Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
|
|
- Karin Engström
- för 7 år sedan
- Visningar:
Transkript
1 we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska metoder ta atagade om de derlggade fördelge!,,5,,5, -5, -,5,,5 5, 7,5
2 parametrsk ckeparametrsk -Sample t-test: kräver ormalfördelg för de derlggade poplatoera Oe-ay NOV: kräver ormalfördelg för alla grpper, ordalskalor (storleksordg fs, me dffereser sakar betydelse: t.ex. storlek av T-tröjor) dessa data ka dock ragordas styrka ka vara mdre jämfört med parametrska test
3 poplato ormalfördelad -Sample t-test (-Sample z-test) Pared t-test poplato te ormalfördelad -Sample Sg test -Sample lcoxo test lcoxo-sged ak test allmä fördelg symmetrsk fördelg -Sample Sg test på dfferesera -Sample lcoxo på dfferesera -Sample t-test Ma- -test : wlcox.test Oe-ay NOV Krskal-alls test : krskal.test
4 p P( X H H a : p.5 ~ : p.5 eller ) p.5 eller p.5 Testvarabel: M atalet värde som är större ä ~ M krt (,.5) der : mycket stora eller mycket små värde för M p värdet elgt bomalfördelge p P( H X M ) P( X M ) sdgt med x x x ta x x x x x x x x x x x x x Sherw, C.M.. Mrrors as potetal evrometal erchmet for dvdally hosed laboratory mce. ppl. m. ehav. Sc. 87: 95-.
5 H : p.5 H stckprov : M M 6,.5 der H p P M P M P M P a : p.5 M tvåsdgt tvåsdgt test test Dstrbto Dstrbtoder Plot H omal; =6; p=,5,, =. Probablty,,5,,6,6 Det värdet v fck är alltså mycket osaolkt der H P-värdet: det observerade värdet, eller ä mera
6 M M z (,, p N M ~ p), sn N, der H p, p p der H z måste därför vara N(,) -fördelad krt z tvåsdgt v förkastar H om z verkar te vara N(,)-fördelad.
7 prövar om medae för e fördelg är lka med ett hypotetskt värde gör detsamma som Sg test, me fördelge av de derlggade poplatoe måste vara symmetrsk ragordg räkas t, som för måga cke-parametrska test Exempel: V har följade värde: -, -6,, -, -, -7, 5,6, -, -, -5, -, -, Om v t.ex. testar om = smmeras alla rag värde abs rag -,, 6-6, 6, 9,, -,, ,, -7, 7, 5,6 5,6 8,, 5 krt m, 6 lower tal pper tal tabell tvåsdgt -,, -,, -5, 5, 7 -,, -,,
8 H : Om medae av e symmetrsk fördelg var borde + - vara gefär lka stora. H förkastas är t.ex. OS!: H lågt värde!... eftersom =m( +, - ) =5 osaolkt att det blr så om fördelge är symmetrsk =
9 sn E, V der H totala ragsmma E z V E V krt z tvåsdgt större ä stämmer, v testar j + två parade stckprov (t. ex före/efter) är de detska (H ) praktskt taget detsamma som Oe-Sample lcoxo test, se ere Exempel: agst måad Lareyses, I.,. lst, L. De Temmerma, C. Lemmes ad. Celemas.. Cloal varato metal accmlato ad bomass prodcto a poplar coppce cltre. I. Seasoal varato leaf, wood ad bark cocetratos. Evro. Pollto : 85-9.
10 g Nov Dff abs rag 8,, -,, 6, 6, -6, 6, 9 6,5 5,,,,6 5,6 -,, 9,5,5 -,, 8, 5,5-7, 7, 8,,7 5,6 5,6 8,,,, 5 7,9 9,9 -,, 8,, -,, 8,9, -5, 5, 7,6,7 -,,, 6,8 -,,
11 rag krt m, 6 lower tal pper tal tabell tvåsdgt 5 7 a : : 8 9 5
12 värde sample bdrag tll eller eller värde sample bdrag tll
13 mella fördelgara för poplato respektve poplato tabell P med taled oe tabell P med taled two o krt o krt :, m :
14 värde sample bdrag tll rag v tgår frå lcoxos ragsmma 6 6 som fört z m N, m ( ta"tes" ) krt z tvåsdgt
15 a k
16 k V H smma av alla rag k V testvarabel lkar V: medelvärdet över alla rag för motsvarar SST k stckprov medelvärdet över alla rag NOV för grpp Smma över alla rag H gäller alla gefär lka V lte V H k V motsvarar k SST NOV testvarabel H förkastas om H (alltså äve V) är stor, så fall avvker j grppmedelvärdea frå det gemesamma medelvärdet. Om gäller är testvarabel H gefär - fördelad, om alla är desstom tllräcklgt stora ( 5 stor: krt H ( f ) f k pper tal
17 Expermet: flytade på fskaras vkt: Vkte av fsk
Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?
Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder
4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.
Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Korrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Orderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
Sensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier
. Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa
Orderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Något om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
Föreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
En utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling
utvärderg av två olka sätt att skatta fördelge tll stckprovsmedelvärde frå olkfördelade data - ormalapproxmato kotra resamplg av Adreas Holmström xamesarbete matematsk statstk Umeå uverstet, Hadledare:
SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)
AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Fyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
F9 Hypotesprövning. Statistikens grunder 2 dagtid. p-värden. Övning 1 från F8
01-10-5 F9 Hypotesprövg Statstkes gruder dagtd HT 01 Behöver komma håg alla formler? Ne, kolla formelbladet Me vlka som behövs eller te beror på stuatoe Det som ska läras är är behöver Z eller T och hur
Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04
Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830
Slumpvariabler (Stokastiska variabler)
Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x
Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de
b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?
UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.
Formler och tabeller i statistik
KTH STH, Campus Hage Formler och tabeller statstk Arm Hallovc Formler och tabeller statstk Medelvärde och varas = = = ( ) = = = Medelvärde och varas för ett frekvesdelat materal = k = f = k = f ( ) Vätevärde
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Centrala gränsvärdessatsen
Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
F13. Förra gången (F12) Konfidensintervall och hypotesprövning Chi-tvåtest. Stratifierat urval
Konfdensntervall och hypotesprövnng Ch-tvåtest F3 Förra gången (F) Stratferat urval Dela n populatonen homogena ata med avseende på atferngsvarabeln Välj atferngsvarabel som har ett samband med undersöknngsvarabeln
TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
SOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
Lycka till och trevlig sommar!
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
Variansberäkningar KPI
STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter
TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar
TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:
Test av anpassning, homogenitet och oberoende med χ 2 - metod
Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna
0 Testvariabel t, x s n. Lite historia om t-testett. testet. Ett stickprov: Hur räknar r. testet. ett stickprov
-ee Le hora om -ee ee ude -e "ude," peudom om aväd av Wllam Goe (bld) Jobbade på Gue brggere Dubl börja av 9-ale allmä beecka alla e om aväder - fördelge om -e uwe.mezel@mah.uu.e Defo för f r -fördelge
= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2
Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +
För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl
Tetame STA A5 delkurs ( poäg): Saolkhetslära och statstsk slutledg 3 ovember 5 kl. 8.5-3.5 Tllåta hjälpmedel: Räkedosa bfogade formel- och tabellsamlgar vlka skall retureras. Asvarg lärare: Ja Rudader
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
Kap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta
Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal
F15 ENKEL LINJÄR REGRESSION (NCT )
Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
Formelsamling Ljud i byggnad och samhälle
Formelsamlg jud bggad oh samhälle Några räkeregler för logarmer: log log log log log log log log log log log log Några grudläggade akusska defoer oh räkeregler -dmesoell la ljudåg som ubreder sg os -rkg:
Normalfördelningar (Blom Kapitel 8)
Matematsk statstk STS vt 004 004-04 - Begt Rosé Normalördelgar (Blom Kaptel 8 Deto och allmäa egeskaper DEFINITION : E stokastsk varael sägs vara ormalördelad om de har ördelg med täthetsukto med utseede
0,22 m. 45 cm. 56 cm. 153 cm 115 cm. 204 cm. 52 cm. 38 cm. 93 cm 22 cm. 140 cm 93 cm. 325 cm
2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9
Fe l i t ill verki ge ept Okt Nov Dec ept Okt Nov Dec Högskola Dalara Översikt tatistisk processtyrig Itroduktio till tatistisk Processtyrig (P) aolikhet Normalfördelig Några adra fördeligar Variatio Olika
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Repetition DMI, m.m. Några begrepp. egenskap d. egenskap1
Repetto DMI, m.m. I. ermolog och Grudproblem II. Ljär algebra III. Optmerg IV. Saolkhetslära V. Parameterestmerg Några begrepp Möstervektor (egeskapsvektor/data) lsta med umerska värde som beskrver möstret.
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Digital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy
Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn
Lösning till TENTAMEN
Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.
Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller
a) B är oberoende av A. (1p) b) P (A B) = 1 2. (1p) c) P (A B) = 1 och P (A B) = 1 6. (1p) Lösningar: = P (A) P (A B) = 1
Lösnngar tll tentamen: Matematsk statstk och sgnalbehandlng (ESS0), 4.00-8.00 den 4/-009 Examnator: Serk Sagtov (Kursansvarg: Ottmar Crone) Tllåtna hjälpmedel: Tabell "Beta", utdelad formelsamlng, valfr
Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner
. Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
Flexibel konkursriskestimering med logistisk spline-regression
Matematsk statstk Stockholms uverstet Flexbel kokursrskestmerg med logstsk sple-regresso Erk vo Schedv Examesarbete 8: Postadress: Matematsk statstk Matematska sttutoe Stockholms uverstet 6 9 Stockholm
Formelsamling. i= 1. f x. Andelar, medelvärde, standardavvikelse, varians, median. p = Stickprovsandel. Populationsandel
fo m e lam l Fomelaml Adela, medeläde, tadadakele, aa, meda Stckpoadel atal p ehete tckpoet med tudead tckpotolek eekap Populatoadel atal ehete populatoe med tudead populatotolek eekap Stckpomedeläde beäkat
Informationsåtervinning på webben Sökmotorernas framtid
Iformatosåtervg på webbe Sökmotoreras framtd Semarum 4-9- Iformatosåtervg på webbe Sökmotoreras framtd Ge sprato tll forskg att skapa ya affärsmölgheter smart avädg av sökverktyg de ega orgasatoe Belysa
f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Beräkna standardavvikelser för efterfrågevariationer
Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.
F10: Strömreglering (PE-Kap 3)
F10: Strömreglerg PE-Kap 3 Allmät om trömreglerg V har tgare tttat om hatgat på trömreglerg och lte mer etalj på varvtalreglerg. Varvtalreglerg av eletra maer bygger tor omfattg på valg reglerteor och
Begreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )
Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig