Matematisk statistik

Relevanta dokument
Betygsgränser: För (betyg Fx).

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN Datum: 16 okt 09

Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Stokastiska variabler

TENTAMEN I MATEMATISK STATISTIK

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

θx θ 1 om 0 x 1 f(x) = 0 annars

================================================

Matematisk statistik TMS063 Tentamen

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Tentamen i Envariabelanalys 1

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ

Avd. Matematisk statistik

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

Ekvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp.

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

4.2.3 Normalfördelningen

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

TMS136: Dataanalys och statistik Tentamen med lösningar

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK,

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Lycka till! I(X i t) 1 om A 0 annars I(A) =

TAMS79: Föreläsning 9 Approximationer och stokastiska processer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL

Borel-Cantellis sats och stora talens lag

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Formelblad Sannolikhetsteori 1

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Introduktion till statistik för statsvetare

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(

TENTAMEN I MATEMATISK STATISTIK 19 nov 07

a) Beräkna E (W ). (2 p)

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Multiplikationsprincipen

Föreläsning G70 Statistik A

TAMS15: SS1 Markovprocesser

Föreläsning G04: Surveymetodik

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Tentamen i matematisk statistik

Föreläsning G70 Statistik A

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl

Genomsnittligt sökdjup i binära sökträd

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ

. Om man har n stycken valsituationer med k valmöjligheter var, är det totala antalet valmöjligheter k.

Grundläggande matematisk statistik

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.

b 1 och har för olika värden på den reella konstanten a.

MA2018 Tillämpad Matematik III-Statistik, 7.5hp,

F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik

Binomialsatsen och lite kombinatorik

= (1 1) + (1 1) + (1 1) +... = = 0

Analys av polynomfunktioner

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

DEL I. Matematiska Institutionen KTH

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

F10 ESTIMATION (NCT )

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.

2. Konfidensintervall för skillnaden mellan två proportioner.

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET

Transkript:

Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som helst Sriv am och persoummer på varje blad Dea tetameslapp får ej behållas efter tetamestillfället uta sa lämas i tillsammas med lösigar Poägfördelig och betygsgräser: Tetame ger maximalt 3 poäg Betygsgräser: För betyg A, B,, D, E rävs 3, 4,, 6 respetive poäg Kompletterig: poäg på tetame ger rätt till ompletterig (betyg Fx) Vem som har rätt till ompletterig framgår av betyget Fx på MINA SIDOR Kompletterig ser c:a två vecor efter att tetame är rättad Om ompletterig är godäd rapporteras betyg E, aars rapporteras F Uppgift (3p) Bara för dem som ite larat s För hädelsera A och B gäller att P ( A B) 8, P( A B) 3 och P ( B) Bestäm a) P ( A ), b) P( A B ), c) P( A B ) Uppgift (3p) Bara för dem som ite larat s 8 x, f ( x) < x för övrigt vara täthetsfutioe för e stoastis variabel ξ a) Visa att b) Bestäm vätevärdet E (ξ ) c) Bestäm mediae för ξ Uppgift 3 (3p) Bara för dem som ite larat s3 E forsare gjorde 6 mätigar för e ormalfördelade stoastis variabel X N(μ,σ) och fic följade resultat (σ oät): X:, 34, 6, 4, 4, 3 Bestäm ett % ofidesitervall för medelvärdet μ Uppgift 4 (3p) Vi sa placera 6 idetisa bollar i lådor L, L, L3, L4L a) På hur måga olia sätt a vi göra detta? b) I hur måga placerigar är både L och L4 tomma lådor? Var god väd

