Centrala Gränsvärdessatsen:

Storlek: px
Starta visningen från sidan:

Download "Centrala Gränsvärdessatsen:"

Transkript

1 Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar för de asymptotska fördelnngen som bäst motsvarar våra mätdata, gången var: : Bestäm den förväntade asymptotska fördelnngen. Parametrarna för denna har ett samband med den underlggande verklgheten - det v vll mäta. : Gör en mätnng av den storhet som representeras av den asymptotska fördelnngen. 3: Använd mnsta kvadratmetoden för att bestämma vlka parametrar för den asymptotska fördelnngen som ger bäst överensstämmelse mellan teor och experment. Teorn ger oss en asymptotsk fördelnng Mätnngar ger oss en verklg fördelnng Mnsta kvadratmetoden låter oss bestämma vlka värden på de teoretska parametrarna som ger bästa överensstämmelsen ästa fråga blr då: - hur skulle v kunna defnera en asymptotsk fördelnng för tll exempel mätnngen av längden av en parkerngsfcka? Svaret ges av en vd första påseende märklg sats: Centrala Gränsvärdessatsen: Om v summerar ett stort antal slumpmässgt fördelade tal, så kommer den asymptotska fördelnngen för summan att gå mot en normalfördelnng Detta gäller oberoende av hur fördelnngen ser ut för de termer som ngår summan!! Föreläsnng

2 Exempel: Summera tal slumpvs fördelade mellan och : Den ursprunglga fördelnngen: Summan av tal: 5 termer termer För att förstå hur denna sats kan hjälpa oss så kan v betrakta resultatet av en mätnng som beroende av det sanna värdet tll vlket har adderats slumpvsa bdrag från ett stort antal okända (och en del kända) felkällor. Om v utgår från att det nte fnns några systematska effekter kommer postva fel vara lka vanlga som negatva. Resultatet av ett stort antal mätnngar kommer då att sprdas runt det sanna värdet, och fördelnngen av mätnngarna runt detta kommer att ha en form som ges av normalfördelnngen. ormalfördelnngen: f(x; m,s ) = -(x - m) exp ps Ó s Observera att denna fördelnng är normalserad tll ett. Egenskaper Maxmum vd x = m Symmetrsk runt x = m är s är ltet så blr exponenten stor -> lutnngen blr större är s är ltet så blr normalserngskonstanten större -> höjden vd toppen blr relatvt sett högre. Föreläsnng

3 .5 sgma =..5.5 sgma =.5 sgma = ormalfördelnngen har normalserngen. Uttrycker man ntegratonsgränser parametern s så har alla normalfördelnngar samma area nom dessa gränser - oberoende av vlka exakta värden m och s antar. Integrerar man en normalfördelnng mellan tll exempel -s och +s så är arean 68% av hela arean. Detta har betydelse när v tolkar f(x) som en sannolkhetsfördelnng - sannolkheten att hamna ntervallet [m- s, m+s] är 95% och så vdare. Föreläsnng 3

4 Tllbaks tll vår mätstuaton: Om det nte fnns stora systematska effekter så kan v alltså förvänta oss att våra mätresultat - efter ett stort antal mätnngar och under förutsättnng att det nte fnns systematska effekter - beskrvs av en normalfördelnng. V förväntar oss att m svarar mot det sanna värdet för den parameter v vll mäta, v kommer snart att se att s säger oss någontng om mätmetodens precson. Gvet mätdata, hur uppskattar v parametrarna m och s? Lösnngen lgger att v betraktar normalfördelnngen som en sannolkhetsdstrbuton för att göra observatonen x, gvet m och s. Om den underlggande dstrbutonen är en normalfördelnng med parametrarna m och s, så är sannolkheten för att göra observatonen x proportonell mot: B Oberoende sannolkheter: för oberoende händelser (sannolkheten av en händelse påverkas nte av utfallet de andra händelserna) är sannolkheten för seren lka med produkten av sannolkheterna för de ensklda händelserna. 5% 5% 5% Om våra mätnngar av x är oberoende, vlket v kommer att anta, så ges tydlgen sannolkheten för att observera just vår mätsere, x, x, x 3,, x av produkten av sannolkheterna för de ensklda mätnngarna: P(x, x, x 3,, x ) = P(x ) P(x ) P(x 3 ) P(x ) Föreläsnng 4

