F15 ENKEL LINJÄR REGRESSION (NCT )
|
|
- Elsa Birgitta Lundström
- för 6 år sedan
- Visningar:
Transkript
1 Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede Beroede/förklarade Repo/predktor Mta kvadrat Kvadratumma Redual Apaa, apag Predcera Slumpfel Varaaal
2 Bekrvade mått på amvarato mella två oberverade kvattatva varabler (Lä avtt.5 och NCT, om du te tdgare tött på begreppe regreo och korrelato.) Data av följade tp: Ob. r. M M M Ka åkådlggöra prdgdagram: Sprdgdagram
3 3 Korrelato: r r ) ( ) ( ) )( ( där är tckprovet kovara: ) )( ( Korrelatokoeffcete r är ett mått på grade av ljär amvarato ho data. - r Vad betder r, r > 0, r 0, r < 0, r -? Se d kurboke. Varablera behadla mmetrkt: r XY r YX.
4 Regreo: beroede varabel ( repoe varable ) förklarade varabel ( predctor ) Hur mcket av varatoe ho -värdea ka förklara av? F det ågo ljär amvarato? Beräka e rät lje, b 0 + b, om bekrver det ljära ambadet. Hur bra är apage? OBS Med regreoaal tuderar v hur på ett gaka tlgt ätt förklara av. Iga lutater om orakambad, kaualtet. OBS I regreoaal tuderar v ambad ur perpektvet:. V talar om e beroede och e förklarade varabel. I korrelatoaal däremot tuderar v amvarato mella två jämbördga varabler, uta att e de ea om beroede och de adra om förklarade: och r XY r YX. 4
5 Apag av rät lje tll tckprovdata Apaa e rät lje, b 0 + b, tll tckprovdata med mta-kvadratmetode. Summa av alla kvadrerade lodräta avtåd tll lje kall mmera. Matematk lög: Beräka b 0 och b om b ( ( )( ) ) ( )( ( ) ) r b0 b Hur tolka b 0 och b? 5
6 E.: Total oljeförbrukg ett tckprov av hu uder 0 måader. Hur förklara oljeförbrukge av ttertemperature? medeltemperatur uder måade ( C) oljeförbrukg uder måade (lter) Måad ju 5, ,5 8,0 jul 4, ,0 07,36 aug 5, 35 05,0 3,04 ep 0, 5 95,0 04,04 okt 8,3 75 8,5 68,89 ov 3, ,0 4,44 dec 0, ,0 0,5 ja -, ,0,96 feb -4, 65-56,5 6,8 mar, ,0,44 Summa 63, ,5 874,4 700 Oljeförbrukg och ttertemperatur Oljeförbrukg Yttertemperatur 5 6
7 Mta-kvadratmetode ger: b 63, ,5 0 63, 874,4 0 5,3 b , ( 5,3) De apaade regreolje ekvato blr 49 5, Sprdgdagram med regr.-lje 49-5,
8 Redualer, kvadratummor, ANOVA-tablå För varje gvet defera det apaade, predcerade -värdet om ˆ b 0 + b Det är det -värde om lgger på de apaade lje. Det apaade värdet, ˆ, är oftat det oberverade värdet,. Skllade e - ˆ mella oberverat och apaat -värde kalla för redual. E.: Fort. på föreg.eempel. e- 5, 55 09,97 45,03 4,4 75 7,68 5,68 5, 35 07,44 7,56 0, 5 33,94-8,94 8,3 75 8,0-7,0 3, ,86-0,86 0, ,35-9,35 -, ,4 -,4-4, ,73 9,7, ,64 -,64 8
9 De totala varatoe ho -varabel (krg tt medelvärde) ka dela upp två kompoeter: ( ) 443 SST ( ˆ ) 443 SSR + e { SSE där SST totala kvadratumma mått på total varato ho -värdea -värdea varato krg SSR regreokvadratumma mått på förklarad varato de del av -värdea varato om förklara av de apaade lje SSE redualkvadratumma (E error) mått på oförklarad varato mått på -värdea varato krg lje de del av -värdea varato om te förklara av de apaade lje 9
10 För att mäta hur pa bra de apaade lje är på att bekrva gva data aväd determatokoeffcete, R, om defera: R SSR SST SSE SST är ett mått på förklarggrade : det ager hur tor del av -varatoe om förklara av de apaade lje. (Age blad procet.) R Av deftoe följer att 0 R. R betder perfekt ljär amvarato. Om alla -värdea frå börja lgger prec på e rät lje, å blr alla e 0. Alla e 0 SSE 0 R. R 0 betder fulltädg avakad av ljär amvarato. Om det te f ågo om helt ljär amvarato mella och, å blr b 0. b 0 Alla ˆ SSR 0 R 0. Vd ekel ljär regreo gäller att R r. 0
11 Vd regreoaal redova ofta e.k. ANOVA-tablå (ANOVA Aal of Varace): Varatoorak Kvadratumma (SS) Frhetgrader (df) Medelkvadratumma (MS) Regreo SSR MSR SSR/ Redual SSE - MSE SSE/(-) Totalt SST - MSE e redualvarae. E.: Med data frå oljeförbrukgeemplet ger Mtab följade (här ågot tmpade) ANOVAtablå. Aal of Varace Source DF SS MS Regreo Redual Error Total R SSR SST ,978 97,8%
12 Ekel ljär regreomodell Httll: Bekrvg av gve datamägd (, ) (,,, ) geom apag av e rät lje. Nu: Stattk fere. Våra data täk ha geererat elgt e regreomodell (e täkt lumpmekam, om producerar data med va egekaper). På grudval av våra oberverade data vll v föröka dra lutater om de modell om har geererat data. V täker o att varje oberverat -värde är e obervato på e tokatk varabel Y, åda att: Y β 0 +β + ε där ε är e lumpmäg felterm. V täker o med adra ord att: Y e ljär fukto av (β 0 +β ) + ett lumpfel (ε)
13 Våra oberverade -värde,,, e alltå om oberverade värde på tokatka varabler Y, Y,, Y ådaa att Y β 0 + β + ε (,,, ) I tadardmodelle för ekel ljär regreo gör följade modellatagade:. Värdea på,,, betrakta om fa.. För varje gvet (,,, ) gäller att Y β 0 + β + ε 3. ε, ε,, ε är oberoede ormalfördelade tokatka varabler med vätevärde 0 och med amma tadardavvkele σ ε. Dv. ε, ε,, ε är oberoede och N(0; σ ). Vad ebär dea modellatagade? ε 3
14 Skattg av β 0 och β V vll katta de okäda parametrara β 0 och β regreomodelle. (I praktke är det ofta β om är de met treata parameter.) Gör å här: För gva data, apaa e rät lje b 0 + b med mta-kvadratmetode, på det ätt om bekrvt. De b 0 och b om v då får är våra puktkattgar av modellparametrara β 0 repektve β. Alltå: ˆ b β 0 0 och β ˆ b Det går att va (uder förutättg att modellatagadea gäller) att: E(b 0 ) β 0 och E(b ) β De båda kattgara, b 0 och b, är alltå vätevärderktga kattgar av β 0 rep. β. 4
15 Det går ockå att va (uder förutättg att modellatagadea gäller) att: Var( b ) σ σ ε ε ( X ) ( ) X (Hur Var(b 0 ) er ut, tår te kurboke.) Ttta på uttrcket för Var(b ). Hur bör ma välja a -värde om ma vll katta β med å tor preco om möjlgt? Några vädgar? De aa lumpfelvarae σ ε är praktke oftat okäd. Om v utfrå gva data vll blda o e uppfattg om torleke på Var(b ), å erätter v σ med de oberverade redualvarae e ε ( MSE), om är e vätevärderktg kattg av lumpfelvarae: E( e ) σ ε Som kattg av Var(b ) aväd då: b e ( ) ( e ) 5
16 Mtab-utkrft För oljeförbrukgeemplet ger Mtab följade utkrft (om kommetera på föreläge): ) ) 3) 4) The regreo equato 49-5,3 Predctor Coef SE Coef T P Cotat 49,6,60 39,03 0,000-5,56,347-8,75 0,000 S 9,3554 R-Sq 97,8% R-Sq(adj) 97,5% Aal of Varace Source DF SS MS F P Regreo ,46 0,000 Redual Error Total ) Uuual Obervato Ob Ft SE Ft Redual St Red 4,4 75,00 7,93 4,3-5,93 -,06R R deote a obervato wth a large tadardzed redual. 6
Föreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik
Formelamlg tll Geodetk och fotogrammetrk mätg- och beräkgtekk Vero 015-03-04 Geodetk och fotogrammetrk mätg- och beräkgtekk by Latmäteret m.fl. lceed uder a Creatve Commo Erkäade-Ickekommerell-Igaearbetgar
Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik
Formelamlg tll Geodetk och fotogrammetrk mätg- och beräkgtekk Vero 015-03-04 Tllägg 018-10- Geodetk och fotogrammetrk mätg- och beräkgtekk by Latmäteret m.fl. lceed uder a Creatve Commo Erkäade-Ickekommerell-IgaBearbetgar
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Sensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
ENKEL LINJÄR REGRESSION
Fnansell statstk, vt 0 ENKEL LINJÄR REGRESSION Ordlsta tll NCT Scatter plot Dependent/ndependent Least squares Sum of squares Resdual Ft Predct Random error Analyss of varance Sprdnngsdagram Beroende/oberoende
REGRESSIONSANALYS S0001M
Matematk Kerst Väma 9--4 REGRESSIONSANALYS SM INNEHÅLL. Iledg.... Ekel regressosaalys... 3. Udersökg av modellatagadea...7 4. Korrelatoskoeffcet.... Kofdestervall för förvätat Y-värde...3 6. Progostervall...4
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)
AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök
Enkel linjär regression
Ekel ljär regresso Ekel ljär regresso Kap Ekel ljär regressosmodell: = β + β + ε Sstematsk del Stokastsk (slumpmässg) del där är beroede varabel, de varabel som v vll förklara eller predktera De kallas
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Lycka till och trevlig sommar!
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys
Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,
TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2
Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +
F11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
HYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen.
HPOTESPRÖVNING De tatitika metodera om aväd för att fatta dea typ av belut baera på två komplemetära atagade om populatioe. Partiet produkter har atige de utlovade kvalitete eller å har de de ite. Atige
SOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna
UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:
En utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling
utvärderg av två olka sätt att skatta fördelge tll stckprovsmedelvärde frå olkfördelade data - ormalapproxmato kotra resamplg av Adreas Holmström xamesarbete matematsk statstk Umeå uverstet, Hadledare:
Något om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04
Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830
Fyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Formelsamling i statistik
Formelamlg tattk Vero 4. 004-0-9 Ittutoe för formatotekolog och meder 004-0-9 Iehåll: eteckgar... 3 ekrvade tattk... 4. CETRL- OCH SPRIDIGSMÅTT... 4. STDRDVÄGIG...6.3 ORRELTIO OCH REGRESSIO... 7 3 Saolkhetteor...
Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1
Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Korrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
F7 PP kap 4.1, linjära överbestämda ekvationssystem
F7 BE3 & 3 Page of 5 F7 PP ka 4., ljära överbestäda ekvatossste Här behadlas dels ljära överbestäda sste oh dels tlläge å odellaassg ed stakvadrat-etode so kaske ufas av Gauss. V börjar ed ljära algebra.
Grundläggande matematisk statistik
Grudläggade matematik tatitik Hypotetet I Uwe Mezel, 2018 uwe.mezel@lu.e; uwe.mezel@mattat.de www.mattat.de Syfte: Hypotetet o vi tetar på grudval av ett tickprov om e fördeligparameter (μ, σ, λ, ) har
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
F7 Polynomregression och Dummyvariabler
F7 Polnomregression och Dummvariabler Antag att man börjar med enkel linjär regression. Kap Polnomregression Emellanåt upptäcker man samband som är kvadratiska, kubiska osv. Allmänt: polnom av k:te ordningen
Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Exempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet
b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?
UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
0 Testvariabel t, x s n. Lite historia om t-testett. testet. Ett stickprov: Hur räknar r. testet. ett stickprov
-ee Le hora om -ee ee ude -e "ude," peudom om aväd av Wllam Goe (bld) Jobbade på Gue brggere Dubl börja av 9-ale allmä beecka alla e om aväder - fördelge om -e uwe.mezel@mah.uu.e Defo för f r -fördelge
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Repetition DMI, m.m. Några begrepp. egenskap d. egenskap1
Repetto DMI, m.m. I. ermolog och Grudproblem II. Ljär algebra III. Optmerg IV. Saolkhetslära V. Parameterestmerg Några begrepp Möstervektor (egeskapsvektor/data) lsta med umerska värde som beskrver möstret.
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Formelsamling. Enkel linjär regressionsananalys: Modell: y i = β 0 + β 1 x i + ε i. Anpassad regressionslinje: ŷ = b 0 + b 1 x. (x i x) (y i ȳ) ( x)2
LINKÖPINGS UNIVERSITET Matematiska istitutioe Statistik, ANd Formelsamlig Ekel lijär regressiosaaalys: Modell: y i β 0 + β x i + ε i ε N(0,σ. Apassad regressioslije: ŷ b 0 + b x b (x i x (y i ȳ (x i x
Regressionsanalys Enkel regressionsanalys Regressionslinjen
--9 Regreionanaly - en fråga om balan Kimmo Sorjonen Sektionen för Pykologi Karolinka Intitutet. Enkel reg.analy.. Data.. Reg.linjen.. Beta (β).. Signifikan.. Reg. om Var..6. Korr. & Förklarad var..7.
Orderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:
Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt
Enkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematik tatitik KTH Formelamlig i matematik tatitik Vårtermie 07 Kombiatorik! = k k! ( k)!. Tolkig: mägd med elemet. = atalet delmägder av torlek k ur e k Stokatika variabler V (X) = E X (E (X)) C (X;
Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x
Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de
Regressionsanalys Enkel regressionsanalys Regressionslinjen
-9-6 Regreionanaly - om en mak åt en hungrande Kimmo Sorjonen Sektionen för Pykologi Karolinka Intitutet. Enkel reg.analy.. Data.. Reg.linjen.. Beta (β).. Signifikan.. Reg. om Var..6. Korr. & Förklarad
SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.
Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en
Variansberäkningar KPI
STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Lösning till till tentamen i EIEF10 Elmaskiner och drivsystem
Lög tll tll tetame EIEF0 Elmaer och drvytem 04 05 30. Ltrömmae, tatoär drft E eletrt mageterad ltrömmotor har följade data agva på märylte: P = 000 W, = 5000 rpm, U a = 0 V, I a = 0 A och I f = 0.5 A.
Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29
Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara
Formelsamling för Finansiell Statistik
Formelamlig för Fiaiell Statitik Kombiatorik Atal ätt att ta elemet ur är Uta åter- läggig Med återläggig Med häy till ordig! ( )! Atal ätt att ta elemet, av e ort, och elemet är det totalt orter är elemet,
Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?
Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL
Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a
Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Skrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
Begreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Följande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin
Strukturell utvecklg av arbetskostad och prser de sveska ekoom Alek Markowsk Krsta Nlsso Marcus Wdé WORKING PAPER NR 06, MAJ 0 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET gör aalyser och progoser
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier
. Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa
= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Tentamentsskrivning: Tillämpad Statistik 1MS026 1
Tetametsskrivig: Tillämpad Statistik 1MS026 1 Tetamesskrivig i Tillämpad Statistik 1MS026 Tid: de 7 mars, 2012 kl 8:00-13:00 Examiator och jour: Erik Broma, mob. 073 7320791, Hjälpmedel: miiräkare, formelsamlig
ANOVA I: Kap 14. Åldersgrupper -30 år år 51- år. Totalt n k N = 9 X k X = s k s = 8.
ANOVA I: ap 14 1 Åldersgrupper -30 år 31-50 år 51- år 39 6 6 43 3 0 41 30 Totalt 3 3 3 N = 9 X k.67 41.00 9.33 X = 31.00 s k 3.06.00 3.06 s = 8.38 s k 9.33 4.00 9.33 s = 70.5 Ex. OVERHEAD Åldersgrupper
Orderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
FÖRSÖKSPLANERING. och utvärdering av försöksresultat med den matematiska statistikens metoder. av Jarl Ahlbeck
FÖRSÖKSPLNERING och utvärderg av försöksresultat med de matematska statstkes metoder av Jarl hlbeck Åbo kadem Laboratoret för alägggstekk I a sstem whch varable quattes chage, t s of terest to eame the