XIV. Elektriska strömmar

Storlek: px
Starta visningen från sidan:

Download "XIV. Elektriska strömmar"

Transkript

1 Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets Anlogi med sluten krets: vttenkrets Vätsk Pump Anteckningr uppdterde 30 decemer 200. Anteckningrn serr sig till stor del på Tommy Algrens nteckningr som finns tillgänglig på kursens emsid. Elektromgnetism, Ki Nordlund 2009 Elektromgnetism, Ki Nordlund XV. Elektrisk strömmr XV.. Eneten för elektrisk ström Vd är egentligen elektricitet? Melln två ledre finns en krft/längdenet:. El oc strömkällor, tterier Mgnet fält Värme df dl = k 2 r S-eneten för ström mpere A definiers som följnde: Den konstnt strömmen mpere är strömmen som producerr en krft newton per meter melln två prllell oändligt lång ledre som är i vkuum oc vrs vstånd till vrndr är meter. Konstnten k ges v: 2 F l Vd änder kring en metlltråd som leder elektricitet?. Ledningen lir vrm 2. Det lir en krft melln ledningrn 3. Ett mgnetfält ilds runt ledningen Krft + - Btteri df dl = r () r Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund

2 XV.2. Elektriskt motst nd XV.3. Elkretsr Elstro m leder till uppv rming enligt Hel v rt modern sm lle grundr sig p elkretsr denergi 2 P = = konstnt dt (2) nte r mkroskopisk: ocks dtorcips r i grunden (extremt komplicerde) elkretsr Modern dtorcip: > komponenter som exkt ll fungerr! [Wikipedi:ntegrted circuit] Denn konstnt r mn gett nmnet resistns : [] = W/A2 = Ω (Om). Symoler fo r elektrisk komponenter Mteril fo r vilk ovnst ende ekvtion g ller klls fo r omisk mteril. Metller r i llm net omisk Metllers elektrisk motst nd eller resistns oeroende v stro mmen: metll = (T ) + cke omisk mterils motst nd eror dessutom v stro mmen som g r genom dess: = (, T ) esistnsen r i llm net oeroende v mgnetf lt: (M ) = konstnt. - Btteri eller spänningskäll Motstånd Kondenstor A V Ampermätre Spänningsmätre Undntg: speciell GM-mteril ( gint mgnetoresistns ): rdskivors l suvud, Noelpris 2007 Stro m i en ledning orsks v en sp nningsskillnd melln ledningens ndor JJ J Elektromgnetism, Ki Nordlund Tempertureroendet v resistns: JJ J Elektromgnetism, Ki Nordlund Ju sto rre sp nningsskillnden melln en omisk ledres ndor r, desto sto rre stro m g r genom ledren Dett klls Oms lg oc skrivs mtemtiskt: Suprledre Hlvledre Metll V = = T T 0 Tc P (3) T Dett definierr lvledre oc suprledre! V r sp nningen o ver motst ndet: [V] = ΩA = W/A = V (volt). Hlvledres eroende tom. nnu strkre: exponentiellt Viktig formler mn f r fr n ekv. (2) oc (3): Orsk i metller: smnd med tomvirtioner Orsk i lvledre: lddnings rres ntl 2 P = = V = Suprledre: resistiviteten r exkt noll vid temperturer som r mindre n den kritisk temperturen Tc. V2 (4) L gtempertursuprledre: Tc < 20K ; o gtempertursuprledre: Tc > 20K Orsk ytterst komplicerd, oc inte ens k nd i o gtempertursuprledre! Elektromgnetism, Ki Nordlund 2009 JJ J Att uppett n got med j lp v resistns klls omisk uppettning. : vnlig kokpltt. 6 Elektromgnetism, Ki Nordlund 2009 JJ J 8