5 Ê P(seren) = Á ps exp -(x - m) ˆ Ê Ó s Á Ë ps exp -(x - m) ˆ Ê Ó s Á Ë Ë Ê LÁ ps exp -(x - m) ˆ Ó s Ë ps exp -(x - m) 3 ˆ Ó s L Uttrycket ger oss sannolkheten att observera vår mätsere x, x, x 3,, x gvet parametrarna m och s för den underlggande fördelnngen. V bestämmer nu vlka värden på m och s som ger oss den största sannolkheten att observera just vår mätsere genom normal maxmerng: m = -(x - m) P - (x - m) P +L = -  ( ) = x - m P Vllkoret att denna dervata är noll ger oss då ett estmat för m: m = f  ( x - m ) = f m^ = =  = x Den bästa uppskattnngen av parametern m ges alltså av medelvärdet för alla ngående storheter. V gör nu samma optmerng för parametern s: s = - 4ps -Â( x - m) Â( x - m) -Â( x - m) ( ps / + exp + exp = ) s ( ps ) / s 3 s Ó Ó = - s + x - m Ó s 3 Â( ) -Â( x - m) exp s ps Ó ( ) / s = f s^ = Â(x - m) I detta uttryck betecknar m det sanna värdet på denna parameter. Eftersom detta värde oftast är okänt så får v approxmera det med vårt bästa estmat - medelvärdet. Man kan vsa (det görs nte kursen) att detta medför att v får ett något modferat uttryck för estmatet: s^ =  (x - - x) = s Föreläsnng 5

6 Även om v nte strkt vsar att uttrycket modferas på det här sättet så kan v ntutvt förstå att det är rktgt: - För en enda mätt punkt kan v nte ha någon uppfattnng om sprdnngen (om v nte vet runt vlket värde denna enda punkt är sprdd). Rent matematskt motsvarar uttrycket denna förväntnng eftersom s detta fall blr av typen /, alltså ej defnerat. är v har mätt punkter fnns det frhetsgrader (v återkommer senare tll detta begrepp), det vll säga det fnns oberoende fakta att tllgå. Men när v ersätter m med medelvärdet så använder v data tll att beräkna medelvärdet, vlket gör att v bara har - frhetsgrader kvar. I prncp kan v varje gång x dyker upp ersätta det med x = x - x = Vlket demonstrerar att det bara fnns -  oberoende varabler kvar. Så vad betyder s? Om v tolkar normalfördelnngen som den asymptotska fördelnngen för en mätnng så betyder det att sannolkheten för att vår mätnng skall ge ett resultat ntervallet [x, x+dx] lka med arean under kurvan mellan dessa värden eller: ( ) = f (y)dy P x' Œ[ x, x + dx] : m Där f(y) betecknar normalfördelnngen centrerad krng m x + dx Ú x Gör v en mätnng är sannolkheten att den hamnar nom ± sgma från det sanna värdet 68%. Så s, eller estmatet för s, säger hur stor sprdnngen krng det sanna värdet, det är en egenskap hos mätmetoden. Föreläsnng 6

