Formelsamling Ljud i byggnad och samhälle
|
|
- Mattias Samuelsson
- för 6 år sedan
- Visningar:
Transkript
1 Formelsamlg jud bggad oh samhälle Några räkeregler för logarmer: log log log log log log log log log log log log Några grudläggade akusska defoer oh räkeregler -dmesoell la ljudåg som ubreder sg os -rkg: Aos Ae k Effekärde rms för ljudrke e uk: ~ d judrkså ljudå: ~ log där = -5 Pa Ekale ljudå: eq log log d / d
2 Vägd ljudå: ägd log ägg / Addo a å ljudkällor är de okorrelerade förser ssa erme: ~ o ~ ~ d Addo a N s okorrelerade ljudkällor: o log N / Efrhesgradsssem Efrhesgradsseme med e massa fjäder oh e dämare leder ll rörelseekaoe Mu Ru Ku F om har e oal lösg som besår a e homoge oh e arklär del u = u h + u. De homogea lösge är d d Ae A e e B s B os uh e d där de odämade resoasfrekese dämkosae oh dämade resoasfrekese förs K R M MK d d oh arkulärlösge för e drade kraf F F os Re F e u D s D os D D är dr R K M R K M K M R F F dr dr dr
3 Edmesoell ågubredg Rörelseekaoe fluder oh fasa meder är För fluder gäller sambade mella rk oh arkelhasghe P För fasa meder har mosarade sambad mella kraf oh förskjug u F E Vågekaoe för logudella ågor e dmeso urk ljudrk är där P är ubredgshasghee för rkåge luf =.4 oh P är amosfärsrk. fasa meder är ubredgshasghee för logudella ågor E. rke ka ersäas med arkelförskjug arkelhasghe öjg eller kraf som fälarabel ågekaoe. De allmäa lösge ll ågekaoe är / / De harmoska lösge å ågekaoe å komle form för fskalsk olkg a realdele a resulae är ˆ e k ˆ e k där ˆ oh ˆ är rkamludera för ågora som ubreder sg os reseke ega rkg. är kelfrekese oh k är ågale. De ger f efk akussk medas deferas som efk akussk medas för e edmesoell åg luf som ubreder sg os -rkg blr
4 För skjuågor ka ma urka ågekaoe med de rasersella förskjuge w w G w där G För böjågor balkar oh laor blr ågekaoe e dmeso 4 4 w w B med böjshee 3 bh B E för rekagulär ärs oh ubredgshasghee fases 4 B k f judeerg reseke ljudese är F Ufrå ljudrke deferas ljudå som Pa där ~ log 5 judeffekå oh ljudeseså beräkas ufrå reseke dsmedelärde elg log oh log där = - W oh = - W/m. dsmedelärdea är d oh d För e åg som forlaar sg os -rkg gäller a ~.
5 Refleko oh rasmsso Vd ormal fall mo e hård rada blr rkfukoe e k os ˆ oh hasghesfukoe / s ˆ e k Helmholz ekao k har de edmesoella falle med å hårda rador d = oh = lösge f e B os där f är resoasfrekesera f de redmesoella falle med se hårda rador blr egefrekesera H B f z z Vd öergåg frå e medum med ågmedase = ll e medum med ågmedase = blr rasmssosfakor oh lekosfakor r ˆ ˆ ˆ ˆ r r meda rasmssoskoeffee oh lekoskoeffee blr 4 4 r
6 judsolerg oh absoro Redukosal: R log log Mäg a redukosal R: R s m log A Mäg a segljudså: m A log ammasa redukosal: rgläkage: R log R / R /... R log R / s abes formel: V 6 A Masslage för ekelägg: fm'' R log Kodesfrekes eller krsk frekes B är böjshe er lägdehe B = E h 3 / m f K / h B
7 abeller Okabad oh ersbad: Phokuror:
8 Refereskura för lufljudsolerg: För a beräka resulae ska ereskura flas seg om db mo de umäa kura lls de ogsamma akelse är så sor som möjlg me e sörre ä 3 db. E ogsam akelse d e seell frekes räffar är resulae a mägara är mdre ä eresärde. Edas ogsamma akelser beakas. De ärde db som ereskura har d 5 Hz efer a ha flas elg dea llägagågssä är R w. Refereskura för segljudsolerg: För a beräka resulae ska ereskura flas seg om db mo de umäa kura lls de ogsamma akelse är så sor som möjlg me e sörre ä 3 db. E ogsam akelse d e seell frekes räffar är resulae öerskrder eresärde. Edas ogsamma akelser beakas. De ärde db som ereskura har d 5 Hz efer a ha flas elg dea förfargssä är w.
Formelsamling Ljud i byggnad och samhälle
ormlsamlg jud bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grudläggad akusska dfor oh räkrglr -dmsoll la ljudåg som ubrdr sg os -rkg: Aos Effkärd rms
Formelsamling Ljud i byggnad och samhälle
ormlsamlg jd bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grdläggad aksska dfor oh räkrglr -dmsoll la ljdfäl: Aos Effkärd rms för ljdrk k: ~ d jdrkså
Begreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Fyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen
Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan
Laborationer / Gruppindelning. Kapitel 4: Interferens. Fri dämpad svängning. Förra veckan, fri svängning FAF260. Lars Rippe, Atomfysik/LTH 1
Lunds Uniersie Laboraioner / Gruppindelning Kapiel 4: Inerferens Inerferens ellan å ågor Sående ågor Säning Lunds Uniersie Förra eckan, fri sängning Lunds Uniersie Förra eckan, Tungen däpad sängning y
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Reflektion och transmission
RfTas / Ljud byggad oh samhäll / VTAF0 Rflko oh asmsso Tdga ha bhadla ågubdg homoga md ua a gå äma å ad som sk ögåg få mdum ll aa ll ad som sk d äda. Da ska äma gå å hä. V ka ll ml äka oss såg a sål som
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer.
Arm Hallovc: EXTRA ÖVNINGAR Bomska ekvatoer EKVATIONER MED KOMPLEXA TAL A Ekvatoer som ehåller både ett obekat komplext tal och dess kojugat B Bomska ekvatoer. A Ekvatoer som ehåller både och För att lösa
Korrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator
Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.
helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god
Teme i TEN, HF, Memisk sisik Dum -8-7 Kurskod HF Skrivid: 5-75 Lärre: Armi Hlilovi Hjälmedel: Bifog formelhäfe (" Formler oh beller i sisik ") oh miiräkre v vilke y som hels De är INTE TILLÅTET väd miilo,
Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1
Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers
Orderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Programmering Emme-makro rvinst_ic.mac version 2
Uppdragsr: 10109320 2008-08-27 Seh Svalgård PM Programmerig Emme-makro rvis_ic.mac versio 2 Iehållsföreckig Förusäigar...2 Beräkigsuryck...2 Daabaser...4 Marisplaser...4 Aropsparamerar...6 Udaa...6 L:\705x\_SAMSAM\3_Dokume\36_PM\PM
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Föreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
Uppgifter 2 Grundläggande akustik (II) & SDOF
Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den
Repetition DMI, m.m. Några begrepp. egenskap d. egenskap1
Repetto DMI, m.m. I. ermolog och Grudproblem II. Ljär algebra III. Optmerg IV. Saolkhetslära V. Parameterestmerg Några begrepp Möstervektor (egeskapsvektor/data) lsta med umerska värde som beskrver möstret.
Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
3 Rörelse och krafter 1
3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Orderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Föreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
Kan asymmetriska prisindex approximera superlativa? - en studie av prisindex i producent- och importled.
INSTITUTIONEN FÖR INFORMATIONSVETENSKAP Ehee för Sask Uppsala Uverse Uppsas C Vårerme 25 Förfaare: Da Hjörered Haa Holm Hadledare: Joha Lyhage (UU) Mas Haglud (SCB) Ka asymmerska prsdex approxmera superlava?
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.
Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Kap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta
Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
Reglerteknik AK, FRT010
Insiuionen för REGLERTEKNIK, FRT Tenamen 5 mars 27 kl 8 3 Poängberäkning och beygssäning Lösningar och svar ill alla uppgifer skall vara klar moiverade. Tenamen omfaar oal 25 poäng. Poängberäkningen finns
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Modell för fukt på vind Enligt figuren kan en energi balans ställas upp:
Mode för fk på d Eg fgre ka e eerg aas säas pp: förs för I fgre eda sas defoera för ärme oh fkaas. Om fgres koeoer föjs r ärmeaase (ge maera aas ha ågo ärmekapae (myke förekad mode oh ge sråg på sda eer
Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska
in t ) t -V m ( ) in - Vm
1 Föreläsning 17/11 Hambley asni 14.5 14.7 Komparaorn ej i Hambley) En komparaor anänds för a agöra eckne på den differeniella insignalen. Komparaorn besår a en operaionsförsärkare som aningen saknar åerkoppling
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
TENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
DN1240 numi12 1
F7 Ssem av ODE - iiialvärdesproblem Exises & edige Lipsciz Euler overges fel overgesordig Lösigssaror fasrum Sabilie äslige Högre ord. evaio ill försa ord. ssem Ruge-Kua-meoder seglägdsreglerig Sva evaioer
Ljudtransmission och reflektion
F6 Spridning Innehåll Ljudransmission och reflekion Spridning av ljud, diffrakion Addiion av ljud, inerferens Transmission och reflekion Transmission och reflekion Vad som reflekeras och vad som ransmieras
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET
Tetame del 2 i kure Elitallatio, begräad behörighet ET1013 2013-06-03 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara
Hambley avsnitt På föreläsningen behandlas även transkonduktans-, transresistans- och strömförstärkaren, se förra veckans anteckningar.
1 Föreläsning 19/11 Hambley asni 14.5 14.7 På föreläsningen behandlas äen ranskondukans, ransresisans och srömförsärkaren, se förra eckans aneckningar. Lie mer om komparaorn ej i Hambley) En komparaor
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
GOSPEL PÅ SVENSKA 2. Innehåll
GOSPEL PÅ SVENSKA 2 Innehåll Kom oh se 7 Lovsung vår Gud 8 Barmhärtige Gud 10 Igen 11 är min Herde 1 Ditt Ord estår 16 redo 18 När delar 21 Herre hör vår ön 2 Vår ader 2 ör mig 26 O Herre längtar 28 Hallelua,
================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:
Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad
Ljud i byggnad och samhälle. Innehåll. Lärare. Kurslitteratur/-material. Hemsida. 2 st laborationer
Innehåll Kursintroduktion, administrativa detaljer Grundläggande akustiska begre jud i byggnad och samhälle Kristian Stålne eknisk Akustik ärare Kurslitteratur/-material Föreläsningar och kursansvarig:
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Ordinära differentialekvationer,
Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9.45. Kursadministratör: Azra Mujkic, tfn 1104, azra.mujkic@liu.
Teknska högskolan vd LU Insuonen för ekonomsk och ndusrell uvecklng Produkonsekonom Helene Ldesam TENTAMEN I TPPE PRODUKTIONSEKONOMI för I,I TISDAGEN DEN 7 APRIL 25, KL 82 Sal: TER, TER4 Provkod: TEN Anal
Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6
ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.
SOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
System med variabel massa
Sysm m varabl massa Rörlsmängn hos kropp m är: p m mv Anag nu a kroppns massa änras gnom a v llför massor m pr snh, som har hasghn v k. Rörlsmängsföränrngn pr snh hos kroppn blr: pm m( vk v är ( v k v
Formelsamling. TFYA16 Mekanik TB. r r. B r. Skalär produkt. Vektorprodukt (kryss produkt) r r r. C r B r Φ A r. En vektor: där Φ är vinkeln mellan A r
oelsalg TYA6 ekak TB E eko: a a ˆ + a ˆj + a kˆ z ˆ ˆj kˆ a a a + a + a Skalä poduk ˆ ˆ ˆ ˆj z Vekopoduk (kss poduk) C c ˆ + c ˆj + c kˆ C A B A B cosφ dä Φ ä kel ella A C A B Dä A A, B B och Φ ä kel ella
Elektromagnetisk strålning (ljus) och materia har både våg- och partikelegenskaper
Föreläsnng 5: Förra gången: Eleromagnes srålnng (ljus) oc maera ar både åg- oc arelegensaer Fooelers ee E E nma = φ m c Comonsrdnng ' 1 cos Parbldnng e + Z e + + e - + Z där Z är en aomärna som ar u reylen
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Skillnaden mellan KPI och KPIX
Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas
Mekaniska vibrationer. Hjulupphängning. Fria odämpade svängningar. Svängningstiden för pendelrörelsen. Approximationen sin
--9 Meaisa vibraioer Hjulupphäi ria oäpae sväiar Sväisie för peelrörelse 9 7 S e ( S) r ( ) P; e r e 7 9 De aeaisa peel (parielpeel) ( ) (...) 7 Approxiaioe si Rörelseevaioe.99.9.97 si.9.9.9 P ; si, (
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 9. Analys av Tidsserier (LLL kap 18) Tidsserie data
Finansiell Saisik (GN, 7,5 hp,, HT 008) Föreläsning 9 Analys av Tidsserier (LLL kap 8) Deparmen of Saisics (Gebrenegus Ghilagaber, PhD, Associae Professor) Financial Saisics (Basic-level course, 7,5 ECTS,
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät
Kap 4 Laplaceanfomanaly av idkoninueliga yem 9 Sabilie fö enegifia LTI-yem Maginell abil yem: De flea begänade inignale ge upphov ill begänade uignale Kap 4 Laplaceanfomanaly av idkoninueliga yem 0 Sabilie
5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Pingsteld över Maramba, Zambia
Nyhesbrev Nr 10 2014 Jesus är desamme i går och idag och i evighe. (Hebr. 13:8) Pigseld över Maramba, Zambia Maramba är e kåksad srax uaför sade Livigsoe i Zambia. I dea yhesbrev vill jag rapporera frå
Lösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.
Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Luftflödesregulator. Dimensioner
ufflödesregulaor Dimensioner (MF, MP, ON, MOD, KNX) Ød nom (MF-D, MP-D, ON-D, MOD-D, KNX-D) Beskrining är en cirkulär lufflödesregulaor för VAV-reglering i kanalsysem och besår a en mäenhe och e spjäll.
Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer
Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria
KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )
Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som
Lektion 4 Lagerstyrning (LS) Rev 20130205 NM
ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller
DIGITALTEKNIK. Laboration D171. Grindar och vippor
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Håkan Joëlson 2006-01-19 v 1.3 DIGITALTEKNIK Laboraion D171 Grindar och vippor Innehåll Uppgif 1...Grundläggande logiska grindar Uppgif 2...NAND-grindens
Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Ack du min moder (epistel nr 23)
Text och musik: Carl Michael Bellman Arr: Eva Toller 2009 Tenor 1 4 3 Tenor 2 4 3. Basso 1 4 3 1.Ack, du min mo - der, säj vem dig sän - de just till min fa - ders säng!. Basso 2 4 3 1.Ack, du min mo -
SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.
SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen
Bäckvägen EDSBERGS ENTRÉ. Sammanställning av enkätdialog, Skyttevägen. Malla Silfverstolpes väg. Baronvägen. Slottsvägen. www.sollentuna.
a Kap la sba cke ber s t or Ru db e vä e yd svä e Eds Yx Da d er Slottsväe s vä Baroväe Oxest ieras v ä svä e ber eck e ä v tts ll ha evk Dr s vä a K Eds Malla Silfverstolpes vä Skytteväe Rud b e ä Sammaställi
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
LINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
26,4 21,8 21,8 21,8 1:27 22,7 22,4 19,4 21,7 18,3 18,6 23,1 19,8 26,2 17,7 15,9 1:45 15,5 24,4 16,3 15,5 1: ,2 10,3 18,6 1:28.
.,,,,,,,,, :,, r. ÅKSVÄG SPLLKR RÄ OR R L TUK il l n t T O LB.. T ti ÖS LTUK OTO R-R STO,,, :,,,,,,,,,,,,,,, RG lu j ÄG LSV TUULHUKKUJ,,,,, risnäs,,, :,,,,,,,,,,,, risnäs,,,,,,, :, :,,,,,,,,,,,,,,,,,,,,,,,,,,
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.
Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
0 Testvariabel t, x s n. Lite historia om t-testett. testet. Ett stickprov: Hur räknar r. testet. ett stickprov
-ee Le hora om -ee ee ude -e "ude," peudom om aväd av Wllam Goe (bld) Jobbade på Gue brggere Dubl börja av 9-ale allmä beecka alla e om aväder - fördelge om -e uwe.mezel@mah.uu.e Defo för f r -fördelge
Våg1 Endimensionell vågutbredning
Våg1 Endimensionell ågubredning Här kommer ågekaionen för framför all longiudinalågor a as fram. När i har få fram ågekaionen och en lösningsmeodik kommer i a behandla endimensionella longiudinalågor i
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
2009-11-20. Prognoser
29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska
fermacell Brandskydd Brandskydd med fermacell AESTUVER och fermacell Firepanel A1
fermacell Bradskydd Bradskydd med fermacell ESTUVER och fermacell Firepael 1 2 Bradiklädad av balkar och pelare med fermacell ESTUVER Skivas uppbyggad fermacell ESTUVER skiva är illverkad av sad, ceme,