3 Grundläggnde ekvtioner om kretsrs eteende kn ärleds väsentligen utgående från energins evrelselg. Motstånd kopplde i serie Krets med tre motstånd kopplde i serie Effekten som förruks i dess motstånd då strömmen går genom kretsen: P totlt = = ( ) Ekvivlent krets Denn krets kn nu ersätts med endst ett motstånd som ger smm motstånd som de tre tillsmmns P totlt = 2 Vi ser lltså tt motstånd kopplde i serie kn dders för tt ge det totl motståndet = N (5) Spänningskällor En idel spänningskäll r ingen resistns melln polern, men i verkligeten så finns det lltid en inre resistns som måste ekts. del upp en verklig käll så tt den r en idel spänningskäll oc en inre resistns i. Yttre motståndet kn också gör något nyttigt, ex. lmp, motor, dtor. På smm sätt som för spänningsfördelren, får vi E = ( + i ) = + i = V + i V = E i - + i Verksmm spänningen som källn ger, V, är mindre ju större strömmen är! Kortslutning för tt en spänningskäll skll funger r, måste strömmen i kretsen E/ i i Om minskr, ökr strömmen genom kretsen till ett mximivärde mx = E/ i. Dett klls för kortslutning: förstör tteriet oc kn t.om. orsk rnd. Säkringr V mx V Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund 2009 Spänningsfördelre En spänningsfördelre: spänningskäll oc två motstånd Spänningen för spänningskälln eteckns är med E som r smm enet som spänning V, volt. Strömmen i kretsen får vi från: E = = ( + ) E = + Spänningsskillnden meln oc lir då - + V Spänningskällor i serie För fler spänningskällor kopplde i serie kn mn räkn iop den totl spänningen på liknnde sätt som för motstånd: E = E + E 2 + E 3 + = j Också de intern resistnsern kn summers på liknnde sätt: = i, + i,2 + i,3 + = j E j (6) j (7) V = = E + Noter lltså tt mn är uttryckligen mäter spänning: mätningen påverkr inte kretsens funktion lls Vi ser tt med en spänningsfördelre, kn vi få olik värden på spänningen V (0< V E), genom tt ändr på de två motståndrns värden. Dett kn nvänds i kretsr för tt sänk spänningen. Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund

4 XV.4. esistivitet Betrkt nu en omisk ledre som ett ojekt med ändlig storlek Dett möjliggör tt definier resistns per mterilmängd mterilkonstnt. figurens geometri är strömmen proportionell till re A oc inverst proportionellt till längd L: A/L. Dett ger från V = tt resistnsen L/A. Proportionlitetskonstnten klls för mterilets resistivitet: ρ [ρ] = Ωm. Dett är en konstnt för ett mteril då den efinner sig i smm tempertur oc fs. Den totl resistnsen ges v formeln: = ρ L A Oft nvänds också det invers värdet på resistiviteten, sos klls för konduktiviteten: L (8) modern dtorcips r ledrn dimensioner v storleksordningen 00 nm oc spänningr kring någr volt. Ant tt en delkomponent i en dtorcip är en rätlocksformd kopprledre med längden L = 000 nm oc redden oc öjden B = H = 50 nm. Om en konstnt spänning på 5 V sätts över ledningen, ur länge skulle det t tt den etts upp till kopprs smältpunkt om ingen värmeledning skulle ske till omgivningen? Lösning: Omisk uppettningseffekten är nu (från ekvtion 4 oc 8) Effekt är energi över tid, så: P = V 2 = V 2 ρ L A = V 2 BH ρl E t = P = V 2 BH E t = ρl V 2 = EρL BH V 2 BH ρl För tt eräkn ur länge det tr tt nå smältpunkten, kn vi nvänd den specifik värmekpciteten: (jfr. lärooken kpitel.4): (0) () σ = ρ (9) c = E M T = E ρ m Volym T = E ρ m LBH T (2) där vi etecknt densitet med ρ m för tt skilj från resistiviteten ρ. Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund värden: Ämne esistivitet ρ (Ωm) Ledre Silver (Ag) (metller) Koppr (Ag) Järn (Fe) Kolnnorör (C)* 0 6 Semimetll Vismut (Bi) Hlvledre Kisel (Si) 30 Grfit (C) soltor Gls Dimnt (C) 0 8 Beror på typen v nnoröret, dett för metllisk Semimetll definiers elt enkelt som en metll med sämre ledningsförmåg än de vnlig. Härifrån kn vi lös ut E som funktion v c: oc sätt in dett i ekvtionen för tiden: E = cρ m LBH T (3) t = cρ mlbh T ρl V 2 BH = cρ ml 2 T ρ V 2 (4) För koppr är värmekpciteten c = 385 J/kgK (vi ntr nu tt den är oeroende v tempertur, vilket nog iofs. inte stämmer), densiteten ρ m = 8960 kg/m 3 oc smältpunkten 358 K så T = = 058 K. nsättning v dess oc de övrig värden (L = m, ρ = Ωm oc V = 5 V) ger t = s = 0.5ms (5) Alltså skulle kopprtråden rinn sönder s.g.s. omedelrt utn värmeledning! Uppettning är ett llvrligt prolem i modern dtorer! Noter tt uppettningstiden eror på L2 : desto mindre L, desto snre uppettning! Jfr. mkroskopisk tråd: L = 0.0 m t = 4600 s = 4 timmr! Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund

5 Strömdensitet Strömdensitet: ström dividert med den vinkelrät ren som strömmen går igenom J = Are för vilken gäller följnde; r(0) = konstnten P =, oc r() = + Q = Q =, vilket också är riktningskoefficienten (dr/dx) för linjen. Vi r då tt ekvtionen för ren som en funktion v positionen x är ( A(x) = πr(x) 2 = π + 2 ( ) x) (8) fll strömdensiteten inte är konstnt i en ledre, definiers den som J = lim A 0 A n där riktningen för strömdensiteten är vinkelrät mot reeneten A, där n är enetsvektorn för ytnormlen. Den totl strömmen som går genom en ledre fås genom tt integrer strömdensiteten över el tvärsnittsren = J da (6) Are J n Totl resistnsen för locket får vi genom integrtion = 0 d = ρ π 0 dx ( + Q x) 2 (9) där Q (= ) konstnten nvänds för tt gör formeln kortre. För tt integrer dett, nvänder vi liketen ( ) d Q = (20) dx + Qx ( + Qx) 2 Vi skriver lltså integrlen i ekvivlent form = ρ Q dx (2) πq ( + Qx) 2 0 vilket ger = ρ πq 0 ( + Qx) = ρ [ πq + Q ] (22) Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund En kpd kon r öjden oc dess snittytor r rdiern oc, se ild. Mterilets resistivitet är ρ oc nt tt strömtäteten genom vrje tvärsnittsyt är oeroende v vståndet till symmetrixeln. Härled en formel för kroppens resistns melln snittytorn. = ρ π( ) = ρ π [ ] = ρ + π( ) [ ] Är resulttet rätt? fll vi r en cylinder (kon med = ) får vi tt = ρ Are = ρ π (23) (24) 2 vilket är OK! Lösning Vi nvänder ekvtionen: d = ρ dx A för tt eräkn den totl resistnsen. För tt få ren som en funktion v positionen, eräknr vi först rdien för konen som en funktion v x, dien r är en linjär funktion v x Konens die x r(x) = P + Q x (7) Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund

6 esistnsens tempertureroende esistiviteten för en metll ökr vnligtvis när temperturen ökr. En linjär funktion kn eskriv dett r: ρ(t ) = ρ [ + α(t T )] (25) ρ är resistiviteten given vid temperturen T oc α är resistivitetskoefficienten värden: Mteril α [K ] Aluminium Grfit Koppr Konstntn Tolv likdn motstånd är kopplde i en ku till en krets som viss i figuren. Vd är resistnsen melln två örn som är digonlt motstående till vrndr, (melln punktern oc )? Lösning En ekvivlent krets är kretsen redvid, där vi ser tt det ekvivlent motståndet för de tre motstånden när är /3, vilket också är det ekvivlent motståndet för de tre motstånden när. De 6 motstånden i mitten kn ges ekvivlent som /6. Nu får mn det totl motståndet melln oc som en seriekoppling = = 5 6 Exmpel En luminiumtråds resistns vid 0 C är 00 Ω. Vd är dess resistns vid 50 C? 50 = 0 [ + α(50 0)] 00 Ω[ ] 20 Ω Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund Motstånd kopplde prllellt För prllellt kopplde motstånd är spänningsskillnden smm för ll mot- stånd, vilket ger tt strömmen genom motståndet i är: i = V / i. Totl strömmen är då lik med den ström som skulle gå i ekvivlentmotståndet: i i = = V = V + V + V (26) Dett ger storleken på det ekvivlent motståndet som = i i = (27) XV.5. Kircoffs lgr Kircoffs lgr tillåter tt eräkn spänningsskillndern oc strömmrn i enkl elektrisk kretsr. Enkl etyder är tt komponentern är v någr grundläggnde typer: motstånd, kondenstorer, mm. som klls pssiv komponenter. Den först lgen säger tt: Totl ntlet lddningr evrs vid vrje knutpunkt i = 0 (28) i 2 3 = 2+ 3 Mest ström går genom det motstånd som r den minst resistnsen Totl motståndet är mindre än för det minst motståndet i kretsen. Ekvivlent krets = Den ndr lgen eskriver ur lddningsärrns (elektroner) potentilskillnd i en krets ändrr. En lddningsärre som går runt kretsen ett elt vrv, måste vr i smm potentil som innn. Summn v potentilskillndern runt en krets är noll V i = 0 (29) i Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund

7 För tt ättre förstå dess lgr, tittr vi på ett pr exempel: ilden nedn, r vi två spänningskällor oc tre motstånd: E = 2.0 V, E 2 = 8.0 V, = 4.0 Ω, = 4.0 Ω, 3 = 2.0 Ω. Beräkn strömmen genom vrje motstånd. vilket är exkt smm ekvtioner som erölls med Kircoffs ndr lg. Vilken metod mn nvänder, kn envr själv estämm. Ekvtionern lir färre men lite mer komplicerde med enrt Kircoffs ndr lg. 2 2 Vi tittr på spänningsskillndern över vrje komponent runt kretsen. Kirscoffs ndr lg ger följnde ekvtioner, där den övre ekvtionen får vi då vi följer med örjn vid E 3 E ( 2 ) = 0 E ( 2 ) = 0 där potentilskillnden är positiv då strömriktningen är från till + genom en spännings-käll. Potentilskillnden för ett motstånd är lltid negtiv då mn följer strömmen. nsätt-ning v värden ger tt strömmrn lir =.25 A 2 = 0.50 A Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund Negtiv strömmen för 2 etyder tt riktningen vr fel vld. Den går lltså i motstt riktning än vd som är ritt i figuren. Slutlig strömmrn genom vrje motstånd lir ( ) =.25 A ( ) = 2 =.75 A ( 3 ) = 2 = 0.5 A Vi kn också gör eräkningrn i föregående exempel med jälp Kircoffs först lg Energin som går förlord då elektrisk energi lir till värme i en ledre klls joulevärme. dett exempel, skll vi plner ur elektricitetsförsörjningen till en std orde sköts. ilden redvid ser vi en scemtisk ild v situtionen. Stden eöver en effekt på 00 MW. Beräkn strömmen i ledningrn melln stden oc krftverket oc ur mycket effekt som går förlord i ledningrn, ifll spänningen över ledningrn är ) V oc ) V Lösning Strömmen i ledningrn är = P V Krftverk oc effekten i ledningrn som går till värme är P = 2 Totl resistnsen för ledningrn är = (5+5) Ω = 0 Ω vilket ger ) 5 5 Std E 3 = 0 E = 0 = vilket ger, då 3 = - 2, tt de två överst ekvtionern lir E ( 2 ) = 0 E ( 2 ) = 0 ) = W V = 400 A P = (400 A) 2 0 Ω = W = W V = 04 A Elektromgnetism, Ki Nordlund Elektromgnetism, Ki Nordlund