Uppgift (3p) Vid tillverig av e viss typ motståd blir resistase N(,) fördelad (ehet iloohm) Vad är saolihete att serieopplade sådaa motståd sall få e resistas mella och iloohm? Uppgift 6 (4p) Livslägde hos e eletrois ompoet K är e expoetialfördelad sv med medelvärdet 4 år a) Hur stor saolihete är att ompoete fugerar i mer ä 3 år? b) Ett system B som består av sådaa ompoeter fugerar om mist e, av de ompoeter, fugerar Bestäm saolihete att systemet B fugerar i mer ä 3 år Uppgift 7 (4p) Ma vill jämföra två metoder för mätig av e vis variabel som ases ormalfördelad med oäd stadardavvielse Ma har gjort mätigar med Metod och 7 mätigar med Metod Ma har fått följade observatioer: Metod : 6, 66, 66, 66, 67 Metod : 6, 6, 64, 68, 6, 68, 7 Ka ma med % saolihet påstå att det fis sillad mella metodera? Uppgift 8 (3p) Ett betjäigssystem a modelleras som M/M/3/ (dvs 3 betjäare och öplatser) Aomstitesitete är uder/miut och betjäigsitesitete för e betjäare är µ uder/miut a) Bestäm saolihetera p, p, p, p 3, p 4 och p b) Vad är saolihete att e ud avvisas Uppgift (3p) E ommuiatiosaal i ett datorät har apacitete K bitar/seud Till aale aommer meddelade eligt e Poissoprocess med aomstitesitete 4 meddelade/miut Meddeladea har e lägd som är expoetialfördelad med medelvärdet v bitar Vi atar att vi a modellera systemet som ett valigt M/M/ system med ödiscipli FFS ( First- ome- First- Served) Bestäm det mista värdet på K som erfordras, för att medelvärdet av totala tide i systemet blir T seuder Tips: Medeltid i systemet för e ud är T där µ betecar betjäigsitesitet ( µ betecar aomstitesitet) Uppgift (3p) Låt X vara e följd av biomialfördelade sv sådaa at P( X ) p ( p) Ata att p är er ostat då Visa att X går mot Poissofördelig dvs visa att lim( P( X )) e! Lyca till

FAIT Uppgift (3p) Bara för dem som ite larat s För hädelsera A och B gäller att P ( A B) 8, P( A B) 3 och P ( B) Bestäm a) P ( A ), b) P( A B ), c) P( A B ) Lösig: a) Frå P( A B) P( A) + P( B) P( A B) får vi 8 P ( A) + 3 P( A) 6 Därmed P( A c ) P( A) 4 b) Eligt De Morgas lagar gäller P ( A B ) P(( A B) ) 3 7 c) Frå ovaståede diagram har vi P( A B ) P( A) P( A B) 6 3 3 Svar: a) P ( A c ) 4 b) P ( A B ) 7 c) P ( A B ) 3 Uppgift (3p) Bara för dem som ite larat s x f ( x) 8, < x för övrigt vara täthetsfutioe för e stoastis variabel ξ a) Visa att b) Bestäm vätevärdet E (ξ ) c) Bestäm mediae för ξ

Lösig: 8 x a) x dx 8 x b) E( x ) x x dx x dx c) Mediae är lösige till evatioe m m 8 x x dx m m Svar: a) Se bevis b) E ( ξ ) c) m Uppgift 3 (3p) Bara för dem som ite larat s3 E forsare gjorde 6 mätigar för e ormalfördelade stoastis variabel X N(μ,σ) och fic följade resultat (σ oät): X:, 34, 6, 4, 4, 3 Bestäm ett % ofidesitervall för medelvärdet μ Lösig: Lösig: x x + x + + x,

variase s ( x i x) i 6 / 4 s Variase 6 73878 Frå formelsamlig (sida 6 rad - 6- har vi α / t 76 Kofidesitervall: σ σ 73878 73878 x tα /, x + tα / ) ( 76, + 76 ) 6 6 ( (4, 366) Svar: (4, 366) Uppgift 4 (3p) Vi sa placera 6 idetisa bollar i lådor L, L, L3, L4L a) På hur måga olia sätt a vi göra detta? b) I hur måga placerigar är både L och L4 tomma lådor? Lösig: a) Vi betratar evivalet problem: Atalet permutatioer av bostäver I, väggar ( 6 st) och O ( 6 st) där varje permutatio måste börja och sluta med I (aars hamar bollar utaför lådora) T ex följade placerig svarar mot permutatioe I O O I O I I O O I O I Eftersom varje permutatio måste börja och sluta med I, permuterar vi fatist 4 bostäver I och 6 bostäver O (totalt bostäver)! Atalet sådaa permutatioer är P 4,6() (4!) (6!) b) Om två lådor är alltid tomma, placerar vi 6 bollar i tre lådor med samma resoemag som i 8! a-dele har vi att atalet sådaa permutatioer är P,6(8) 8 (!) (6!)

