System med variabel massa

Storlek: px
Starta visningen från sidan:

Download "System med variabel massa"

Transkript

1 Sysm m varabl massa Rörlsmängn hos kropp m är: p m mv Anag nu a kroppns massa änras gnom a v llför massor m pr snh, som har hasghn v k. Rörlsmängsföränrngn pr snh hos kroppn blr: pm m( vk v är ( v k v är hasghn hos m s från m. m Enlg Nwon II gällr : p m F Följaklgn kan v braka rörlsmängsföränrngn som n kraf. m F m v k m Nwon II för kroppn blr å: Fx Fm ma är F x är övrga krafr som vrkar på kroppn m (yngkraf, lufmosån, c.. V kan skrva: F v m m v ( v v m m k ( v vk x F x v Där ( v k v är n rlava hasghn och m/ är massföränrngn pr snh. Da gällr. x. n fallan rgnropp är väska konnurlg konnsras llr n rak.

2 Exmpl på sysm m varabl massa v Fx m ( v vk m Ex. Transporban. Här är hasghn konsan, så F = p/ = v m/ Ex. Rak. Här är hasghn j konsan, så F = p/ = m v/ - v m/ v rlav hasgh mllan bränngasr och rak.

3 Härlnng rakkvaonn Tänk Rörlsmäng v v Förbrännngs -gasr Rörlsmäng v + v v v v v m m m m m m P( mv P( ( m m( v v ( m( v v v mv mv mv v Hasgh på förbrännngsgasr rlav rak, v v Rakns hasgh v m Rakns oala massa v, m m Rakns oala massa v Föränrng rörlsmäng: P P( P( mv mv mv mv mv m v P F lm Exmpl:1 v lm ( m v m v m v m F v m v m Rak kvaonn

4 ( konsan Konsan vnklhasgh: Om = och = rhålls: llr / ( konsan Crklrörls m konsan vnklhasgh/vnklacclraon Konsan vnklacclraon: ( ( (

5 ˆ Crklrörls m varran far rˆ Om farn varrar har acclraonn bå n komponn n mo cnrum, a N, och n komponn angnns rknng a T. Då a T = v/ och v = R rhålls: a T = R/ = R är är vnklacclraonn. ˆ jmf polära koornar : a a ˆ ˆ ˆ rr a ( r r r (r r r R r ( hasgh rˆ l ( ˆ ˆ ˆ Crklrörls r acclraon r l a a r a R rˆ N T ( vnklhasgh ( vnklacclraon Rˆ

6 Vkorbskrvnng av crklrörls Från fgur ss a R = r sng Då v =R blr v = r sng Obsrvra a blopp av n kryssprouk är: A B = A B sn är är vnkln mllan A och B. (v ( (r (g Här är v vnklrä mo och r vlk nnbär a v kan urycka: v = r Nu är a = v/ och om är konsan får v: a v r Kombnras a = v och v = r får v: a = ( r Då är vnklrä mo v blr blopp a v = v v V unform crklrörls ( konsan är allså acclraonn vnklrä mo v, och pkar mo crklns cnrum. Då v = R och vkorn a har rknng mo cnrum rhålls sambann: a N = R = v /R Cnrpalacclraon

7 Knsk nrg hos roran kroppar Braka n fas kropp som har n rörls rlav s masscnrum. Dn na möjlga rörls är roaon. Kroppn kan brakas som om n är sammansa av parklar. Om kroppn rorar m vnklhasghn, har parkl farn: v R, är R är vnklräa avsån från roaonsaxln Summrar v övr alla parklar som kroppn bsår av får v n knska roaonsnrgn: E E k, ro k, ro 1 1 mv I Sorhn I kallas kroppns röghsmomn (ng. momn of nra. 1 m R 1 m R I m R Exmpl: 7

8 Bräknng av röghsmomn Om kroppn är homogn, vs. har konsan äh r, kan v skrva: I = M K (jmf I m R är röghsran K (ra of gyraon nbar bror av gomrn och M är oala massan. Obsrvra a K rprsnrar avsån från roaonsaxln man skull ha om all massa vor förlag. Allmän gällr för bräknng av röghsmomn för kroppar m konsan äh: I m R R m R rv r R V Exmpl:3 8

9 Snrs sas Om man kännr röghsmomn rlav n axl gnom kroppns masscnrum I C rhålls röghsmomn rlav n parallll axl på avsån som: I = I C + M Samban ovan kallas Snr s sas alrnav parallllaxl orm. M CM I C krng nna axl Var gällr för n unn sl skva a I z = I x + I y I = I C + M krng nna axl är X och Y axlarna lggr skvans plan och Z är vnklrä mo skvans plan och orgo lggr masscnrum. 9

10 Snrs sas Bvs: Anag är a röghsmomn masscnrum är kän (I com. V vll bsämma röghsmomn run P (I p som har koornar (a,b. Koornasysms orgo O sär v kroppns masscnrum (com. Braka n massa m v punk A som har koorna (x,y. Avsån r mllan A och P är å: A I c I P r ( x r ( x a ( y b m y ( x a ( y b m m a xm b ym ( a 1 1 ( xcom xm, ycom M M ym b m amxcom bmycom ( a b m Ic M x ( a com m M b y com Exmpl: 4

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k) Armn Hallovc: EXTRA ÖVNINGAR Tllämpnngar av dffrnalkvaonr TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följand uryck används ofa olka problm som ldr ll dffrnalkvaonr: Tx A är proporonll mo B A är omvän proporonll

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

System med variabel massa

System med variabel massa Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe

Läs mer

Den kinetiska energin för bilen ges av massan och sluthastigheten enligt

Den kinetiska energin för bilen ges av massan och sluthastigheten enligt FYSIKTÄVLINGEN Fnaln - o apl LÖSNINGSFÖSLAG SVENSKA FYSIKESAMFNDET. a Dn kompla ablln s u nlg följan T/s Hasg/(m/s Acclaon (m/s Kaf (N Säcka (m Ab (Nm,7 3,,6 8735 8 583 7, 3,6 6 38 5,, 3, 5657 8 5588 7,

Läs mer

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00 Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn

Läs mer

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6 ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.

Läs mer

Allmänt om korttidsplanering. Systemplanering 2011. Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem!

Allmänt om korttidsplanering. Systemplanering 2011. Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem! Sysemplanerng 2011 Allmän om kordsplanerng Föreläsnng 8, F8: Kordsplanerng av vaenkrafsysem Kapel 5.1-5.2.4 Innehåll: Allmän om kordsplanerng Allmän om vaenkraf Elprodukon Hydrologsk kopplng Planerngsprobleme

Läs mer

ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll

ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nycklord och innhåll x f, x sysm av diffrnialkvaionr Linjära sysm av diffrnialkvaionr x P x

Läs mer

Formelsamling Ljud i byggnad och samhälle

Formelsamling Ljud i byggnad och samhälle ormlsamlg jud bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grudläggad akusska dfor oh räkrglr -dmsoll la ljudåg som ubrdr sg os -rkg: Aos Effkärd rms

Läs mer

re (potensform eller exponentialform)

re (potensform eller exponentialform) Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r

Läs mer

Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation

Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation Lnköngs Unvrstt IFM Km 8-1-17 Formlsamlng ör Fyskalsk km rmodynamk, Sktrosko & Kntk Gasr. a n + ( nb) n R van dr Waals gaskvaton Z n R Komrssblttsaktor r nd r rducrad, c krtsk varabl Rducrad varablr c

Läs mer

Formelsamling Ljud i byggnad och samhälle

Formelsamling Ljud i byggnad och samhälle ormlsamlg jd bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grdläggad aksska dfor oh räkrglr -dmsoll la ljdfäl: Aos Effkärd rms för ljdrk k: ~ d jdrkså

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 5

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 5 Mkank, Dl, Sak- och akldynamk 4, Ugåva Föläsnnga Mkank (FME) Dl: Sak och pakldynamk Läsvcka 5 Föläsnng : aklns knmak (Dynamcs /). V baka n pakl som ö sg umm. En pakl ä n punkfomg kopp som kaaksas av sn

Läs mer

Begreppet rörelsemängd (eng. momentum)

Begreppet rörelsemängd (eng. momentum) Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och

Läs mer

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1 LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)

Läs mer

Beteckningar för områdesreserveringar: T/kem Landskapsplanering

Beteckningar för områdesreserveringar: T/kem Landskapsplanering kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12

Läs mer

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska

Läs mer

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning. TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

Jämviktsvillkor för en kropp

Jämviktsvillkor för en kropp Jämvktsvllkor för en kropp Det förekommer ofta stuatoner där man önskar bestämma vlka vllkor som måste uppfyllas för att en fast kropp skall förbl stllastående, dvs. befnna sg jämvkt. Den här delen av

Läs mer

F5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2)

F5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2) F5: korr Appnd B oh kormodlon Kp PE g välrkr - Norml nl n nrlldrn g välrkr -S-p g välrkr -PWM Modlon v omvndlr - + R L C d + d Fgr.8: Dn ndrök omvndlrn yrd lkrkr nln ll nä Fgr.9: Bärvågmodlon md nformg

Läs mer

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE

Läs mer

Kraftekvationen i olika koordinatsystem. Exempel 1.1: Naturliga koordinater. Exempel 2.8. Exempel 2.8. Exempel 1.

Kraftekvationen i olika koordinatsystem. Exempel 1.1: Naturliga koordinater. Exempel 2.8. Exempel 2.8. Exempel 1. Kaaonn ola oodnaym Exmpl.: aulga oodna Exmpl.: En ula ä uppädd på n x ålåd omad om n höguln md al axl nlg Exmpl.8 (Läca 5). D nmaa onal mllan ula och ålåd ä. omula dnalaonn ö ulan öl läng ålådn. Exmpl.8

Läs mer

Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!

Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till! Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Öppenhet påp. olika marknader. Öppenhet för f r handel och kapitalrörelser. Handelsbalansunderskott. relser

Öppenhet påp. olika marknader. Öppenhet för f r handel och kapitalrörelser. Handelsbalansunderskott. relser Blanchard kapil 18-19 19 Dn öppna konomin Vad innbär öppnh? Vad bsämmr val mllan uländska och inhmska illgångar och varor? Vad bydr växlkursv xlkurs- och frfrågf gförändringar för f r BNP och handlsbalans?

Läs mer

Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem

Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md

Läs mer

Föreläsning 11: Grafer, isomorfi, konnektivitet

Föreläsning 11: Grafer, isomorfi, konnektivitet Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

Blåsen nu alla (epistel nr 25)

Blåsen nu alla (epistel nr 25) lås al (epstel nr 25) ext musk: Carl Mchael ellman oprano 4 3 rr: Eva oller 2004 lto or 4 3 4 3 lå - s Fåg - r - al - tt - ta, hör öl - jor - fs - kar - sval - ås - kan sprt - ta ur stt går rum; e - gas

Läs mer

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar. LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper

Läs mer

247 Hemsjukvårdsinsats för boende i annan kommun

247 Hemsjukvårdsinsats för boende i annan kommun PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Information från Medborgarkontoret Hösten 2013

Information från Medborgarkontoret Hösten 2013 E ö hö ö! DENNA SIDA ÄR EN ANNONS G Im M Hö 2013 M G Yv P ch U Bjöm ö m ö G. M m hö! Å F ä! Ö ö M G M... 13-18 T... 13-16 O... 13-16 T... 13-18 m ä ä. A: Hcv. 1, 247 70 G T: 046-35 63 57 Fx: 046-35 70

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a) Drivaans iniion DERIVATANS DEFINITION Dfiniion Lå y f vara n givn funkion som är inirad i punkn a f a f Om gränsvärd israr som rll al sägr vi a funkionn är drivrbar i punkn a Gränsvärd kallas drivaan av

Läs mer

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn

Läs mer

F8: Asynkronmaskinen. Sammanfattning

F8: Asynkronmaskinen. Sammanfattning F8: Aynkonmknn Smmnfnng Allmän om ynkonmknn (I) Lgköld Uglåd Kylflän Kllg Mool Solndnng Fläk Roo Soplåpk Fg 0.. Aynkonmkn Lnd nv / Lnd knk högkol / Indll Elkoknk / PK Allmän om ynkonmknn (II) A ynkonmoon

Läs mer

Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer

Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria

Läs mer

Formelsamling Ljud i byggnad och samhälle

Formelsamling Ljud i byggnad och samhälle Formelsamlg jud bggad oh samhälle Några räkeregler för logarmer: log log log log log log log log log log log log Några grudläggade akusska defoer oh räkeregler -dmesoell la ljudåg som ubreder sg os -rkg:

Läs mer

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad. SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen

Läs mer

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och

Läs mer

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Arkitekturell systemförvaltning

Arkitekturell systemförvaltning Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv

Läs mer

Louise. Hayde. Nadja. kommer Förbandet är ju nästan klara showen börjar snart och vi har inte ens kommit in än

Louise. Hayde. Nadja. kommer Förbandet är ju nästan klara showen börjar snart och vi har inte ens kommit in än l v M Tl på v ll omp T OP Mo D m k u f. lo k o oc gg f å y l T J, m h mobl vg! D lk h komm å ho kk? V gå! Jg h US 7 gåg föu på fvl, m å o jg mglåg få c, u vll jg å lg fm, jj! Och h jg u kk jg få uogf Hy

Läs mer

Lägenhet A 1103, 1203,1303

Lägenhet A 1103, 1203,1303 ÖRHDSOPI 2014 09 02 Lägenhet 1103, 1203,1303 Storlek 90 m 2 4 rok Placering Trapphus plan 1, 2, 3 SL 1:100 (4) ÖRRÅD 5m 2 LO 6 m 2 SOV 12 m 2 SOV 9 m 2 W Ö SOV 8,5 m 2 Ö / LO 10 m 2 DISMSI ÄDSÅP YLSÅP

Läs mer

Uppgradering. och varför

Uppgradering. och varför Uppgradring vad är d och varför Lösligh lir pr lir Lösligh man och koldiox 2,000 1,800 1,600 1,400 1,200 Man 1,000 Koldioxid id 0,800 0,600 0,400 0,200 0,000 0 10 20 30 40 50 60 70 Tmpraur C Skrubba gas,

Läs mer

Vill veta kvaliteten hos våra vattenföringsdata?

Vill veta kvaliteten hos våra vattenföringsdata? Vll vt kvlttn hos vår vttnförngsdt? Bnt Görnsson, G Bo Toms Lndlus, FoU //9 Bkgrund - gnomförd v n stud för tt tst någr xmpl på noggrnnhtskrv på Bo:s Q-dt En v Bo:s huvuduppgftr är tt t frm kvlttskontrollrd

Läs mer

Aerodynamik och kompressibel strömning

Aerodynamik och kompressibel strömning Aerodnamik och kompressibel srömning Kompressibelsrömning Ma < 0.3 Inkompressibel 0.3 < Ma < 0.8 Sbsonisk srömning 0.8 < Ma < 1. Transonisk srömning 1. < Ma < 3.0 Spersonisk srömning 3.0 < Ma Hpersonisk

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

1 Elektromagnetisk induktion

1 Elektromagnetisk induktion 1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.

Läs mer

Vad är reglerteknik? Reglerteknik AK F1. Vad är ett dynamiskt system? Principer för reglering. Vad är återkoppling? Alternativ: Framkoppling

Vad är reglerteknik? Reglerteknik AK F1. Vad är ett dynamiskt system? Principer för reglering. Vad är återkoppling? Alternativ: Framkoppling Rglrknik AK F Vad är rglrknik? Vad är rglrknik? ID-rglaorn Rglrknik handlar om rglring av dynamiska sysm A få dynamiska sysm a ppföra sig som önska / 4 2 / 4 Vad är dynamisk sysm? rincipr för rglring Dynamiska

Läs mer

Föreläsning 19: Fria svängningar I

Föreläsning 19: Fria svängningar I 1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen

Läs mer

Räkneövning i Termodynamik och statistisk fysik

Räkneövning i Termodynamik och statistisk fysik Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn

Läs mer

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006 INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter

Läs mer

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176 FÖROR So en sträng å gtrren och so tonern dn vs..., så börjr texten Ulrk Neuns underbr Kärleksvls. Vd kn vr ljuvlgre än gtrrens sröd och nnerlg ton so tllsns ed sången kn sk sådn stänng och rontsk tosfär.

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:

Läs mer

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot

Läs mer

Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik

Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik Tllämpnngar av dekomposton: Flervaruflödesproblemet v = mn j: x k c k x k xj k = r k för alla N, k C (1) x k b för alla (, j) A (2) j:(j,) A x k 0 för alla (, j) A, k (3) Struktur: Om man relaxerar kapactetsbvllkoren

Läs mer

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads

Läs mer

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006 M y å y, S R å ö ö 2006 R 2007:3 3 Fö S ö 1996 å ö å å ö. Uö ä å ä: Mä ( ä) ä. Mä ä å y y,, ä ä å y S ä. I å 2006 å ö ä y, (ä). D (ä) 2007:4, M y å S ä. Uö y : ö ö ä y S, ö ö ö å S,, ä ä å ä å y ö. Fä

Läs mer

Föreläsning 10 Kärnfysiken: del 2

Föreläsning 10 Kärnfysiken: del 2 Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

Elementær diskret matematikk, MA0301, våren 2011

Elementær diskret matematikk, MA0301, våren 2011 Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t

Läs mer

Sju advent- och julsånger i satser för blandad kör SAB av Karl-Fredrik Jehrlander

Sju advent- och julsånger i satser för blandad kör SAB av Karl-Fredrik Jehrlander ju advent- julsånger satser bnd kör av Karl-Fredrk Jehrnr dvent... 2 Den sg g... 6 Dng dong!... 8 Ej upplysta gårr... 9 Hersång...10 tl tt...12 Jord hmmel...14 (8) =92 dvent uns. 1.Vn n su sar Text: rtt

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Handlingsplan. Grön Flagg. Ängens förskola

Handlingsplan. Grön Flagg. Ängens förskola Handlngsplan Grön Flagg Ängens förskola Kommentar från Håll Sverge Rent 2015-10-02 09:58: Vlka rolga och spännande utvecklngsområden som n ska jobba med. Utmana gärna barnen med att ställa öppna frågor

Läs mer

FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST

FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST STNSUNSVÄN Ø Ø : Ø OSTÄR S TRO RK ST 3 RK 3 ST RK ST SUMM 7 ST 663 ILPLTSR +. +.3 R 6 ST -3 /. +.7 MRK Lr 5 ST SUMM ST.5 + IV. > VI SO P 3 677 b 3 3 UN SL TRO +.5 + 3.5 + 6. VÄ PL NN g V S +7 +3. +.6.5

Läs mer

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar) B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 10-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Svensk författningssamling

Svensk författningssamling Svensk författningssamling Förordning om ändring i strålskyddsförordningen (1988:293); SFS 2000:809 Utkom från trycket den 7 november 2000 utfärdad den 19 oktober 2000. Regeringen föreskriver 1 i fråga

Läs mer

A LT B A R Y TO N. enkelt

A LT B A R Y TO N. enkelt A LT SOPRAN sahlt nklt B A R Y TO N Innhåll: Amn - låt rns lja råda 2 Du ljuvast n Gud har männs kär Gud ll oss väl 6 Halluja 7 Hlg 8 följr dg Gud 9 Julat Do 10 Kom, öppna dn dörr 11 r 12 Må dn väg gå

Läs mer

Centrala Gränsvärdessatsen:

Centrala Gränsvärdessatsen: Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar

Läs mer

Come on children! Volym 1 av Karin Runow. Copyright Runow Media AB Tel:

Come on children! Volym 1 av Karin Runow. Copyright Runow Media AB Tel: Come on chldren Volym 1 av Karn Runo Copyrght Runo Meda B Tel: 08730 24 02 runomedase 1 VIKTI INORMTION Tack för att du valt att köpa detta not och textmateral u som köpt detta häfte äger rätt att kopera

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem

Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem nsttutonn fö Man Ncholas pads tl: 79 78 post: nap@mch.th.s hmsda: http://www.mch.th.s/~nap/ S-85 ntamn S Man, 85 BS! nga hjälpmdl. Lca tll! Poblm ) En hosontll am ' md längdn l ota md n onstant nlhastght

Läs mer

Virkad garn väska Ton i Ton

Virkad garn väska Ton i Ton Virkad garn väska Ton i Ton Material: Virknålnål nr. 4 Hobbii Rainbow Cotton 8/4 Dubbel tråd 4 olika färger Köp garn och tillbehör här: http://shop.hobbii.se/garnvaska-ton-i-ton Mått: Ca. Botten, diameter:

Läs mer

POSTKODVINSTER á 1.000 kronor Inom nedanstående postkoder vinner följande 234 lottnummer 1.000 kronor vardera:

POSTKODVINSTER á 1.000 kronor Inom nedanstående postkoder vinner följande 234 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 04-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Biomekanik, 5 poäng Kinetik Härledda lagar

Biomekanik, 5 poäng Kinetik Härledda lagar Uöver Newons andra lag, kraflagen, finns också andra samband som kan användas för a lösa olika problem Bland dessa s.k. härledda lagar finns Arbee Energisamband Impuls Rörelsemängdssamband (Impulsmomen

Läs mer

Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m

Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m Bng Assarsson Forskning Makro, konomri Skar, EMU, frfrågsysm Finansdparmn Svrigs Riksbank Sora konomriska modllr Svnsk modll BASMOD Modll för världskonomin Modll för kors prognosr Inflaion/rlaiva prisr

Läs mer

Sammanfattning, Dag 1

Sammanfattning, Dag 1 Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Differentialekvationssystem

Differentialekvationssystem 3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten 1 Torsdagen den 14 januari 2016, klockan 14 19 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 013-281157 Examinator

Läs mer