Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl

Storlek: px
Starta visningen från sidan:

Download "Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl"

Transkript

1 Tetame STA A5 delkurs ( poäg): Saolkhetslära och statstsk slutledg 3 ovember 5 kl Tllåta hjälpmedel: Räkedosa bfogade formel- och tabellsamlgar vlka skall retureras. Asvarg lärare: Ja Rudader För att få maxmala poäg på e uppgft krävs att lösge är så utförlg att de uta svårghet ka följas! För godkäd tetame krävs mst 4 poäg. Uppgft Strålskyddsmydghete har tttat över sa rekommedatoer är det gäller hur stor mägd strålg e bradvarare får ge frå sg. När ma mäter mägde strålg frå e vss bradvarare bör dea strålgsmägd te överstga ( e vss ehet) om ma täker ha dea bradvarare exempelvs e bostad där folk vstas daglge. a E tllverkare av bradvarare vlle kotrollera hur has bradvarare lgger tll. Ha valde därför slumpmässgt ut bradvarare ur produktoe syfte att ta fram ett kofdestervall för µ med 99 % kofdesgrad. I stckprovet fck ha ett medelvärde på 9 och e stadardavvkelse på 39. Hjälp tllverkare beräka stt kofdestervall (dubbelsdgt). b Tllverkare käde sg gaska öjd är ha fått fram stt kofdestervall me har ha egetlge aledg tll detta? Ka ma med take på de ya rekommedatoera verklge räka med att få e bra bradvarare om ma köper e bradvarare frå hoom? Förklara! Uppgft E etrepreör byggbrasche har lagt abud på fyra olka byggprojekt projekt A B C och D. Chase att ha ver respektve abudsförfarade bedömer ha vara elgt följade: A: 6 % B: 5 % C: 3 % D: % Vdare aser ha saolkhete att ha ver ett vsst projekt te påverkas av hur det går beträffade de övrga tre projekte. Låt betecka atalet projekt ha ver. a Beräka ( 3) P (med utgågspukt byggares gssade procettal). b Beräka vätevärdet ( ) E. Ledg: Räkgara föreklas betydlgt om du deferar och aväder lämplga dkatorvarabler c Beräka stadardavvkelse V ( ).

2 Uppgft 3 Följade är ett stckprov frå e slumpvarabel med fördelgsfukto ( x) x >. x: a Ta fram täthete ( x) f. 3b Ta fram e skattg av med hjälp av mometmetode. 3c Ta fram e skattg av med hjälp av maxmumlkelhoodmetode. F x Uppgft 4 Skattemydghete hade för seaste deklaratoe fört e y deklaratosblakett som berörde 8 småföretagares deklaratoer. Beskrvge av hur de ya blakette skulle fyllas var dock te så bra formulerad vlket hade tll följd att måga deklarater mssuppfattade det hela och fyllde deklaratoe felaktgt. För att få e bld av hur lla det var valde mydghete ut deklaratoer slumpmässgt och specalgraskade dessa. Det vsade sg att det blad dessa fas 38 stycke som haterat de ya blakette felaktgt. 4a Skatta adele av de 8 småföretagara som haterat blakette felaktgt. 4b Ata att varje felaktgt fylld blakett drar med sg e merkostad för mydghete på 3:- kroor. Skatta de totala merkostade som de olycklga formulerge drar med sg. 4c Ta fram ett kofdestervall med 95 % kofdesgrad för de totala merkostade. Uppgft 5 På ya platta datorskärmar förekommer då och då felaktga pxlar. Atalet felaktga pxlar på e slumpmässgt vald skärm av e vss modell ka betraktas som e slumpvarabel. E skärmtllverkare har kommt fram tll att det geomstt är µ E( ). 4 felaktga pxlar på has skärmar. Det ha u fuderar på är om evetuellt är Possofördelad. I e kotroll av slumpmässgt valda skärmar vsade det sg att 7 var felfra stycke hade e felaktg pxel meda resterade skärmar hade två felaktga pxlar. Testa på 5 % sgfkasvå om Possofördelge är e möjlg modell.

3 Uppgft 6 E hadlare äger två butker. Låt betecka vste frå butk A e vss måad och låt vara motsvarade för butk B. V atar det följade att det är två ormalfördelade slumpvarabler. Geomsttsvste frå A är :- meda B har ett geomstt på 5 :-. Stadardavvkelse för vste frå A är 4:- meda motsvarade för B är 3:-. 6a Beräka saolkhete att de sammalagda vste är mst 4 :- uder förutsättge att och är oberoede. 6b Som a-uppgfte me u är förutsättge att och är smultat ormalfördelade med korrelatoskoeffcet ρ. 5. Ledg: Du behöver aväda ett resultat som säger att om och är smultat ormalfördelade så är ljärkombatoer av och också ormalfördelade. 6c Samma förutsättg som b-uppgfte me u ska du beräka saolkhete att vste frå butk A är mer ä dubbelt så stor som vste frå butk B. Uppgft 7 Frå e ormalfördelad populato har ma tagt ett stckprov av storlek 5. Medelvärdet stckprovet var 7 meda stadardavvkelse var 4. Ur e aa ormalfördelad populato har ma tagt ett stckprov av storlek 6. I detta stckprov fck ma medelvärdet 54 och stadardavvkelse 8. Test på 5 % sgfkasvå om de båda populatoera har samma stadardavvkelse. Uppgft 8 Atalet trafkolyckor som träffade på e vss vägsträcka år 3 var 7 stycke. Detta värde ka betraktas som ett observerat värde av slumpvarabel Po( λ ). Iför årsskftet satte ma upp ett atal hastghetskameror på vägsträcka hopp om att hastghete skulle sjuka och därmed äve atalet olyckor. Uder år 4 träffade edast olyckor på vägsträcka vlket Po. ka betraktas som ett observerat värde av slumpvarabel ( ) Ka det faktum att y är mdre ä x 7 tas som bevs för att äve λ är mdre ä λ? Geomför ett statstskt test på % sgfkasvå geom att ta fram ett lämplgt ekelsdgt kofdestervall för dfferese λ λ. Formulera da slutsatser dels statstska termer dels mer vardaglgt ordaval så att det äve ka förstås av ågo som te läst statstk. Du får uder da uträkgar förutsätta att och är oberoede. λ 3

4 Kortfattade lösgar σ a Elgt CGS gäller N µ approxmatvt (tumregel 3 OK med bred margal). s 39 I µ x ± z.5 9 ±.58 ( 9 ± 7) ( 83998) med approxmatvt 99 % kofdesgrad. b Nej! Äve om det elgt a-uppgfte är så gott som säkert att geomsttsvå på bradvarara lgger uder de rekommederade maxgräse betyder te detta att värdet på e eskld bradvarare med stor saolkhet lgger uder. Amärkg: Om exempelvs vore NF så skulle ett 8 % -gt predktostervall bl PI x ± z s + ± + ( 9 ± 5) ( 44). Trots att v har valt så lågt procettal som 8 % fs det med värde predktostervallet lågt över de rekommederade maxgräse. a P ( 3) P( får alla utom A) P( får alla utom D) b Låt I A vara dkatorvarabel för hädelse att ha får jobb A motsvarade för B C och D. blr då summa av de fyra dkatorvarablera. Idkatorera är oberoede bomalfördelade slumpvarabler alla med me med olka p-värde. Vätevärdet blr E ( ) E( I ) E( I ) A D c Varase blr V ( ) obeoede V ( I A ) V ( I D ) stadardavvkelse blr ( ) V. 3a F ( x) x ger f ( x) F' ( x) x. 3b Mometmetode: Sätt x E( ) xf ( x) dx och lös ut parameter. Ma får då + skattge ˆ x.6. 5 x.6 L x x är ekvvalet g l( L ) l( ) + ( ) l x. 3b Att maxmera lkelhoodfuktoe ( ) f ( x ) med att maxmera ( ) ( ) 4

5 Dervata blr g' ( ) + Σl( ) adra dervata g ''( ) < ˆ tll ekvatoe '( ) Σl( ) 3.76 x vår sökta ML-skattg. x. Lösge g är alltså det -värde som ger ett max x 38 4a p ˆ. 9. 4b Skattad totalkostad p ˆ N c är Hyp(N p) approx B( p) tumregel. OK med margal. N 8 B approx NF tumregel p 5 och q 5 verkar OK eftersom pˆ 38 och qˆ 6. Därmed är äve p ˆ approx NF. pq ˆ ˆ.9.8 I p ˆ p ± z ± (.9 ±.544) ( ) Med approxmatvt 95 % säkerhet gäller alltså.356 < p < < p 8 3 < < kostad < Med approxmatvt 95 % säkerhet bör de totala merkostade hama ågostas mella 35 och 587 kroor. 5 Testa H : är Po(.4) mot H : ej H. Aväd ett goodess-of-ft -test. Atalet frhetsgrader är k--p 3--. α 5%. Förkasta ollhypotese om χ Data: klass ( ) o p E p E obs o ( o E ) 7. 4 e e e summa χ obs E V ka te förkasta hypotese att är Po(.4) eftersom observerat värde te lgger det krtska området. Det är alltså mycket möjlgt att atalet felaktga pxlar på e skärm följer e Possofördelg med vätevärde.4. Amärkg: Ur tabelle får v att % > p-värdet > % (eftersom 3.9 < < 4.65). 5

6 Amärkg: För att testvarabel ska vara approxmatvt ch-två-fördelad uder ollhypotese krävs att E -värdea te är för små. I vårt fall är alla E -värdea större ä 5 vlket är e valgt förekommade tumregel för att approxmatoe med ch-två-fördelge ska gå bra. 6 N( 4) och N( 53) 6a W + N( µσ ) ehet :- kroor. där µ och σ σ + σ V söker 4 35 P ( W 4 ) P Z P( Z ) Φ( ) b W + N( µσ ) där µ som a-uppgfte me σ σ + σ + ρ σ σ P ( W 4 ) P Z Φ(.39) (.5) c V söker P ( > ) P( > ). Sätt W N( µσ ) σ σ + ( ) σ + ρ σ σ ( ) ( ) ( ) P W P Z Φ(.5) V söker där µ 5 och. V söker 7 5 s 4 6 s 8. Sätt σ. Skattge ˆ s är ett σ s 8 observerat värde av slumpvarabel ˆ S ˆΘ Θ. Kvote är F4 5 -fördelad. S ˆ H : För att testa på α 5% sgfkasvå ka v göra ett kofdestervall I med H : 95 % kofdesgrad. Beslutregel: förkasta ollhypotese om värdet te fs tervallet..95 P a < F < b Θˆ Θˆ P a < < b... P < 4 5 Θˆ <. Härledg: ( ) b a Kravet.5 P ( F > b) ger b.7 ur tabelle P 45 < < < F5 4 ger. 44. a F45 a a ˆ ˆ (.37.47) b a.7 Kravet ( F a) P P I. Eftersom värdet te fs tervallet så förkastas ollhypotese. Med 95 % säkerhet ka v säga att populatosstadardavvkelsera är olka. 6

7 8 Po( ) 7 λ y. x meda Po( ) λ Sätt λ λ. Ma hoppas att åtgärdera ska ha gett resultat dvs. att > vlket alltså är det v vll bevsa. Testa H H : : > på α % sgfkasvå. Kofdestervallet som svarar mot detta test är e edre gräs. Θˆ är approxmatvt NF ty Observerat värde ˆ x y 7 6. Vätevärdet µ ( ) λ λ Θˆ E dvs. e vvr-skattg. Varase σ ˆ V ( ) σ + σ possoförd λ + λ Θ skattade varase σ ˆ λ + ˆ λ x + y ˆ ˆ Θ Kofdestervall med approxmatvt 9 % kofdesgrad blr ( ˆ σ ˆ ) ( ) ( ) (.9 ) I z Θ α Eftersom värdet fs tervallet så ka v te förkasta ollhypotese. Att atalet olyckor mskat ka alltså mest bero av e slump. Det är te statstskt säkerställt ( med % felrsk) att det beror på att de geomsttlga årlga olycksfrekvese skulle vara lägre efter åtgärdera ä före.. 7

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

Föreläsningsanteckningar till Linjär Regression

Föreläsningsanteckningar till Linjär Regression Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter

Läs mer

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s. Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

Lycka till och trevlig sommar!

Lycka till och trevlig sommar! UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

F9 Hypotesprövning. Statistikens grunder 2 dagtid. p-värden. Övning 1 från F8

F9 Hypotesprövning. Statistikens grunder 2 dagtid. p-värden. Övning 1 från F8 01-10-5 F9 Hypotesprövg Statstkes gruder dagtd HT 01 Behöver komma håg alla formler? Ne, kolla formelbladet Me vlka som behövs eller te beror på stuatoe Det som ska läras är är behöver Z eller T och hur

Läs mer

SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.

SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump. Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar

Läs mer

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och

Läs mer

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket? Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder

Läs mer

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen? UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

En utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling

En utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling utvärderg av två olka sätt att skatta fördelge tll stckprovsmedelvärde frå olkfördelade data - ormalapproxmato kotra resamplg av Adreas Holmström xamesarbete matematsk statstk Umeå uverstet, Hadledare:

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ 1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av

Läs mer

Formler och tabeller i statistik

Formler och tabeller i statistik KTH STH, Campus Hage Formler och tabeller statstk Arm Hallovc Formler och tabeller statstk Medelvärde och varas = = = ( ) = = = Medelvärde och varas för ett frekvesdelat materal = k = f = k = f ( ) Vätevärde

Läs mer

θx θ 1 om 0 x 1 f(x) = 0 annars

θx θ 1 om 0 x 1 f(x) = 0 annars Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p) Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:

Läs mer

Centrala gränsvärdessatsen

Centrala gränsvärdessatsen Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska

Läs mer

Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)

Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7) Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Orderkvantiteter i kanbansystem

Orderkvantiteter i kanbansystem Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give

Läs mer

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04 Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

a) Beräkna E (W ). (2 p)

a) Beräkna E (W ). (2 p) Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas? Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har

Läs mer

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig

Läs mer

Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända

Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,

Läs mer

REGRESSIONSANALYS S0001M

REGRESSIONSANALYS S0001M Matematk Kerst Väma 9--4 REGRESSIONSANALYS SM INNEHÅLL. Iledg.... Ekel regressosaalys... 3. Udersökg av modellatagadea...7 4. Korrelatoskoeffcet.... Kofdestervall för förvätat Y-värde...3 6. Progostervall...4

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Normalfördelningar (Blom Kapitel 8)

Normalfördelningar (Blom Kapitel 8) Matematsk statstk STS vt 004 004-04 - Begt Rosé Normalördelgar (Blom Kaptel 8 Deto och allmäa egeskaper DEFINITION : E stokastsk varael sägs vara ormalördelad om de har ördelg med täthetsukto med utseede

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

1. Test av anpassning.

1. Test av anpassning. χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler

Läs mer

Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)

Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1) Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

FÖRSÖKSPLANERING. och utvärdering av försöksresultat med den matematiska statistikens metoder. av Jarl Ahlbeck

FÖRSÖKSPLANERING. och utvärdering av försöksresultat med den matematiska statistikens metoder. av Jarl Ahlbeck FÖRSÖKSPLNERING och utvärderg av försöksresultat med de matematska statstkes metoder av Jarl hlbeck Åbo kadem Laboratoret för alägggstekk I a sstem whch varable quattes chage, t s of terest to eame the

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de

Läs mer

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14) AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök

Läs mer

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel

Läs mer

Fyra typer av förstärkare

Fyra typer av förstärkare 1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare

Läs mer

KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )

KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL ) Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas

Läs mer

Slumpvariabler (Stokastiska variabler)

Slumpvariabler (Stokastiska variabler) Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa

Läs mer

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar. Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade

Läs mer

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT ) Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet

Läs mer

Prisuppdateringar på elementär indexnivå - jämförelser mot ett superlativt index

Prisuppdateringar på elementär indexnivå - jämförelser mot ett superlativt index PM tll Nämde för KPI Sammaträde r 3 ES/PR 2017-10-25 Olva Ståhl och Ulf Jostad Prsuppdatergar på elemetär dexvå - jämförelser mot ett superlatvt dex För formato Idex på elemetär vå KPI eräkas de flesta

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Variansberäkningar KPI

Variansberäkningar KPI STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter

Läs mer

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Föreläsning 2: Punktskattningar

Föreläsning 2: Punktskattningar Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,

Läs mer

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10 KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade

Läs mer

Repetition DMI, m.m. Några begrepp. egenskap d. egenskap1

Repetition DMI, m.m. Några begrepp. egenskap d. egenskap1 Repetto DMI, m.m. I. ermolog och Grudproblem II. Ljär algebra III. Optmerg IV. Saolkhetslära V. Parameterestmerg Några begrepp Möstervektor (egeskapsvektor/data) lsta med umerska värde som beskrver möstret.

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas

Läs mer

F15 ENKEL LINJÄR REGRESSION (NCT )

F15 ENKEL LINJÄR REGRESSION (NCT ) Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede

Läs mer

================================================

================================================ rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,

Läs mer