8 P = (0 4 A) 2 0 Ω = 0 9 W fllet ) ser vi tt värmeeffekten som går förlord är W / W 00% =.6 % v nyttoeffekten som går till stden, fllet ) är effekten förlord i ledningrn som värme tio gånger större än effekten som stden får, ( 0 9 W / W 00% = 000 % ). Det lönr sig lltså tt överför elektrisk energi vid så ög potentil som möjligt för tt minimer strömmen oc därmed effektförlustern i ledningrn. Å ndr sidn inneär ögre spänning tt det eövs större oc därmed dyrre trnsformterer i stden för tt sänk spänningen till 220 V, så det el lir en kostndslns Elektromgnetism, Ki Nordlund

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder I Anteckningr uppdterde 18 jnuri 2009. Anteckningrn serr sig till stor del på Tommy Ahlgrens nteckningr som finns tillgänglig på kursens hemsid. Elektromgnetism I, Ki Nordlund

Läs mer

Elektromagnetismens grunder I

Elektromagnetismens grunder I Elektromagnetismens grunder I Anteckningar uppdaterade 18 januari 2009. Anteckningarna baserar sig till stor del på Tommy Ahlgrens anteckningar som finns tillgängliga på kursens hemsida. Elektromagnetism

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

Tentamen i ETE115 Ellära och elektronik, 25/8 2015

Tentamen i ETE115 Ellära och elektronik, 25/8 2015 Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar 15825 93FY51 1 93FY51/ STN1 Elektromgnetism Tent 15825: svr och nvisningr Uppgift 1 Från Couloms lg och E F/q hr vi uttrycket: E 1 4πε ρl dl r Vi väljer cylindrisk koordinter och sätter r zẑ ˆR och dl

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets. (7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde

Läs mer

Tentamen i ETE115 Ellära och elektronik, 3/6 2017

Tentamen i ETE115 Ellära och elektronik, 3/6 2017 Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Tentamen i ETE115 Ellära och elektronik, 4/1 2017

Tentamen i ETE115 Ellära och elektronik, 4/1 2017 Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Magnetfälten beskrivs av följande Maxwells ekvationer

Magnetfälten beskrivs av följande Maxwells ekvationer 1 Mgnetosttik Vi ämnr nu eektrosttiken och åter sttionär strömmr fyt. Det inneär tt fäten fortfrnde är sttisk och vi kn eräkn de eektrisk och mgnetisk fäten seprt. De koppr inte ti vrndr. Mgnetfäten eskrivs

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2013-01-09 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

Lösningar till repetitionstentamen i EF för π3 och F3

Lösningar till repetitionstentamen i EF för π3 och F3 Lösningr till repetitionstentmen i EF för π3 oh F3 Lösning problem Från Poyntingvektorn (r, t = E(r, t H(r, t = A ẑ η 0 konstterr vi tt vågens utbredningsriktning ê är vilket leder till tt dess vågvektor

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Rätt svar (1p): u A. α β A B. u B. b) (max 3p) I början har endast puck A rörelseenergi: E AB,i = 1 2 m Av 2 A = 1 2 m Au 2 A

Rätt svar (1p): u A. α β A B. u B. b) (max 3p) I början har endast puck A rörelseenergi: E AB,i = 1 2 m Av 2 A = 1 2 m Au 2 A 1 I ett experiment hängdes vikter med olik stor mss i en lätt fjäder. Vikten drogs neråt och perioden för den hrmonisk oscilltionen som då uppstod mättes. Frekvensen för oscilltorn f = 2π 1 k mv. Nednstående

