Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83
Exempel på stickprovsudersökig Parti med felaktiga eheter Ma har ett parti med N eheter. Felkvote p i partiet är okäd. För att få iformatio om p tar ma ut ett stickprov om st eheter och x st visar sej vara felaktiga. Vad ka ma säga om p? Modell: Låt ξ = atal felaktiga i urvalet Då blir ξ Hyp(N,,p) Mats Guarsso Tillämpad matematik III/Statistik - Sida 84
Exempel på stickprovsudersökig Puktskattigsproblem: Hur skattar ma p på bästa sätt? Att aväda felkvote i stickprovet, x/, är e möjlighet. Itervallskattigsproblem: Age ett itervall som med give säkerhet iehåller det okäda värdet på p, tex. ett itervall på forme, Dea typ av itervall kallas kofidesitervall. Mats Guarsso Tillämpad matematik III/Statistik - Sida 85
Exempel på stickprovsudersökig Hypotesprövigsproblem Ma vill kaske pröva hypotese. Är stickprovets resultat föreligt med dea hypotes eller fis det aledig att förkasta de och tro att? (Sigifikastest) Mats Guarsso Tillämpad matematik III/Statistik - Sida 86
Puktskattigar - äve dessa beror av slumpe Ett slumpmässigt stickprov x 1,..., x frå ågo fördelig F utgörs av oberoede stokastiska variabler ξ 1,..., ξ (stickprovets slumpvariabler) var och e med fördelige F. Ex: ξ N(μ;) eller ξ Bi(;p) μ och p okäda parametrar i resp. fördelig. E (pukt)skattig av e okäd parameter i fördelig gjord med hjälp av det observerade stickprovet kallas för observerad (pukt)skattig. Ex: Mats Guarsso Tillämpad matematik III/Statistik - Sida 87
E puktskattigs fördelig Ata att vi vill skatta vätevärdet µ för e ormalfördelad stokastisk variabel ξ geom beräkig av medelvärde av stickprov av storleke 5 ξ är ormalfördelad N(µ,) Stickproves slumpvariabler ξ 1, ξ, ξ 3, ξ 4 och ξ 5 Skattige av µ beteckas µ = Ett utfall (observerat stickprov) är x 1, x, x 3, x 4 och x 5 E observerad puktskattig är µ* obs = Puktskattiges fördelig: µ* = ; Mats Guarsso Tillämpad matematik III/Statistik - Sida 88
Krav på e puktskattig Vätevärdesriktig medför att skattiges, Θ*, vätevärde är lika med Θ, dvs E[Θ*] = Θ. Med Θ* hamar ma i geomsitt rätt. Effektiv, om Θ 1 * och Θ * är två vätevärdesriktiga skattigar av Θ. Om V[Θ 1 *] < V[Θ *] är Θ 1 * e effektivare - saolikt bättre - skattig av Θ ä Θ *. Mats Guarsso Tillämpad matematik III/Statistik - Sida 89
Allmäa vätevärdesriktiga puktskattigar Låt ξ 1, ξ,..., ξ vara ett stickprov frå samma fördelig då ξ i är oberoede, E[ξ i ] = µ och D[ξ i ] = Låt x 1, x,..., x vara e observatio av stickprovet µ *= ξ 1 * = ( ξi ξ) 1 i= 1 * = * µ* = x obs * obs = s = ( xi x) 1 i= 1 * obs = s = s 1 Mats Guarsso Tillämpad matematik III/Statistik - Sida 90
Itervallskattig E itervallskattig av e parameter är ett itervall med slumpvariabler som gräser Kofidesgrade, 1-a, för e itervallskattig är saolikhete att parameter tillhör itervallet E observerad itervallskattig kallas för kofidesitervall Metoder som ite kräver käd fördelig kallas för ickeparametriska Metoder som kräver käd fördelig kallas för parametriska Mats Guarsso Tillämpad matematik III/Statistik - Sida 91
Teckeitervall - e icke-parametrisk metod Kofidesitervall för mediae m Låt ξ 1, ξ,..., ξ vara ett stickprov av storleke, Storleksorda stickprovet så att: ξ (1) ξ ()... ξ () Ett kofidesitervall för m är [ξ (1), ξ () ], (mista och största värde) Kofidesgrad: 1- a = 1-0.5 Kofidesgrade miskas om ma i stället tar [ξ (), ξ (-1) ], och så vidare... ξ (1) m ξ () Kofidesgrad: 1- a=1 0.5 1 0.5 osv Mats Guarsso Tillämpad matematik III/Statistik - Sida 9
Kofidesitervall för µ där är kät - ormalfördelig ξ är e stokastisk variabel Låt ξ 1, ξ,..., ξ vara ett stickprov av ξ, där ξ i är oberoede Låt x 1, x,..., x vara e observatio av stickprovet Ett kofidesitervall för µ med kofidesgrade 1-α fås då av x λ,x + λ α/ α/ där λ α/ fås ur Φ(λ ) α/ = 1 α/ Mats Guarsso Tillämpad matematik III/Statistik - Sida 93
Kofidesitervall för µ där är okät -ormalfördelig ξ är e stokastisk variabel Låt ξ 1, ξ,..., ξ vara ett stickprov av ξ, där ξ i är oberoede Låt x 1, x,..., x vara e observatio av stickprovet Ett kofidesitervall med kofidesgrade 1-α fås då av Där F(t t ( 1 ) α/ x ( 1) α/ ) t ( 1) α/ fås = 1 ur α t s,x + t ( 1) α/ s */ - fördeliges F( x) med 1) t-fördelige är e släktig till ormalfördelige och fis tabellerad för olika atal frihetsgrader och olika saolikheter, α/ (eller 1- α/) Då atalet frihetsgrader blir stort, ärmar sig t-fördelige e ormalfördelig ξ µ t( -1 frihetsgrader. Mats Guarsso Tillämpad matematik III/Statistik - Sida 94
Mats Guarsso Tillämpad matematik III/Statistik - Sida 95
Stickprov i par - ormalfördelig Vi har parvisa observatioer (ξ i, η i ), i = 1,..., ξ i är ormalfördelad N(µ i, ξ ) η i är ormalfördelad N(µ i +, η ) Pare (ξ i, η i ), i = 1,..., är oberoede Studera ζ i = η i -ξ i, vilket är ormalfördelad N[, V[η ] i ξi ] vilket också ka skrivas N(,) Studera de observatioera av ζ i Mats Guarsso Tillämpad matematik III/Statistik - Sida 96
Två stickprov - ormalfördelig ξ 1, ξ,..., ξ 1 är stickprov med fördelige N(µ 1,) η 1, η,..., η är stickprov med fördelige N(µ,) Stickprove är oberoede Studera ξ - η, vilket är ormalfördelad N µ 1 µ, + 1 Observera att atalet frihetsgrader är 1 + -, om t-fördelige aväds Stadardavvikelse ova är stadardavvikelse för ξ - η Mats Guarsso Tillämpad matematik III/Statistik - Sida 97
Mats Guarsso Kofidesitervall för varias - N(µ,) ξ är e stokastisk variabel Låt ξ 1, ξ,..., ξ vara ett stickprov av ξ, där ξ i är oberoede och ormalfördelade N(µ,) Låt x 1, x,..., x vara e observatio av stickprovet Ma ka visa att 1 ( 1) s ( ξ 1 i ξ) χ ( ) χ ( 1) i= 1 Ett kofidesitervall, som är uppåt begräsat och med udre gräs 0, med kofidesgrade 1-α fås då av 0, ( xi x) i= 1 χ (1 α ),( 1) ( 1) s = 0, χ (1 α ),( 1) där χ (1-α),(-1) fås ur χ - fördelige, F(x), med -1 frihetsgrader: F(χ (1-α),(-1) ) = α Tillämpad matematik III/Statistik - Sida 98
Tvåsidigt kofidesitervall för varias - N(µ,) E tvåsidig itervallskattig av variase, ², där det är lika stor saolikhet att missa över som uder itervallet, med kofidesgrade 1-α fås av och för stadardavvikelse, ( 1) s ( /),( 1), χ α χ ( 1) s (1 α/),( 1) ( 1) s ( /),( 1), χ α χ ( 1) s (1 α/),( 1) Mats Guarsso Tillämpad matematik III/Statistik - Sida 99
Om ma ite har ormalfördelig? Teckeitervall är e icke-parametrisk metod för itervallskattig av mediavärde Om vi har stora stickprov frå e fördelig med vätevärde E[ξ i ] = µ och V[ξ i ] =, så är ξ µ N (0,1) ( käd ) / eligt cetrala gräsvärdessatse. Detsamma gäller ξ µ N (0,1) ( okäd skattas med s) s / Mats Guarsso Tillämpad matematik III/Statistik - Sida 100
Väljarbarometer - kofidesitervall för p I e mägd med N elemet är e adel p av speciellt slag. Blad de N elemete väljs elemet. ξ är atal speciella elemet blad de utvalda Då gäller: ξ Hyp(N,, p) Om N stort och /N<0.1 gäller ξºbi(, p) Om stort (>30) gäller: ξºn, (1 ) Om p * skattas med ξ/, ger detta följade kofidesitervall: p * obs p * obs(1-p * obs) ; p obs / p obs(1 p obs) Med approximativa kofidesgrade 1-α Mats Guarsso Tillämpad matematik III/Statistik - Sida 101
Hypotesprövig Ekel hypotesprövig Vi sätter upp e ollhypotes H 0 Vi sätter också upp e mothypotes H 1 Vi ska pröva ollhypotese H 0 mot mothypotese H 1 med hjälp av e test på e testvariabel Testet har e felrisk, som kallas sigifikasivå, α, α = P(förkasta H 0 H 0 sa) Testet har också e styrka Testets styrka = P(förkasta H 0 H 1 sa) H 0 : µ = 100 H 1 : µ = 110 Observera att om vi ite förkastar H 0, så drar vi ige slutsats Mats Guarsso Tillämpad matematik III/Statistik - Sida 10
Sammasatta mothypoteser - ormalfördelig E hypotes som iehåller måga parametervärde kallas sammasatt, till exempel: µ > 100 (jämför föregåede) Ova är ett esidigt test Ett tvåsidigt test är till exempel µ 100 Sigifikasivå fugerar på samma sätt som vid ekla hypoteser Testets styrka blir e fuktio av de parameter som testet avser (iom H 1 ) Mats Guarsso Tillämpad matematik III/Statistik - Sida 103
Test av µ, kät - ormalfördelig ξ är e stokastisk variabel Låt ξ 1, ξ,..., ξ vara ett stickprov av ξ, där ξ i är oberoede och ormalfördelade N(µ,) Låt x 1, x,..., x vara e observatio av stickprovet Esidig hypotesprövig på sigifikasivå α H 0 : µ = µ 0 ; H 1 : µ > µ 0 (alterativt H 1 : µ < µ 0 ) Förkasta H 0 om x > µ 0 + λ α (alterativt x < µ 0 λ α ) Tvåsidig hypotesprövig på sigifikasivå α H 0 : µ = µ 0 ; H 1 : m µ 0 Förkasta H 0 om x < µ λ eller x α > µ + λ där λ α fås ur Mats Guarsso 0 / 0 α / Φ( λ ) = 1 α α Tillämpad matematik III/Statistik - Sida 104
Test av µ, okät - ormalfördelig ξ är e stokastisk variabel Låt ξ 1, ξ,..., ξ vara ett stickprov av ξ, där ξ i är oberoede och ormalfördelade N(µ,) Låt x 1, x,..., x vara e observatio av stickprovet Esidig hypotesprövig med sigifikas α H 0 : µ = µ 0 ; H 1 : µ > µ 0 (alterativt H 1 : µ < µ 0 ) s s Förkasta H 0 om x < µ 0 t α (alterativt x > µ t,( 1) 0 + α,( 1) ) Tvåsidig hypotesprövig med sigifikas α H 0 : µ = µ 0 ; H 1 : m µ 0 Förkasta H 0 om x t s eller x t s < µ 0 α / > µ +,( 1) 0 α/,( 1) där t α,(-1) fås ur t-fördelige, F(x), F(t α,(-1) ) = 1-α Mats Guarsso Tillämpad matematik III/Statistik - Sida 105
Kofidesitervall./. hypotesprövig ormalfördelig Kofidesitervall För µ, kät x x λ x α, + λ / α/ För µ, okät t s x t s α/,( 1), + α /,( 1) Hypotesprövig För µ, kät x < µ λ eller x α > µ + λ 0 / 0 α / Esidig hypotesprövig x < µ 0 λ α x > µ 0 + λ För µ, okät x t s eller x t s < µ 0 α / > µ +,( 1) 0 α /,( 1) α Mats Guarsso Esidig hypotesprövig s x < µ 0 t α x > µ + t,( 1) α Tillämpad matematik III/Statistik - Sida 106 0,( 1) s
Direktmetode H 0 : ollhypotese (om ett visst värde) Utgå frå e observatio Räka ut saolikhete, α 0, att få ett lika extremt eller extremare värde på testvariabel uder förutsättig att H 0 är sa Jämför med sigifikasivå α Om α 0 < α så förkastas H 0 Om α 0 > α så förkastas ite H 0 Speciellt avädbar för diskreta fördeligar Mats Guarsso Tillämpad matematik III/Statistik - Sida 107
Fördeligsoberoede Tecketest Observatioer i par, (x i, y i ), i =1,..., där variatio mella pare söks H 0 : lika resultat H 1 : x är extremare ä y Jämför varje par Räka de gåger, ξ, då x i är extremare ä y i vid parvis jämförelse Direktmetode: beräka saolikhete för utfallet eller extremare Bi(, 0.5) i detta fall Jämför med sigifikasivå α Mats Guarsso Tillämpad matematik III/Statistik - Sida 108
to be cotiued... aother time? Mats Guarsso Tillämpad matematik III/Statistik - Sida 109