7 ågra ord på vägen nu när n skall börja mäta: Tag det lugnt! Fem mnuter tjänade på övnngslab kostar ofta en halvtmme datasalen när man försöker reda ut vad man egentlgen gjorde däruppe. Förbered er Väl uppe på övnngslabb, med labbkompsen flåsande nacken är det för sent att läsa n vad man skall göra. Släng ngentng! Inga lösa lappar! Det fnns hur många exempel som helst på att det efterhand dyker upp frågor som man nte tänkt på. Inte ens när laboratonen är redovsad och godkänd kan man vara säker på att man nte något annat sammanhang vll gå tllbaks tll det man gjort för att förstå någon aspekt av det. Av samma skäl skall allt föras n logboken, nte skrvas upp på lösa lappar som sedan ofrånkomlgt försvnner. Dokumentera upptställnngen och yttre varabler! Era antecknngar skall vara så fullständga att n kan komma tllbaks och göra om dentskt samma försök - samma mätnstrument, samma fjädrar, resstorer mm mm. Detta kan vara enda sättet att undersöka resultat som efterhand ser konstga ut, om någon frågasätter era resultat måste n kunna säga antngen att n kan eller att n nte kan reproducera dem. får nte hamna en stuaton där n nte vet om n tror på ert resultat eller nte. Dokumentera under arbetets gång! På samma sätt som det är vktgt att dokumentera de yttre förutsättnngarna så är det vktgt att dokumentera arbetets gång. I vlken ordnng gjordes mätnngarna. Ofta kan man t ex msstänka att mätnstrument drvt under arbetets gång. Har man koll på vlken ordnng man gjort vad är det enkelt att kontrollera. Beräkna delresultat! Lstan på laboratonsrapporter som mynnar ut de här resultaten verkar helt ormlga men nu efterhand kan jag nte förstå vad som gck fel... är lång. Se tll att dn rapport nte hamnar där! Grova överslagsberäknngar och enkla dagram gjorda under laboratonens gång kan ofta avslöja om det smugt sg n någon katt bland hermelnerna. Vänd om! V kommer att bereda er möjlgheten att ttta upp på labbet dagen efter om n behöver kolla något. Under självständngt arbete på schemat är labb- och datorsalar bokade för kursen och assstenterna fnns huset. Msstänker man att något gått galet bör man gå tllbaks och göra en kontrollmätnng Föreläsnng 7

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Slumpvariabler (Stokastiska variabler)

Slumpvariabler (Stokastiska variabler) Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona

Läs mer

FK2002,FK2004. Föreläsning 5

FK2002,FK2004. Föreläsning 5 FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd

Läs mer

Tentamen i Dataanalys och statistik för I den 5 jan 2016

Tentamen i Dataanalys och statistik för I den 5 jan 2016 Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:

Läs mer

Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.

Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden. Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Test av anpassning, homogenitet och oberoende med χ 2 - metod

Test av anpassning, homogenitet och oberoende med χ 2 - metod Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna

Läs mer

ENKEL LINJÄR REGRESSION

ENKEL LINJÄR REGRESSION Fnansell statstk, vt 0 ENKEL LINJÄR REGRESSION Ordlsta tll NCT Scatter plot Dependent/ndependent Least squares Sum of squares Resdual Ft Predct Random error Analyss of varance Sprdnngsdagram Beroende/oberoende

Läs mer

Mätfelsbehandling. Medelvärde och standardavvikelse

Mätfelsbehandling. Medelvärde och standardavvikelse Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger

Läs mer

Blixtkurs i komplex integration

Blixtkurs i komplex integration Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010

Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010 Tentamen Tllämpad matematsk statstk för MI och EPI den december Uppgft : Ett företag som tllverkar batterer av en vss typ har tllverknng förlagd tll två olka fabrker. Fabrk A står för 7% av tllverknngen

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

a) B är oberoende av A. (1p) b) P (A B) = 1 2. (1p) c) P (A B) = 1 och P (A B) = 1 6. (1p) Lösningar: = P (A) P (A B) = 1

a) B är oberoende av A. (1p) b) P (A B) = 1 2. (1p) c) P (A B) = 1 och P (A B) = 1 6. (1p) Lösningar: = P (A) P (A B) = 1 Lösnngar tll tentamen: Matematsk statstk och sgnalbehandlng (ESS0), 4.00-8.00 den 4/-009 Examnator: Serk Sagtov (Kursansvarg: Ottmar Crone) Tllåtna hjälpmedel: Tabell "Beta", utdelad formelsamlng, valfr

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Komplettering av felfortplantningsformeln

Komplettering av felfortplantningsformeln Kompletterng av felfortplantnngsformeln Varansen och kovaransen Quck Check Eempel med abs. nollpkt. Kompletterng av lnftw funktonen Possonfördelnngen 00-0-0 Fskeperment, 7.5 hp 00-0-0 Fskeperment, 7.5

Läs mer

Tolkningen av normalfördelningsfunktionen. Felfortplantningsformeln Felet i medelvärdet Acceptans av data Felpropagering Relativa fel

Tolkningen av normalfördelningsfunktionen. Felfortplantningsformeln Felet i medelvärdet Acceptans av data Felpropagering Relativa fel Tolknngen av normalördelnngsunktonen Felortplantnngsormeln Felet medelvärdet cceptans av data Felpropagerng Relatva el 00-09-06 Fskeperment, 7.5 hp ormalördelnngsunktonen (; µ, ) ( µ ) ep π.5.5 0.5 sgma

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

F13. Förra gången (F12) Konfidensintervall och hypotesprövning Chi-tvåtest. Stratifierat urval

F13. Förra gången (F12) Konfidensintervall och hypotesprövning Chi-tvåtest. Stratifierat urval Konfdensntervall och hypotesprövnng Ch-tvåtest F3 Förra gången (F) Stratferat urval Dela n populatonen homogena ata med avseende på atferngsvarabeln Välj atferngsvarabel som har ett samband med undersöknngsvarabeln

Läs mer

file:///c:/users/engström/downloads/resultat.html

file:///c:/users/engström/downloads/resultat.html M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Dödlighetsundersökningar på KPA:s

Dödlighetsundersökningar på KPA:s Matematsk statstk Stockholms unverstet Dödlghetsundersöknngar på KPA:s bestånd av förmånsbestämda pensoner Sven-Erk Larsson Eamensarbete 6: Postal address: Matematsk statstk Dept. of Mathematcs Stockholms

Läs mer

Fördelning av kvarlåtenskap vid arvsskifte

Fördelning av kvarlåtenskap vid arvsskifte NATIONALEKONOMISKA INSTITUTIONEN Uppsala unverstet Magsteruppsats Författare: Lars Björn Handledare: Henry Ohlsson HT 2008 Fördelnng av kvarlåtenskap vd arvsskfte En analys av ntergeneratonella fnansella

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk

Läs mer

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det?

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det? NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Uppsats fortsättnngskurs C Författare: Johan Bjerkesjö och Martn Nlsson Handledare: Patrk Hesselus Termn och år: HT 2005 Arbetslvsnrktad rehablterng för

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Utbildningsavkastning i Sverige

Utbildningsavkastning i Sverige NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsnng -2 732G70 Statstk A Kaptel 2 Populatoner, stckprov och varabler Sd -46 2 Populaton Den samlng enheter (exempelvs ndvder) som v vll dra slutsatser om. Populatonen defneras på logsk väg med utgångspunkt

Läs mer

Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik

Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik Tllämpnngar av dekomposton: Flervaruflödesproblemet v = mn j: x k c k x k xj k = r k för alla N, k C (1) x k b för alla (, j) A (2) j:(j,) A x k 0 för alla (, j) A, k (3) Struktur: Om man relaxerar kapactetsbvllkoren

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

Handlingsplan. Grön Flagg. Förskolan Näckrosen

Handlingsplan. Grön Flagg. Förskolan Näckrosen Handlngsplan Grön Flagg Förskolan Näckrosen Kommentar från Håll Sverge Rent 2015-07-28 12:15: N har vktga och spännande utvecklngsområden krng tema. Utmana gärna barnen med öppna frågor de olka utvecklngsområdena

Läs mer

Steg 1 Arbeta med frågor till filmen Jespers glasögon

Steg 1 Arbeta med frågor till filmen Jespers glasögon k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.

Läs mer

Partikeldynamik. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Dynamik är läran om rörelsers orsak. Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är

Läs mer

Grön Flagg-rapport Borrby förskola 18 maj 2015

Grön Flagg-rapport Borrby förskola 18 maj 2015 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 18 maj 2015 Kommentar från Håll Sverge Rent 2015-05-11 09:08: skckar tllbaka enl tel samtal 2015-05-18 15:32: Det har vart rolgt att läsa er

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Lyckornas förskola 25 jun 2013

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Lyckornas förskola 25 jun 2013 Illustratoner: Anders Worm Grön Flagg-rapport Lyckornas förskola 25 jun 2013 Kommentar från Håll Sverge Rent 2013-04-02 09:44: Inskckad av msstag... 2013-06-25 12:09: N har på ett mycket kreatvt och varerat

Läs mer

Handlingsplan. Grön Flagg. Hamregårds förskola

Handlingsplan. Grön Flagg. Hamregårds förskola Handlngsplan Grön Flagg Hamregårds förskola Kommentar från Håll Sverge Rent 2016-03-30 08:43: Vlket härlgt vattentema n ska arbeta med tllsammans med barnen och strålande att n utgått från barnens ntresse

Läs mer

Om ja, hur har ni lagt upp och arbetat i Grön Flagg-rådet/samlingarna med barnen och hur har det upplevts?

