Korrelationens betydelse vid GUM-analyser
|
|
- Anna-Karin Sandström
- för 9 år sedan
- Visningar:
Transkript
1 Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska gå tllväga. I dea PM redovsas ågra ekla metoder för korrelatosaalys samt de korrektoer som det vd påvsad korrelato blr ödvädgt att göra. Texte är praktskt rktad bakomlggade teorresoemag redovsas edast summarskt. Scearot är e sere mätgar tdsföljd, e s.k. tdssere, vars vätevärde och mätosäkerhet är okäda och ska skattas. Samma tdsavståd mella mätgara förutsätts. Ett umerskt exempel llustrerar beräkgsgåge och ytterlgare beräkgsdetaljer redovsas ett appedx. Okorrelerade mätgar t-fördelge Låt oss utgå frå okorrelerade mätgar och det förfarade som då tllämpas. Vätevärdet skattas med medeltalet x. Stadardosäkerhete skattas med de tradtoella stadardavvkelse 2 ( ) /( s x x ) där är atalet mätgar och är atalet frhetsgrader (överbestämgar). Det är de esklda mätges stadardosäkerhet. Medeltalets stadardosäkerhet blr och ur t-fördelge får v täckgsfaktor ux ( ) s/ k t ( ) där är kofdesvå. Ett %-gt kofdestervall för vätevärdet ges seda av uttrycket P x k u( x) P x t ( ) s/ % Det är samma sak som att säga att de utvdgade mätosäkerhete för medeltalet är U ( x) k u( x) t ( ) s/ Exempel: Beräka de utvdgade mätosäkerhete för medeltalet av följade mätsere, uder atagadet att mätgara är okorrelerade. Tllämpa kofdesvå 95%. 0,090 0,003 9,947 9,864 0,063 0,02 9,955 9,895 0,083 0,0 9,954 9,97 0,043 0,33 9,884 0,020 9,987 0,023 9,92 0,096 (Kolum är mätg r. -5, kolum 2 är mätg r. 6-0 osv.)
2 Mätmateralet ger x 0, 000, s 0,08, 20 och 9 frhetsgrader. Det ebär att ux ( ) s/ 20 0,08 k t (9) 2,093 Medeltalets utvdgade mätosäkerhet på 95% kofdesvå blr alltså dvs. U ( x) k u( x) 0,038 P 0,000 0,038 95% Korrelerade mätgar Vad häder då om mätgara är korrelerade? I vårt scearo betraktar v de tdsmässga korrelatoe, dvs. korrelatoe mella mätgar tdssere som lgger ära varadra tde. Korrelato ebär att resultate av ärlggade mätgar tederar att följas åt på ett mer eller mdre regelbudet sätt. De brukar vara som störst på korta avståd, för att därefter successvt avta och så smågom upphöra helt. De cetrala storhete dessa sammahag är korrelatoes räckvdd eller verkgsområde (eg. rage), dvs. det (tds)avståd som krävs för att mätgara ska kua betraktas som okorrelerade. Ett sätt att bestämma räckvdde är att beräka semvarase för olka tdsavståd och upprätta ett expermetellt varogram (se GIB, avstt 8.4.7, sd. 77 varfrå edaståede fgur är hämtad). Ett aat sätt är att bestämma de s.k. kovaras- eller korrelatosfuktoe. s = sll = ugget r = rage Om v utgår frå att v (på det ea eller adra sättet) har bestämt räckvdde här beteckad så får v följade modferade formler för skattg av stadardosäkerhet och utvdgad mätosäkerhet. Det effektva atalet mätgar ges av /
3 dvs. atalet okorrelerade mätgar som går tdssere. Om 5 så är fortsatt aalys megslös mätmateralet är för ltet. Det effektva atalet frhetsgrader blr. Med dessa förädrade gågsdata ka hela aalysapparate frå föregåede avstt modferas tll att äve gälla korrelerade data. Vätevärdet skattas fortfarade med medeltalet x. Med det effektva atalet frhetsgrader stället fö r övergår skattge av stadardosäkerhete tll Medeltalets stadardosäkerhet blr ( 2 ) /( ) s x x s s ( ) ( ) u ( x) s / s u( x) och ur t-fördelge får v täckgsfaktor k t ( ) där är kofdesvå. Ett %-gt kofdestervall för vätevärdet ges seda av uttrycket ( ) ( ) / P x k u x P x t s % Det är samma sak som att säga att de utvdgade mätosäkerhete för medeltalet är U x k u x t s ( ) ( ) ( ) / ebär okorrelerade data. Då blr samtlga formler detska med dem föregåede avstt. Exempel: Aalysera korrelatoe föregåede exempel och modfera vd behov osäkerhetsskattgara. Om v studerar edaståede grafska redovsg av mätgara så ka v sköja e vss regelbudehet e vadrg upp och ed som te ser helt slumpmässg ut. 0,5 0, 0,05 0 9,95 9,9 9,
4 V börjar med att beräka korrelatoskoeffcete mella ärlggade mätgar (ett alteratvt sätt att skatta korrelatoes räckvdd). V väljer att göra detta Excel med fuktoe KORREL (se appedx för detaljer). Det ger: 0,73 2 0,37 3 0, 4 0,00 5 0,02 6 0,04 osv. där dexet ager tdsavstådet mella mätgara ( tdsehet, 2 tdseheter etc.). 0, autokorrelatoe, är deftosmässgt =. Om v plottar dessa data får v e approxmato av de s.k. korrelatosfuktoe: 0, ,5 V ser att korrelatoe går ed mot oll vd ugefär 3,5-4 tdseheter. Låt oss säga 4, dvs. v får följade uttryck för korrelatoes räckvdd 4 Det s tur ger oss / 20/45 effektva mätgar och effektva frhetsgrader. V får vdare och s 9 s 0, u ( x) s / u( x) 0,039 6
5 Ur t-fördelge får v täckgsfaktor k t (6) 2,20 Ett 95%-gt kofdestervall för vätevärdet ges seda av uttrycket P x k u ( x) P 0, 000 0, % D.v.s de utvdgade mätosäkerhete för medeltalet är U x k u x ( ) ( ) 0,083 De utvdgade mätosäkerhete, lksom kofdestervallet, förstoras alltså 2,2 gåger p.g.a. korrelatoe. Huvuddele av detta härrör sg frå att atalet effektva mätgar mskar. Det påverkar storleke med e faktor / 4 2. Slutord Äve gaska måttlga korrelatoer ka alltså påverka mätosäkerhete betydlgt. Det före- faller därför självklart att göra ågo form av korrelatosaalys sambad med rapporterge av mätosäkerhet te mst som merarbetet är överkomlgt. Edast om ma ka vsa att ågo korrelato te förelgger ka ma utesluta de dele av aalyse. A ppedx: Fuktoe KORREL Excel Med fuktoe KORREL Excel ka ma beräka korrelatoskoeffcete för olka tds- Lägg de st. mätgara cellera A:A ett excelark. Med hjälp av Ifoga fukto avståd. aropas fuktoe KORREL, och korrelatoskoeffcetera för olka tdsavståd ka be- räkas elgt: KORREL( A: A( ); A( ): A), 0, där är aktuellt tdsavståd och tllhörade korrelatoskoeffcet. I exemplet ova var 20, dvs. 0 KORREL( A: A20; A: A20) KORREL( A: A9; A2 : A20) 2 KORREL( A: A8; A3: A20) 3 KORREL( A : A7; A4 : A 20) osv. E plot av dessa ger e approxmato av korrelatosfuktoe och ur dea ka korrelato- ågo korrelato överhuvudtaget. Approxmato- es räckvdd beräkas om det u fs e är tllfyllest om atalet mätgar är ågorluda stort, dvs. på korta tdsavståd. Ju större tdsavstådet är desto sämre blr resultatet vlket för övrgt gäller all korrelatosaalys om mätmateralet är begräsat. /Clas-Göra Persso
Orderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Orderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04
Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830
TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
Föreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Något om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
Variansberäkningar KPI
STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter
Fyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
Prisuppdateringar på elementär indexnivå - jämförelser mot ett superlativt index
PM tll Nämde för KPI Sammaträde r 3 ES/PR 2017-10-25 Olva Ståhl och Ulf Jostad Prsuppdatergar på elemetär dexvå - jämförelser mot ett superlatvt dex För formato Idex på elemetär vå KPI eräkas de flesta
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)
AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök
Sensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Flexibel konkursriskestimering med logistisk spline-regression
Matematsk statstk Stockholms uverstet Flexbel kokursrskestmerg med logstsk sple-regresso Erk vo Schedv Examesarbete 8: Postadress: Matematsk statstk Matematska sttutoe Stockholms uverstet 6 9 Stockholm
Digital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?
Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
En utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling
utvärderg av två olka sätt att skatta fördelge tll stckprovsmedelvärde frå olkfördelade data - ormalapproxmato kotra resamplg av Adreas Holmström xamesarbete matematsk statstk Umeå uverstet, Hadledare:
Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin
Strukturell utvecklg av arbetskostad och prser de sveska ekoom Alek Markowsk Krsta Nlsso Marcus Wdé WORKING PAPER NR 06, MAJ 0 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET gör aalyser och progoser
Centrala gränsvärdessatsen
Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Kompletterande kurslitteratur om serier
KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du
Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1
Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers
Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige. http://www.math.su.
ËØÓ ÓÐÑ ÙÒ Ú Ö Ø Ø Å Ø Ñ Ø Ø Ø Ø ÁÒ Ø ÓÒ Ò ÒÚ Ö ÒÔ ÒÔ ÖÚ ÓÖÖ Ð Ø ÓÒ ÒÑ ÐÐ Ò ØÖ Ò Ð Ö Ð ÒÊÓÓ Ü Ñ Ò Ö Ø ¾¼½½ Postadress: Matemats statst Matematsa sttutoe Stocholms uverstet 06 9 Stocholm Sverge Iteret:
Föreläsning F3 Patrik Eriksson 2000
Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
Digital signalbehandling Alternativa sätt att se på faltning
Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],
Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Lösning till TENTAMEN
Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros
Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005
Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Tentamen 19 mars, 8:00 12:00, Q22, Q26
Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också
Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor
Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
Operativsystem - Baklås
Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
RÄKNESTUGA 2. Rumsakustik
RÄKNESTUGA Rumsakustik 1. Beräka efterklagstidera vid 15, 500 och 000 Hz i ett rektagulärt rum med tegelväggar och med betog i tak och golv. Rummets dimesioer är l x 3,0 l y 4,7 l z,5 [m].. E tom sal med
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
Andra ordningens lineära differensekvationer
Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom
Enkät inför KlimatVardag
1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2
Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Har du sett till att du:
jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?
Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Välkommen in i konfirmandens egen bibel!
L Välkoe kofrades ege bbel! Upptäck Bbel tllsaas ed kofrade! Lbrs ya kofradutgåva av Bbel har två huvudpersoer: Jesus so är Bbels kära och stjära och de uga äska so ärar sg Bbel och tro. Ordet kofrad äs
F7 PP kap 4.1, linjära överbestämda ekvationssystem
F7 BE3 & 3 Page of 5 F7 PP ka 4., ljära överbestäda ekvatossste Här behadlas dels ljära överbestäda sste oh dels tlläge å odellaassg ed stakvadrat-etode so kaske ufas av Gauss. V börjar ed ljära algebra.
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
F15 ENKEL LINJÄR REGRESSION (NCT )
Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:
Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
MARKNADSPLAN Kungälvs kommun 2010-2014
MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,
Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...
Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................
Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Begreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Tentamen Metod C vid Uppsala universitet, , kl
Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark
Funktionsteori Datorlaboration 1
Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa
Normalfördelningar (Blom Kapitel 8)
Matematsk statstk STS vt 004 004-04 - Begt Rosé Normalördelgar (Blom Kaptel 8 Deto och allmäa egeskaper DEFINITION : E stokastsk varael sägs vara ormalördelad om de har ördelg med täthetsukto med utseede
Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering
Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsig 2 Algoritmaalys TDDC70/91: DALG Utskriftsversio av föreläsig i Datastrukturer och algoritmer 5 september 2013 Tommy Färqvist, IDA, Liköpigs uiversitet 2.1 Iehåll Iehåll 1 Aalys av värsta fallet
Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier
. Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62
TENTAMEN I REALTIDSPROESSER OH REGLERING TTIT62 Td: Torsdage de 5 u 28, kl 4.-8. Lokal: TER2 Asvarga lärare: Mart Eqvst, tel 28 393 eller 76-9294, Sm Nadm-Tehra, tel 72-28 24 2 Hälpmedel: Tabeller, formelsamlgar,
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
ANVISNING FÖR BROMSDYNAMOMETER- MÄTNING
Ktrll v tug frds tryckluftsrmsr vd esktg ILAGA A ANVISNING FÖR ROMSDYNAMOMETER- MÄTNING Fstställde v rmsrs restd med rmsdymmeter Vd regelud sekter fstställs rmssystemets restd tug frd ch slävgr med rmsdymmetermätgr.
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
DEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska