Tentamen ellära 92FY21 och 27

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamen ellära 92FY21 och 27"

Transkript

1 Tentmen ellär 92FY21 och kl Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst uppgift nges i nslutning till vrje uppgift. Tillåtn hjälpmedel är miniräknre och Physics Hndook. Lösningrn till tentmen kommer tt nslås på kursens hemsid direkt efter tentmen. För etyget godkänd (G) krävs 1 poäng och för väl godkänd (VG) 21 poäng. Eventuell onuspoäng kommer tt dders till poängen på tentmen upp till mxpoängen. Lyck till! /Dniel Söderström

2 1. Två lång rk ledre ligger prllellt som figuren nedn visr och för strömmr med storlekrn I 1 respektive I 2 i olik riktningr vinkelrätt mot pppret. Avståndet melln ledrn är =900 mm. Om I 1 = 10 A, vd måste då I 2 vr för tt den mgnetisk flödestätheten i punkten P sk vr noll. P ligger på vståndet =600 mm från ledren som för strömmen I 1. () I 1 P I 2 Figur 1: Två prllell ledningr som för ström i olik riktningr För tt den mgnetisk flödestätheten sk vr noll i P måste de två ledningrn ge upphov till mgnetisk flödestätheter som är lik stor men motriktde i den punkten. Den mgnetisk flödestätheten från en lång rk ledre är, på vståndet r, Vi sätter denn lik för de två ledrn och får då B= µ 0I 2πr. µ 0 I 1 2π = µ 0 I 2 2π( ) I 2= I 1( ) = 10(0,3) 0,600 = 5 A. 2. En plttkondenstor, med plttvståndet d, hr en glsskiv melln plttorn. Glsskivn fyller hel utrymmet melln plttorn och hr den reltiv permittivitetenǫ r =,6. Mn kopplr plttkondenstorn till en spänningskäll som ger spänningen U, vrefter mn kopplr ort spänningskälln. Sedn tr mn ort glsskivn utn tt ändr vståndet melln plttorn. () Vd händer med det elektrisk fältet i plttkondenstorn? (2) Då glsskivn ts ort stnnr ll lddning Q kvr. Då C=ǫ 0 ǫ r A/d minskr, eftersomǫ r går från,6 till 1, kommer U = Q/C ök. Eftersom E = U/d och d är konstnt kommer det elektrisk fältet E tt ök. () Hur ändrs energin i kondenstorn? (2) Energin i kondenstorn är W= 1 2 CU2, vilken kommer tt ök, då U ökr. OBS! Svren måste motivers för tt poäng sk utdels! 3. En LRC-krets innehåller ett motstånd på 250Ω, en spole på 15 mh och en kondenstor på 3,5µF. Spänningskälln i kretsen hr en vinkelfrekvens på 360 rd/s och hr en spänningsmplitud på 5 V. Tentmen ellär (92FY21 och 27) 22 ugusti 201 Sid 1 v 5

3 () Vd är kretsens effektfktor? (2) Effektfktorn är cosφ= R Z = ( , ) 2 0,30. () Vd är medeleffekten som leverers till hel kretsen? (1) P v = 1 2 VI cosφ, där I= V/Z, och vi får P v= 0,36 W. (c) Vd är medeleffekten som leverers till motståndet, spolen och kondenstorn, respektive? (1) 0,36, 0, 0 W, respektive. Tentmen ellär (92FY21 och 27) 22 ugusti 201 Sid 2 v 5

4 För kretsen som viss i figuren nedn, eräkn () Strömmen I. (1) Nodlgen i ger 12=7 A=I 1. I c: 7 I =0 I= 3 A. 1 A 21 V 2 2 A I c R VM A 11 V () Den eletrisk potentilen i punkten i förhållnde till jord. (1) Gå enligt sling 1: 21 =17 V. (c) Vd voltmetern (VM) visr. (1) Enligt sling 1: 21 U 3 2 U= 7 V. (d) Resistnsen R. (1) Enligt sling 2: U R 11=0 R=1Ω. 1 A 21 V 2 2 A I c R VM A 11 V Figur 2: Resistnsern är ngivn i Ohm (Ω). 5. En rektngulär hge är omgärdd v ett vrv elstängsel (som kn ses som en tunn ledre) som för strömmen I 1 = 1,0 A. Prllellt med en långsidn på hgen (och i smm höjd som elstängslet, konstigt nog) går en strömledning (också tunn) som för strömmen I 2 = 200 A, se figur nedn. Med vilken nettokrft påverks det rektngulär elstängslet och i vilken riktning i figuren? I figuren är =20 m, =0 m och c=10 m. () Mgnetfältet från den lång rk ledren påverkr strömmen i ledningen runt hgen enligt F = BIl. Mgnetfältet från den lång rk ledren är B= µ 0I 1 2πx. Kortsidorn på hgen ger krfter som är lik stor fst riktde och olik håll, så de summerr till noll i nettokrft. För långsidorn hr vi F 1 = µ 0I 1 I 2 2πc 1,6 10 N och F 2 = µ 0I 1 I 2 2π(c) 5, N. F 1 är riktd uppåt och F 2 nedåt i figuren, vilket ger en nettokrft F tot = 0,11 mn uppåt i figuren. Tentmen ellär (92FY21 och 27) 22 ugusti 201 Sid 3 v 5

5 I 1 c I 2 Figur 3: En rektngulär hge med en lång rk ledre i smm pln. 6. En spänning på 500 V nvänds för tt ccelerer elektroner, vrefter de kommer in i ett område med ett homogent mgnetfält som är riktt vilkerätt mot elektronens hstighet. Elektronen eskriver då i mgnetfältet en cirkeln med en omloppsfrekvens på 1,2 MHz. () Vd är den mgnetisk flödestätheten? (2) Vi nvänder smndet B= mv qr, som fås ur tt den mgnetisk krften sk vr lik med centripetlkrften. Men vi vet tt elektronen gör 1,2 miljoner vrv per sekund på rdien r, så v=2πr f, där f är frekvensen. Kominers dess får vi B= 2πm f q Stoppr mn in elektronens mss, får vi tt B, T. () Vilken hstighet hr elektronen? (2) Vi vet tt qu= 1 2 mv2, ur vilket vi får v= 2qU m, som med värden ger v=1,3 107 m/s. Tentmen ellär (92FY21 och 27) 22 ugusti 201 Sid v 5

6 7. En stv med försumr tjocklek med längden 2 hr lddts upp till en totl lddningq, som fördelt sig jämnt över stvens längd. Två punkter A och B efinner sig på vstånden respektive /2 från stvens ändr enligt figuren nedn. A Q 2 B 1/2 Figur : En upplddd stv. () Vd är storleken på det elektrisk fältet i punkten A? (2) För tt t red på det elektrisk fältet i A delr mn enklst upp stven i små dq= Q 2dx, så tt Det totl fältet fås genom tt integrer: de= Q 8πǫ 0 x 2 dx. E= Q 3 dx Q 8πǫ 0 x 2= 12π 2. ǫ 0 () Hur stort rete måste utförs för tt flytt en liten positiv lddning q från punkt A till punkt B? (2) Aretet är potentilskillnden melln punkt A och B gånger lddningen på den positiv lddningen som flytts. Potentilen i A från en liten lddning dq är dv= Q 8πǫ 0 x, så på smm sätt kn mn integrer, V A = Q 3 dx 8πǫ 0 x = Q ln 3. 8πǫ 0 På smm sätt får mn för V B (som integrers från /2 till 5/2): Nu är W= q(v B V A )= qq 8πǫ 0 ln(5/3). V B = Q 8πǫ 0 ln 5. Tentmen ellär (92FY21 och 27) 22 ugusti 201 Sid 5 v 5

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 2013-05-31 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och beteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTOMAGNTM (TFYA48, 9FY321) 2012-05-30 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514) Uppsl universitet Institutionen för fysik och stronomi Gbriell Andersson Skrivtid: 5 tim Tentmen i ELEKTROMAGNETISM I, 2013-05-31 för F1 och Q1 (1FA514) Kn även skrivs v studenter på ndr progrm där 1FA514

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning:

anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning: Dugg i Elektromgnetisk fältteori för F. EEF31 7-11-4 kl. 8.3-1.3 Tillåtn hjälpmedel: BETA, Physics Hndbook, Formelsmling i Elektromgnetisk fältteori, Vlfri klkyltor men ing egn nteckningr utöver egn formler

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

IEA 1. En tvåpol sett utifrån från lasten - karakteriseras av tomgångsspänning E t., inre impedans Z i

IEA 1. En tvåpol sett utifrån från lasten - karakteriseras av tomgångsspänning E t., inre impedans Z i IEA 1 Lösning EoE 00 05 31 tl 1 En tvåpol sett utifrån från lsten krkterisers v tomgångsspänning E t, inre impedns Z i och kortslutningsström I k Med utgångspunkt från dess prmetrr kn vi bygg ekvivlenter

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET

Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET Lars-Erik Cederlöf Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET1013 2012-03-27 Del Tentamen omfattar 33 poäng. För godkänd tentamen krävs 16 poäng. Tillåtna hjälpmedel är räknedosa

