bakgrunden till ett nytt lager och gör den svartvit. Texturbild En guide om hur man skapar en bild med matta färger och texturiserad yta. Guiden innehåller moment där man får pröva sig fram och resultatet kanske inte blir det man tänkt sig direkt, men med

Läs mer

ANVÄNDARHANDLEDNING FÖR

ANVÄNDARHANDLEDNING FÖR ANVÄNDARHANDLEDNING FÖR TILLSÄTTARE/LAGLEDARE OCH DOMARE Cleverservice ett smart sätt att hantera matcher, domartillsättningar, samt utbetalningar av arvoden 2015 ANVÄNDARHANDLEDNING - CLEVERSERVICE Cleverservice

Läs mer

Laborationspecifikation

Laborationspecifikation UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistisk Statistik för tekniska datavetare 5 poäng Per Arnqvist 2007-05-03 Laborationspecifikation Redovisning Ni får gärna jobba parvis och

Läs mer

Datorövning 3: Icke-parametriska test

Datorövning 3: Icke-parametriska test Datorövning 3: Icke-parametriska test Under denna datorövning ska ni lära er hur man använder Minitab för att utföra icke-parametriska test. De test ni går igenom under denna kurs är Wilcoxsons rangsummetest,

Läs mer

Datorövning 2 Statistik med Excel (Office 2003, engelska)

Datorövning 2 Statistik med Excel (Office 2003, engelska) Datorövning 2 Statistik med Excel (Office 2003, engelska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

6.3. Direkta sökmetoder

6.3. Direkta sökmetoder 6.3. Direkta sökmetoder Förutom de nyss nämnda metoderna för att uppsöka ett minimum av en funktion av en variabel finns det en enkel metod som baserar sig på polynomapproximation av funktionen. Om vi

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera

Läs mer

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Efter varje uppgift anges maximala antalet poäng som du kan få för din lösning. T ex betyder (2/1) att uppgiften kan ge 2 g-poäng och

Läs mer

Utveckla arbetsmiljö och verksamhet genom samverkan

Utveckla arbetsmiljö och verksamhet genom samverkan DEL 1: Utveckla arbetsmiljö och verksamhet genom samverkan Modulen inleds med det övergripande målet för modul 6 och en innehållsförteckning över utbildningens olika delar. Börja med att sätta ramarna

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413.

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Peter Anton TENTAMEN 2005-12-16 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer (ID),

Läs mer

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E: 3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra

Läs mer

SA33 - Val av kurser inom program m terminsreg

SA33 - Val av kurser inom program m terminsreg Margareta Poovi 2016-02-03 SA33 1 (15) SA33 - Val av kurser inom program m terminsreg 1. Allmänt om funktionen Funktionen SA33 används för inläggning och borttagning av kursval på program med terminsregistrering.

Läs mer

Föreningen Nordens lokala hemsidor

Föreningen Nordens lokala hemsidor Guide till Föreningen Nordens lokala hemsidor 2016-01-11 1 Innehåll Hjälpfilm... 3 Logga in... 3 Nytt inlägg... 4 Lägg till bild... 8 Lägga till bildgalleri... 11 Publicera... 13 Kalendarium... 14 Ta bort

Läs mer

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka Matematik Enheter - Tid Utveckla och Känner till några enheter och enstaka mätinstrument. Utför enkla mätningar. Avläser analoga och digitala tider.använder både muntliga och skriftliga metoder samt tekniska

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2015-10-24 Provpass 3 Högskoleprovet Svarshäfte nr. Kvantitativ del d Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2003 2. Del I, 7 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2003 2. Del I, 7 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5 freeleaks NpMaB vt003 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 003 Del I, 7 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast publicerat

Läs mer

Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01

Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01 Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering

Läs mer

Spelregler. 2-4 deltagare från 10 år. Med hjälp av bokstavsbrickor och god uppfinningsrikedom

Spelregler. 2-4 deltagare från 10 år. Med hjälp av bokstavsbrickor och god uppfinningsrikedom Spelregler 2-4 deltagare från 10 år Med hjälp av bokstavsbrickor och god uppfinningsrikedom bildar ni ord kors och tvärs över spelplanen. Prova gärna spelvarianter där ni an vän der pilar och svarta brickor

Läs mer

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. 111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man

Läs mer

2-6 SPELARE. SPELETS MÅL Att bli den enda spelaren kvar i spelet sedan alla andra har gått i konkurs.

2-6 SPELARE. SPELETS MÅL Att bli den enda spelaren kvar i spelet sedan alla andra har gått i konkurs. Om du redan kan Monopol och vill spela ett snabbare spel: 1. I samband med spelförberedelserna blandar bankiren lagfartskorten och delar ut två kort till varje spelare. Spelarna ska genast betala bankiren

Läs mer

Betygskriterier MATEMATIK. År 9

Betygskriterier MATEMATIK. År 9 Betygskriterier MATEMATIK År 9 Allmänt ha förvärvat sådana kunskaper och färdigheter, som behövs för att kunna lösa problem i vardagliga situationer fortsätta studierna Vid bedömning av en elev tar man

Läs mer

VÄRDERINGSÖVNINGAR. Vad är Svenskt?

VÄRDERINGSÖVNINGAR. Vad är Svenskt? VÄRDERINGSÖVNINGAR Vad är Svenskt? Typ av övning: Avstamp till diskussion. Övningen belyser hur svårt det är att säga vad som är svenskt och att normen vad som anses vara svenskt ändras med tiden och utifrån

Läs mer

Lösningar till linjära problem med MATLAB

Lösningar till linjära problem med MATLAB 5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:

Läs mer

Individuellt Mjukvaruutvecklingsprojekt

Individuellt Mjukvaruutvecklingsprojekt Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel

Läs mer

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.