Svar: a) b) 8 Uppgift (3p) Vid tillverig av e viss typ motståd blir resistase N(,) fördelad (ehet iloohm) Vad är saolihete att serieopplade sådaa motståd sall få e resistas mella och iloohm? Lösig: Låt ξ vara resistase av motståd ummer och η ξ + + ξ + ξ Då gäller ηη NN( ; ), d v s ηη NN(; ) Saolihete P( η ) F() F() Φ( ) Φ( ) Φ ( 4) Φ( 4) 87 7 Svar: 7 Uppgift 6 (4p) Livslägde hos e eletrois ompoet K är e expoetialfördelad sv med medelvärdet 4 år a) Hur stor saolihete är att ompoete fugerar i mer ä 3 år? b) Ett system B som består av sådaa ompoeter fugerar om mist e, av de ompoeter, fugerar Bestäm saolihete att systemet B fugerar i mer ä 3 år Lösig: Låt ξ,,, beteca livslägde hos e ompoet Då är ξ Eξp() Vätevärdet av ξ är µ µ 4 Därmed x Exp( ) 4 Därmed (olla formelblad) t t / 4 F( t) e e 4 3/ 4 a) p P( ξ > 3) ( 3) (3) ( 3/ P ξ F e ) e 474 b) Saolihete att ige ompoet fugerar i mer ä 3 år är P( ige) ( p) ( p) ( p) ( p) Saolihete för mist e fugerade ompoet är ( 474) 4

P (mist e) P(ige) 4 6 Svar a) 474 b) 6 Uppgift 7 (4p) Ma vill jämföra två metoder för mätig av e vis variabel som ases ormalfördelad med oäd stadardavvielse Ma har gjort mätigar med Metod och 7 mätigar med Metod Ma har fått följade observatioer: Metod : 6, 66, 66, 66, 67 Metod : 6, 6, 64, 68, 6, 68, 7 Ka ma med % saolihet påstå att det fis sillad mella metodera? Lösig: Problemet hadlar om två sticprov med oät σ Vi aväder följade formler (se formelblad): x y t * där σ α / ( ( Beräigar ger + * ) σ ) σ x + ( ) σ + +, y x y + t α / ( + * ) σ + x 6, σ x 7 y 667487, σ y 86, * σ 7734 t () α / 8 Kofidesitervallet för sillade mella medelvärdea är K[ 44, ] Eftersom ligger i itervallet a vi INTE påstå med % saolihet att det fis sillad mella metodera Svar: Eftersom ligger i itervallet a vi INTE påstå med % saolihet att det fis sillad mella metodera Uppgift 8 (3p) Ett betjäigssystem a modelleras som M/M/3/ (dvs 3 betjäare och öplatser) Aomstitesitete är uder/miut och betjäigsitesitete för e betjäare är µ uder/miut a) Bestäm saolihetera p, p, p, p 3, p 4 och p b) Vad är saolihete att e ud avvisas Lösig: a) Diagrammet med övergågsitesiteter:

Med hjälp av teori för födelsedödsprocesser har vi följade relatioer mella de statioära saolihetera p och p : 3, p p, p 3 p, p 4 p, µ µ µ µ µ µ µ µ µ p p µ 3 4 p p µ µ µ 33µ 3 3 4 Härav p p, p 3 p, p 3 6467 p, p 4 738 p, p 8844 p För att bestämma p aväder vi relatioe p + p + p + p + p + p och får 3 4 37746 p p 7736 Därefter p p 8874 p 3 p 366346,

p 3 6467 p 76, p 4 738 p 64373, p 8844 p 3637 b) Saolihete att e ud avvisas är p 3637 Uppgift (3p) E ommuiatiosaal i ett datorät har apacitete K bitar/seud Till aale aommer meddelade eligt e Poissoprocess med aomstitesitete 4 meddelade/miut Meddeladea har e lägd som är expoetialfördelad med medelvärdet v bitar Vi atar att vi a modellera systemet som ett valigt M/M/ system med ödiscipli FFS ( First- ome- First- Served) Bestäm det mista värdet på K som erfordras, för att medelvärdet av totala tide i systemet blir T seuder Tips: Medeltid i systemet för e ud är T där µ betecar betjäigsitesitet ( µ betecar aomstitesitet) Lösig: a) Vi sa aväda miut som tidsehet Vi har 4 meddelade/miut Betjäigsitesitet som rävs för att få Tsec /6 / mi bestämmer vi med hjälp av formel T som ger µ 4 µ µ 4 µ Alltså för att få T/ mi rävs det betjäigsitesitet µ meddelade per miut Eftersom meddelade har i geomsitt bitar drar vi slutsats att vi behöver e överförigsapacitet med mist K bitar per miut86667 bitar per seud Svar: K bitar per miut86667 bitar per seud Uppgift (3p) Låt X vara e följd av biomialfördelade sv sådaa at P( X ) p ( p) Ata att p är er ostat då Visa att X går mot Poissofördelig dvs visa att lim( P( X Bevis: )) e!

Låt vara ett fixt tal Vi har p p X P ) ( lim )) ( ( lim +! ) )( ( im + ) )( ( im! im! (*)! e e! VSB Förlarig av (*): Om, eftersom är ett fixt tal, har vi i uttrycet (*) i, e ad