Läs mer

Lösningar till uppgifter i magnetostatik

Lösningar till uppgifter i magnetostatik Lösningr till uppgifter i mgnetosttik 16-1-14 Uppgift 1 Metodvl: Biot-Svrts lg ing symmetrier som kn nvänds. Biot-Svrts lg evluerd i origo r = är B = µ 4π dr r r = µ dr r 4π r Linjeelementet dr bestäms

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Tentamen i EITF90 Ellära och elektronik, 28/8 2018

Tentamen i EITF90 Ellära och elektronik, 28/8 2018 Tentmen i EITF9 Ellär och elektronik, 8/8 8 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl Tentmen i Elektromgnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 9 ugusti, 8, kl. 14. 19., lokl: MA9A Kursnsvrig lärre: Gerhrd Kristensson, tel. 45 6 & Anders Krlsson tel.

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2012-08-16 kl. 8.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor

Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor Elektroteknik MF1016 föreläsning 11 Permnetmgnet Synkronmotor (I oken 7. 8 PM-synkronmotorn) Likheter oh skillnder med likströmsmskinen Enfsig modell (klls även per fs modell ) Ström oh moment Vrvtl oh

Läs mer

Användande av formler för balk på elastiskt underlag

Användande av formler för balk på elastiskt underlag Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning:

anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning: Dugg i Elektromgnetisk fältteori för F. EEF31 7-11-4 kl. 8.3-1.3 Tillåtn hjälpmedel: BETA, Physics Hndbook, Formelsmling i Elektromgnetisk fältteori, Vlfri klkyltor men ing egn nteckningr utöver egn formler

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 17 december, 2007, kl. 8 13, lokal: Gasque

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 17 december, 2007, kl. 8 13, lokal: Gasque Tentmen i Elektromgnetisk fältteori för π och Modellering och simulering inom fältteori för F, 17 decemer, 2007, kl. 8 1, lokl: Gsque Kursnsvrig lärre: Gerhrd Kristensson, tel. 222 45 62 & Anders Krlsson

Läs mer

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7. Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Att mäta, hur mäter vi och vilka referenser använder vi?

Att mäta, hur mäter vi och vilka referenser använder vi? tt mät, hur mäter vi oh vilk referenser nvänder vi? SI sstemet (Sstème Interntionl d'unités) som är ett metriskt sstem. Dett sstem är interntionellt vedertget inom forskrvärlden oh är det som lärs ut i

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter

Läs mer

c) (max 2p) Arbetet som utförs av gasen är lika med arean under p(v)-grafen. Antalet signifikanta siffror i svaret är två. Graf.

c) (max 2p) Arbetet som utförs av gasen är lika med arean under p(v)-grafen. Antalet signifikanta siffror i svaret är två. Graf. Diplomingenjörs- och rkitektutildningens gemensmm ntgning - di-ntgning 2018 Ingenjörsntgningens pro i fysik 30.5.2018, modellösningr A1 I en cylinder med en kol finns n = 2,04 mol en idel gs. Det tillförs

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m.

Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m. SVESK FYSIKESMFUDET Fysiktälingen 006. Lösningsörslg. Uppgit. Vi år nt tt kinetisk energi öergår i lägesenergi, och tt tyngdpunkten lytes 6,5 m. m mgh gh t s gh 00 9,8 6,5 8,85 8,9 s Stöten stången mot

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1 Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

y > 0, 0 < y <1 y växande, 0 < y < 1

y > 0, 0 < y <1 y växande, 0 < y < 1 Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger

Läs mer

Tentamen i elektromagnetisk fältteori för E

Tentamen i elektromagnetisk fältteori för E Tentmen i elektromgnetisk fältteori för E måndg, 6 dec 3, kl. 8-3, Vic:A-C Del : flervlsfrågor (p) OBS. Endst svr (A)-(E) efterfrågs. Ingen motivtion behövs i Del.. Guss lg kn inte nvänds för tt förenkl

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer