Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x
|
|
- Karl-Erik Berg
- för 8 år sedan
- Visningar:
Transkript
1 Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x = = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de två mttersta observatoera (jämt atal) = 88 s = Varas (s ) s Stadardavvelse Σ ( x x) ( x x) Σ = 3 Normerat värde Freves 8,59-8,8 = -0,,7 Samma sa för oäge ,5 Ger samma svar. x x z = s = 0,0 ormerat värde = 5,99-77,59 = -,73, ,5 75, =,78 avvelse frå medelvärde stadardavvelse 5 Resultat Freves 5,3 5,9,8 5 5,7, 3,5, Atal 0 Stavresultat 5,3 5,9,8,7,,5, Höjd (m)
2 Medelvärde och s Klassdelg (00 m) Resultat Freves 5,3 5,9,8 5,7,,5, s = x Σ ( x x) f x s = Σf ( x x) 7 Relatv freves 0 % 30 % 0 % 0 % 0 % TUN 7,0 USA 7,78 3 EST 8,58 CZE 8, 5FRA 8,3 USA 8,5 7 BEL 9,0 8 HUN 9,9 9GER 9, 0 ESP 9,7 USA 50, FIN00 50,9 m 3 CZE 50,3 NED 50,5 5 RUS 50, RUS 50,58 7 AUT 50,8 8 RUS 5, EST , td (s) Klass Freves Summa 9 Rel. F /9 = % /9 = % % 37 % Verlga lasser 7-8 är,995-7,9958 Medelvärde Kumulerad freves Klass Freves Summa 9 Rel. F % % % 37 % f x f lassmtt R. f x 00 Egetlge sa verlga lasser avädas,995+7,995 Klass Freves Summa 9 Rel. F % % % 37 % Kum. F Kum. R. F 3 % 53 % 89 % 00 % Meda Udre vartle Övre vartle 9 0 Summaolygo Korrelatosoeffcete Summaolygoe ager hur stor del av observatoera som är uder ett vsst värde. Dessa observatosvärde allas fratler. R>0 R 0 R<0 De gräs för vlet hälfte av observatoera är uder allas meda 5% och 75% gräsera allas vartler y R x Ljes evato y = a x+b y R - x
3 Korstabell Sve Eg Saolhet Eg sve Saolhete att slå e sexa. Saolhete att slå mst e femma Saolhete för hädelse = ) = = 0,7 atalet gysamma utfall totala atalet utfall mst 5) = = 0,33 3 Komlemethädelse Saolhete att föda e flca? 0,88 Saolhet att föda e oje -0,88 = 0,5 Summa av saolhete för hädelse A och dess omlemethädelse A är A) + A) = Multlatosregel Saolhet att föda e oje å e södag 0,5*/7 =0,07 Saolhete för att både hädelse A och hädelse B träffar är rodute A och B) = A) B) 0,5 d.v.s A) = -A) 5 Saolhet att först asta e 5:a och seda e :a? Addtosregel /+/ = / Betgad saolhet Saolhete att slå mst e femma (5:a eller :a) Saolhete att slå e udda eller e :a 3/+/ = / Saolhete för att edera hädelse A eller hädelse B träffar är summa A eller B) = A) + B) Saolhet att först asta e 5:a och seda e :a? 7 Dra två ort ur e ortace; Vad är saolhete att båda är ugar? Vad är saolhete att få ar? Multlatosregel A och B) = A) B förutsatt att A träffat) Vad är saolhete att få färg? 8 3
4 Saolhetsfördelg Exemel Teorets fördelg E stoasts varabel ger ett värde Vätevärde,0 Saolhet 80% att lycas med fastghetsaffär. Vst Vd msslycade förlust E ( X ) = x Vätevärdet 0, , ( ) = Svar: De förvätade vste är åt varje utfall ett slumförsö. 9 0 Saolhet att få tre sexor å rad. / */*/ Saolhete av få exat tre sexor av fem? xx eller xx, xx, xx, xx, xx, xx, xx, xx, xx V a få 3 sexor å 0 ola sätt. P = 0*(/) 3 *(5/) Saolhete att ett försö lycas Försöet ureas gåger Hur måga gåger försöet sa lycas Hur måga gåger de stoastsa varabel sa få det ösade värdet P X ( ) ( = ) = 5 tre sexor av fem) = 3 Vad är saolhete att få sexor av 5? X 3)? 3 5 = 0,03 Saolhete att ett försö lycas Försöet ureas gåger Hur måga gåger försöet sa lycas Hur måga gåger de stoastsa varabel sa få det ösade värdet Bomalfördelg Saolhete av få exat tre sexor av fem? P = 0*(/) 3 *(5/) X = ) = ( ) atalet gåger e vss hädelse träffar då ett försö ureas flera gåger. X atalet sexor Vätevärdet E(X) = 3 X = ) = ( )
5 Geometrs fördelg Kastsere X Saolhet x...x (5/) */ X = atal omgågar startruta Saolhete att A träffar efter försö, är saolhete för A:s omlemethädelse uhöjt, multlcerat med saolhete för A X = ) = ( ) 5 ) = ( ) X = atal omgågar startruta X = Hur saolt är det, att ma står startruta högst 9 gåger? Vad är medae för de stoastsa varabel X? X Kumulerad 0 7 % 7 % % 3 % % % 3 0 % 5 % 8 % 0 % 5 7 % 7 % % 7 % 7 5 % 77 % 8 % 8 % 9 3 % 8 % 0 3 % 87 % % 89 % % 9 % 3 % 9 % % 9 % 00,00 8,00 % % 90,00 %,00 % 80,00 %,00 70,00 %,00 0,00 % 0,00 50,00 % 8,00 0,00 %,00 30,00 %,00 0,00 %,00 0,00 % 0,00 0,00 % Kumulerad saolhet Geometrsfördelg ) = ( ) X = atal omgågar startruta X = Fördelgar Geometrsfördelg 8,00 %,00 %,00 %,00 % 0,00 % 8,00 %,00 %,00 %,00 % 0,00 % X ) = ( ) + ( ) E( X ) = 7 Geometrs fördelg X ~ Geom() X = ) = ( ) X ) = X=0)+ X=)+ + X=) X E( X ) = D( X ) = ( ) + ) = ( ) Bomal fördelg X ~ B(,) X = ) = E(X) = ( ) X ) = X=0)+ X=)+ + X=) D( X ) = ( ) 8 Exoetalfördelg X = lamas lvslägd Saolhete att e lama sa sloca uder e veca är 0,? Saolhete att lama brer efter t vecor X>t) = 0,8 t Saolhete att lama brer efter e veca -0, = 0,8.. efter t vecor 0,8 t.. efter 0 dagar 0,8 (0/7) 9.. brer högst 3 vecor X 3) = - X>3) = - 0,8 3..högst t vecor X t) = - 0,8 t 30 5
6 X = lamas lvslägd Stadardavvelse X t) allas fördelgsfuto F(t) E stoasts varabel vars fördelgsfuto har forme F(t) = - (-) t sägs vara exoetalfördelad Saolhet att gå söder uder tde t X t) = F(t) = - (-) t Toe å urva lgger vd medelvärdet. 8 % av värdea lgger s frå medelvärdet 95 % av värdea lgger s frå medelvärdet 3 3 Exemel Z = X μ σ 0 55 =,5 Normerg Fordoes hastghet är å e lats ormalfördelade med m 55 m/h och s m/h Hur måga blar ör uder 0 m/h? Över 80 % värdet medelvärdet ormerat värde = stadardavvelse Det ormerade värdet a slås u e tabell Maol sd 3. Φ(,5) = Hur måga s frå 55 lgger 0? 0 55 =, Svar: % av blar ör uder 0 m/h? Teor Kofdesvå Summa av flera oberoede ormalfördelade stoastsa varabler X, ~ N(μ, σ) X, ~ N(μ, σ) X ~ N(μ, σ) säerhete 95 % allas ofdesvå motsvarade tervall z= -.9 tll z=.9 allas ofdestervall φ(.9) = % 9750,5 %,5 % X, X, X, X ~ N(μ, σ) 35 sgfasvå
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )
Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som
Sensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
Formler och tabeller i statistik
KTH STH, Campus Hage Formler och tabeller statstk Arm Hallovc Formler och tabeller statstk Medelvärde och varas = = = ( ) = = = Medelvärde och varas för ett frekvesdelat materal = k = f = k = f ( ) Vätevärde
För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.
Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar
Följande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Stokastiska variabler
TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,
Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier
. Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =
Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Formelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
Lycka till och trevlig sommar!
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Betygsgränser: För (betyg Fx).
Tetame TEN, HF2, 4 jui 2 Matematis statisti Kursod HF2 Srivtid: 3:-7: : Lärare och examiator : Armi Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile ty
4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Tentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ
Arm Hallovc: ETRA ÖVNINGAR ossofördlg OISSONFÖRDELNING ossofördlg aväds oftast för att bsrva atalt hädlsr som träffar obrod av varadra udr tt gvt tdstrvall E ossofördlad stoasts varabl a ata av fölad värd,,,
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 019-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)
AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Något om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
TENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Föreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
F15 ENKEL LINJÄR REGRESSION (NCT )
Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede
Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl
Tetame STA A5 delkurs ( poäg): Saolkhetslära och statstsk slutledg 3 ovember 5 kl. 8.5-3.5 Tllåta hjälpmedel: Räkedosa bfogade formel- och tabellsamlgar vlka skall retureras. Asvarg lärare: Ja Rudader
b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?
UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.
Korrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
FÖRSÖKSPLANERING. och utvärdering av försöksresultat med den matematiska statistikens metoder. av Jarl Ahlbeck
FÖRSÖKSPLNERING och utvärderg av försöksresultat med de matematska statstkes metoder av Jarl hlbeck Åbo kadem Laboratoret för alägggstekk I a sstem whch varable quattes chage, t s of terest to eame the
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
F9 Hypotesprövning. Statistikens grunder 2 dagtid. p-värden. Övning 1 från F8
01-10-5 F9 Hypotesprövg Statstkes gruder dagtd HT 01 Behöver komma håg alla formler? Ne, kolla formelbladet Me vlka som behövs eller te beror på stuatoe Det som ska läras är är behöver Z eller T och hur
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U.
Vecoblad 2 Kaptel 2 Matemats statst, Blomqvst U. ya begrepp: oberoende händelser, betngad sannolhet, Bayes formel.. är man sall lösa problem, där sntt mellan händelser ngår, an det ofta vara tll hjälp
Matematisk statistik
Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
P (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k)
SVERIGES LANTBRUKSUNIVERSITET Istitutioe för eergi och tekik Uwe Mezel e-post: uwe.mezel@matstat.de Formelsamlig Grudläggade matematiskt statistik 2080822 Saolikhetslära Klassisk saolikhetsdeitio: P A
Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?
Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
En utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling
utvärderg av två olka sätt att skatta fördelge tll stckprovsmedelvärde frå olkfördelade data - ormalapproxmato kotra resamplg av Adreas Holmström xamesarbete matematsk statstk Umeå uverstet, Hadledare:
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
TAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.
Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie
Orderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
03-0-4 F4 Matematirep Summatece Summatecet Potesräig Logaritmer Kombiatori Säg att vi har styce tal x,, x Summa av dessa tal (alltså x + + x ) srivs ortfattat med hjälp av summatece: x i i summa x i då
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:
F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),