Läs mer

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 1. Bestäm tyngdaccelerationen på tre olika sätt

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 1. Bestäm tyngdaccelerationen på tre olika sätt INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 1 Läge, hastighet och acceleration Bestäm tyngdaccelerationen på tre olika sätt Uppsala 2015-09-29 Instruktioner Om laborationen: Innan

Läs mer

1,2C 4,6C 1A. X-kuber. strävorna

1,2C 4,6C 1A. X-kuber. strävorna 1,2C 4,6C 1A X-kuber problemlösning begrepp resonemang geometri skala strävorna Avsikt och matematikinnehåll X-kuber är en aktivitet som får olika avsikt och matematikinnehåll beroende på hur och i vilket

Läs mer

Sammanfattning på lättläst svenska

Sammanfattning på lättläst svenska Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när

Läs mer

Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer.

Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer. 1 Matematik som verktyg Antag att vi har en funktion som är en rät linje, y = 1 3x. Eftersom relationen mellan x och y är linjär räcker det med att vi hittar två punkter (två talpar) på linjen för att

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

METODBOK INNOVATIONSUPPHANDLING

METODBOK INNOVATIONSUPPHANDLING Start Syfte METODBOK INNOVATIONSUPPHANDLING Behov uppstår Behovs- och marknadsanalys Innovationsvänlig Val av förfarande Genomförande av Upphandling Förstudie Om oss Forum Kontakt Behov Marknadsanalys

Läs mer

Begrepp Variabel, parameter, linjär funktion, koordinater, skärningspunkt, värde (mätvärde), spridningsdiagram (punktdiagram).

Begrepp Variabel, parameter, linjär funktion, koordinater, skärningspunkt, värde (mätvärde), spridningsdiagram (punktdiagram). Aktivitetsbeskrivning Denna aktivitet är en typisk tillämpning av grafritande räknare. Genom att studera kostnaden för olika taxiresor undersöker eleverna linjära samband på ett flertal olika sätt. Matematiskt

Läs mer

Tentamen SSY041 Sensorer, Signaler och System, del A, Z2

Tentamen SSY041 Sensorer, Signaler och System, del A, Z2 Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens

Läs mer

TIMREDOVISNINGSSYSTEM

TIMREDOVISNINGSSYSTEM TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning med begreppsförklaring

Läs mer

Får nyanlända samma chans i den svenska skolan?

Får nyanlända samma chans i den svenska skolan? Får nyanlända samma chans i den svenska skolan? Sammanställning oktober 2015 De nyanlända eleverna (varit här högst fyra år) klarar den svenska skolan sämre än andra elever. Ett tydligt tecken är att för

Läs mer

Manual för BPSD registret. Version 6 / 2013 06 17

Manual för BPSD registret. Version 6 / 2013 06 17 Manual för BPSD registret Version 6 / 2013 06 17 Logga in Logga in till registret överst till höger på hemsidan. (Observera att du hittar testdatabasen längre ner på hemsidan) Fyll i ditt personliga användarnamn

Läs mer

Visma Proceedo. Att attestera - Manual. Version 1.4. Version 1.4 / 160212

Visma Proceedo. Att attestera - Manual. Version 1.4. Version 1.4 / 160212 Visma Proceedo Att attestera - Manual Version 1.4 1 Innehåll Version 1.4... 1 INNEHÅLL... 2 1) ALLMÄNT OM ATTESTERING/GODKÄNNANDE... 3 2) ATTESTNIVÅER OCH DELEGERING... 4 3) ESKALERING... 5 3.1 Egna beställningar...

Läs mer

Befolkningsuppföljning

Befolkningsuppföljning RAPPORT Stadskontoret Befolkningsuppföljning 30 juni 2014 Malmö stadskontor Avdelningen för samhällsplanering Arbetsgrupp: Maria Kronogård Linda Herkel, Layout Fredrik Johansson, Fotograf 8 september 2014

Läs mer

SOLCELLSBELYSNING. En praktisk guide. Råd & Tips SOLENERGI LADDA MED. Praktiska SÅ TAR DU BÄST HAND OM DIN SOLCELLSPRODUKT

SOLCELLSBELYSNING. En praktisk guide. Råd & Tips SOLENERGI LADDA MED. Praktiska SÅ TAR DU BÄST HAND OM DIN SOLCELLSPRODUKT SOLCELLSBELYSNING En praktisk guide LADDA MED SOLENERGI Praktiska Råd & Tips SÅ TAR DU BÄST HAND OM DIN SOLCELLSPRODUKT Kom igång med 3 solenergi fördelar med Solcell Mi l jö vä n l i g t Enkelt Praktiskt

Läs mer

Hur utvecklar man användbara system? Utvärdering. Användbarhet handlar om kvalitet. Utvärdering. Empiriska mätningar. Metoder

Hur utvecklar man användbara system? Utvärdering. Användbarhet handlar om kvalitet. Utvärdering. Empiriska mätningar. Metoder Hur utvecklar man användbara system? Utvärdering Lära sig organisationen Förstå användarens situation Förstå användarens språk Involvera användare i processen Utvärdera, testa och vara LYHÖRD! Användbarhet

Läs mer

4.4. Mera om grafiken i MATLAB

4.4. Mera om grafiken i MATLAB 4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den

Läs mer