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Tentamen i ELEKTROMAGNETISM I, 05-06-04 för F och Q (FA54) Skrivtid: 5 tim Kan även skrivas av studenter på andra program där FA54 ingår Hjälpmedel:

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder I Anteckningr uppdterde 18 jnuri 2009. Anteckningrn serr sig till stor del på Tommy Ahlgrens nteckningr som finns tillgänglig på kursens hemsid. Elektromgnetism I, Ki Nordlund

Läs mer

Matematisk Modellering Övning 1

Matematisk Modellering Övning 1 HH/IDE/BN Mtemtisk Modellering, Övning 0.5 0-0.5-0 4 0 4 Mtemtisk Modellering Övning Allmänt Övningsuppgiftern är eempel på uppgifter, eller delr v uppgifter, du kommer tt möt på tentmen. Undntg utgör

Läs mer

Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET

Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET Lars-Erik Cederlöf Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET1013 2012-05-04 Del Tentamen omfattar 33 poäng. För godkänd tentamen krävs 16 poäng. Tillåtna hjälpmedel är räknedosa

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

Laborationshandledning i EMC Kapacitiv och induktiv koppling mellan ledare

Laborationshandledning i EMC Kapacitiv och induktiv koppling mellan ledare Lunds Universitet Lunds Teknisk Högskol Ingenjörsögskoln Cmpus Helsingorg Lortionsndledning i EMC Kpcitiv oc induktiv koppling melln ledre Grupp:... Nmn:... Godkänd:... Lortionens syfte Under denn lortion

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv

Läs mer

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m

Läs mer

SLING MONTERINGS- OCH BRUKSANVISNING

SLING MONTERINGS- OCH BRUKSANVISNING SLING MONTERINGS- OCH BRUKSANVISNING FOC_SLING_1107 Introduktion Dett är en ruksnvisning för det dynmisk rmstödet SLING som monters på rullstol, stol eller nnn nordning. SLING tillverks v FOCAL Meditech,

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:

Läs mer

Omtentamen IE1206 Inbyggd elektronik onsdagen den 17 augusti

Omtentamen IE1206 Inbyggd elektronik onsdagen den 17 augusti Omtentmen IE6 Inbyggd elektronik onsdgen den 7 ugusti 6 4.-8. Smtidigt går en liknnde tentmen för IF33 välj rätt tentmen! Allmän informtion Ask for english version of this text if needed Exmintor: Willim

Läs mer

Omtentamen IF1330 Ellära onsdagen den 17 augusti

Omtentamen IF1330 Ellära onsdagen den 17 augusti Omtentmen IF33 Ellär onsdgen den 7 ugusti 6 4.-8. Smtidigt går en liknnde tentmen för IE6 välj rätt tentmen! Allmän informtion Exmintor: Willim Sndqvist. Ansvrig lärre: Willim Sndqvist, tel 8-79 4487 Cmpus

Läs mer

Likströmsmaskinen. Olof Samuelsson Industriell Elektroteknik och Automation

Likströmsmaskinen. Olof Samuelsson Industriell Elektroteknik och Automation Likströmsmskinen Olof Smuelsson Industriell Elektroteknik och Automtion Översikt Elektromgnetisk krftverkn Motortyper Likströmsmotor Synkronmotor Vridmoment i elmotor Inducerd emk i elmotor Likströmsmotorn

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast , V Vad betyder det att V? -fältet riktat åt det håll V minskar snabbast dv Om -fältet endast beror av x blir det enkelt: xˆ dx Om V är konstant i ett område är där. konst. V -x x Om är homogent så ges

Läs mer

Omtentamen med lösningar IF1330 Ellära onsdagen den 17 augusti

Omtentamen med lösningar IF1330 Ellära onsdagen den 17 augusti Omtentmen med lösningr F llär onsdgen den 7 ugusti 6 4.-8. Smtidigt går en liknnde tentmen för 6 väl rätt tentmen! Allmän informtion xmintor: Willim Sndqvist. Ansvrig lärre: Willim Sndqvist, tel 8-79 4487

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Tentamen på del 1 i kursen Elinstallation, begränsad behörighet ET

Tentamen på del 1 i kursen Elinstallation, begränsad behörighet ET Lars-Erik Cederlöf Tentamen på del i kursen Elinstallation, begränsad behörighet ET020 204-08-22 Del Tentamen omfattar 33 poäng. För godkänd tentamen krävs 6 poäng. Tillåtna hjälpmedel är räknedosa samt

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Likströmsmaskinen. Olof Samuelsson Industriell Elektroteknik och Automation

Likströmsmaskinen. Olof Samuelsson Industriell Elektroteknik och Automation Likströmsmskinen Olof Smuelsson Industriell Elektroteknik och Automtion Översikt Elektromgnetisk krftverkn Motortyper Likströmsmotor Synkronmotor Vridmoment i elmotor Inducerd emk i elmotor Likströmsmotorn

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar. Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

Tentamen i EDA320 Digitalteknik-syntes för D2

Tentamen i EDA320 Digitalteknik-syntes för D2 CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Meknik 2008 05 20 Meknik för I, SG09, Lösningr till probletenten, 2008 05 20 Uppgift : En bo ed ssn och längden är i sin en ände onterd i en kulled på en vertikl vägg. I den ndr änden A är fäst två

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

C100-LED Duschhörn med LED-Belysning

C100-LED Duschhörn med LED-Belysning SVENSKA C100-LE uschhörn med LE-elysning COPYRIGHT CAINEX A ARUMSPROUKTER, LJUNGY, SWEEN MONTERINGSANVISNING Totl höjd: 1900 mm 6 mm härdt gls A 900 800 700 884 784 684 C 900 800 800 884 784 784 39 8 Prod.#

Läs mer

Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor

Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor Elektroteknik MF1016 föreläsning 11 Permnetmgnet Synkronmotor (I oken 7. 8 PM-synkronmotorn) Likheter oh skillnder med likströmsmskinen Enfsig modell (klls även per fs modell ) Ström oh moment Vrvtl oh

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 EKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och ioloi Gli Pozin enten i eknik FY6 illåtn Hjälpedel: Physics Hndbook eller efy utn en nteckninr, vprorerd räknedos enlit IFM:s reler. Forelslinen

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

Tentamen eem076 Elektriska Kretsar och Fält, D1

Tentamen eem076 Elektriska Kretsar och Fält, D1 Tentamen eem076 Elektriska Kretsar och Fält, D1 Examinator: Ants R. Silberberg 21 maj 2012 kl. 08.30-12.30, sal: M Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås tisdagen den 22 maj på institutionens

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Tentamen på del 1 i kursen Elinstallation, begränsad behörighet ET

Tentamen på del 1 i kursen Elinstallation, begränsad behörighet ET Lars-Erik Cederlöf Tentamen på del i kursen Elinstallation, begränsad behörighet ET020 204-04-24 Del A Tentamen omfattar 33 poäng. För godkänd tentamen krävs 6 poäng. Tillåtna hjälpmedel är räknedosa samt

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ET 3 för D 999-3-5 Tentamen omfattar 4 poäng, 2 poäng för varje uppgift. 2 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-12-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

Nya regler för plåtbalkar-eurokod 3-1-5

Nya regler för plåtbalkar-eurokod 3-1-5 Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

Det energieffektiva kylbatteriet

Det energieffektiva kylbatteriet Croline Hglund, Civ.ing. SP Sveriges Provnings- och Forskningsinstitut, Energiteknik, Borås, croline.hglund@sp.se Per Fhlén, Prof. Inst. för Instlltionsteknik, CTH, Göteorg, per.fhlen@hvc.chers.se Det

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell) K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i

Läs mer

PROV ELLÄRA 27 oktober 2011

PROV ELLÄRA 27 oktober 2011 PRO EÄR 27 oktober 2011 Tips för att det ska gå bra på provet. Skriv ÖSNINGR på uppgifterna, glöm inte ENHETER och skriv lämpligt antal ÄRDESIFFROR. ycka till! Max 27p G 15p 1. (addning - G) Två laddningar

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Tentamen del 1 Elinstallation, begränsad behörighet ET

Tentamen del 1 Elinstallation, begränsad behörighet ET Lars-Erik Cederlöf Tentamen del 1 Elinstallation, begränsad behörighet ET1020 2014-03-26 Del Tentamen omfattar 33 poäng. För godkänd tentamen krävs 16 poäng. Tillåtna hjälpmedel är räknedosa samt bifogad

Läs mer

Tillämpad Matematik I Övning 2

Tillämpad Matematik I Övning 2 HH/ITE/BN Tillämpd Mtemtik I, Övning Tillämpd Mtemtik I Övning Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm, så det

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik ederlöf Tentamen i Grundläggande ellära och digitalteknik ET 03 för D 000-03-3 Tentamen omfattar 40 poäng, poäng för varje uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Skrivtid: kl. 14:15-17:15 Hjälpmedel: Formelsamling, grafritande miniräknare, linjal Lärare: ASJ, HPN, JFA, LEN, MEN, NSC Möjliga poäng: 20 E-poäng + 12 C-poäng

Läs mer