Om ja, hur har ni lagt upp och arbetat i Grön Flagg-rådet/samlingarna med barnen och hur har det upplevts? I er rapport dokumenterar n kontnuerlgt och laddar upp blder. N beskrver vad n har gjort, hur n har gått tllväga arbetsprocessen och hur barnen fått nflytande. Här fnns utrymme för reflektoner från barn

Läs mer

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå

Läs mer

Skoldemokratiplan Principer och guide till elevinflytande

Skoldemokratiplan Principer och guide till elevinflytande Skoldemokratplan Prncper och gude tll elevnflytande I Skoldemokratplan Antagen av kommunfullmäktge 2012-02-29, 49 Fnspångs kommun 612 80 Fnspång Telefon 0122-85 000 Fax 0122-850 33 E-post: kommun@fnspang.se

Läs mer

Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07

Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07 Tentamen MATEMATISK STATISTIK Datum: 8 Jun 0 Kurser: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 (TEN2), 6L3000 (TEN2), MATEMATIK2 MED MATEMATISK STATISTIK 6H2208 (TEN2) MATEMATISK STATISTIK 6A2111 (TEN1);

Läs mer

Jämviktsvillkor för en kropp

Jämviktsvillkor för en kropp Jämvktsvllkor för en kropp Det förekommer ofta stuatoner där man önskar bestämma vlka vllkor som måste uppfyllas för att en fast kropp skall förbl stllastående, dvs. befnna sg jämvkt. Den här delen av

Läs mer

Bankernas kapitalkrav med Basel 2

Bankernas kapitalkrav med Basel 2 RAPPORT DEN 16 jun 2006 DNR 05-5630-010 2006 : 6 Bankernas kaptalkrav med Basel 2 R A P P o r t 2 0 0 6 : 6 Bankernas kaptalkrav med Basel 2 R a p p o r t 2 0 0 6 : 6 INNEHÅLL SAMMANFATTNING 31 RESULTAT

Läs mer

Introduktionsersättning eller socialbidraghar ersättningsregim betydelse för integrationen av flyktingar? 1

Introduktionsersättning eller socialbidraghar ersättningsregim betydelse för integrationen av flyktingar? 1 UPPSALA UNIVERSITET Natonalekonomska Insttutonen Examensarbete D-uppsats, Ht-2005 Introduktonsersättnng eller socalbdraghar ersättnngsregm betydelse för ntegratonen av flyktngar? 1 Författare: Henrk Nlsson

Läs mer

Grön Flagg-rapport Tryserums förskola 3 dec 2014

Grön Flagg-rapport Tryserums förskola 3 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Tryserums förskola 3 dec 2014 Kommentar från Håll Sverge Rent 2014-12-03 09:47: N har på ett mycket kreatvt och varerat sätt jobbat med era mål och aktvteter.

Läs mer

Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014

Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014 Kommentar från Håll Sverge Rent 2014-12-09 16:00: N har bra och spännande utvecklngsområden, och vad som är ännu bättre n gör

Läs mer

N A T U R V Å R D S V E R K E T

N A T U R V Å R D S V E R K E T 5 Kselalger B e d ö m n n g s g r u vattendrag n d e r f ö r s j ö a r o c h v a t t e n d r a g Parameter Vsar sta hand effekter Hur ofta behöver man mäta? N på året ska man mäta? IPS organsk Nngspåver

Läs mer

Handlingsplan. Grön Flagg. Ängens förskola

Handlingsplan. Grön Flagg. Ängens förskola Handlngsplan Grön Flagg Ängens förskola Kommentar från Håll Sverge Rent 2015-10-02 09:58: Vlka rolga och spännande utvecklngsområden som n ska jobba med. Utmana gärna barnen med att ställa öppna frågor

Läs mer

Handlingsplan. Grön Flagg. I Ur och Skur Pinneman

Handlingsplan. Grön Flagg. I Ur och Skur Pinneman Handlngsplan Grön Flagg I Ur och Skur Pnneman Kommentar från Håll Sverge Rent 2013-09-23 12:55: N har fna och ntressanta utvecklngsområden med aktvteter som anpassas efter barnens förmågor. Se er själva

Läs mer

Modellering av antal resor och destinationsval

Modellering av antal resor och destinationsval UMEÅ UNIVERSITET Statstska nsttutonen C-uppsats, vt- 2005 Handledare: Erlng Lundevaller Modellerng av antal resor och destnatonsval Aron Arvdsson Salh Vošanovć Sammanfattnng V har denna uppsats analyserat

Läs mer

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet

När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg

Läs mer

Grön Flagg-rapport Berga förskola 2 jun 2015

Grön Flagg-rapport Berga förskola 2 jun 2015 Illustratoner: Anders Worm Grön Flagg-rapport Berga förskola 2 jun 2015 Kommentar från Håll Sverge Rent 2015-06-02 13:53: Vlken jättebra rapport n skckat n tll oss. Det är härlgt att läsa hur n utvecklat

Läs mer

Grön Flagg-rapport Sandvalla förskola 18 okt 2017

Grön Flagg-rapport Sandvalla förskola 18 okt 2017 Illustratoner: Anders Worm Grön Flagg-rapport Sandvalla förskola 18 okt 2017 Kommentar från Håll Sverge Rent 2017-10-18 12:06: N har jättefna konkreta utvecklngsområden och bra aktvteter tll dessa. N har

Läs mer

Konsoliderad version av

Konsoliderad version av Konsolderad verson av Styrelsens för ackredterng och teknsk kontroll föreskrfter (STAFS 1993:16) om EEG-märknng av flaskor som tjänar som mätbehållare (STAFS 2011:7). Ändrng nförd t.o.m. STAFS 2011:7 Föreskrfternas

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Grön Flagg-rapport Håstaby förskola 28 jul 2017

Grön Flagg-rapport Håstaby förskola 28 jul 2017 Illustratoner: Anders Worm Grön Flagg-rapport Håstaby förskola 28 jul 2017 Kommentar från Håll Sverge Rent 2017-07-28 16:45: Tack för fn rapport samt blder! Toppen att n har ett Grön Flagg-råd. Vlket spännande

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Förskolan Kalven 23 jan 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Förskolan Kalven 23 jan 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Kalven 23 jan 2014 Kommentar från Håll Sverge Rent 2014-01-23 11:26: Bra jobbat, förskolan Kalven! Det är nsprerande att läsa er rapport och se hur

Läs mer

Fond-i-fonder. med global placeringsinriktning. Ett konkurrenskraftigt alternativ till globalfonder? En jämförelse med fokus på risk och avkastning.

Fond-i-fonder. med global placeringsinriktning. Ett konkurrenskraftigt alternativ till globalfonder? En jämförelse med fokus på risk och avkastning. Uppsala Unverstet Företagsekonomska nsttutonen Magsteruppsats HT 2009 Fond--fonder med global placerngsnrktnng Ett konkurrenskraftgt alternatv tll globalfonder? En jämförelse med fokus på rsk och avkastnng.

Läs mer

Handlingsplan. Grön Flagg. Pysslingförskolan Gläntan

Handlingsplan. Grön Flagg. Pysslingförskolan Gläntan Handlngsplan Grön Flagg Pysslngförskolan Gläntan Kommentar från Håll Sverge Rent 2014-09-19 11:18: Vlka fna och vktga utvecklngsområden n valt - det n gör kommer säkert att skapa engagemang och nyfkenhet

Läs mer

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss?

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss? Att dentfera systemvktga banker Sverge vad kan kvanttatva ndkatorer vsa oss? Elas Bengtsson, Ulf Holmberg och Krstan Jönsson* Författarna är verksamma vd Rksbankens avdelnng för fnansell stabltet. Elas

Läs mer

Grön Flagg-rapport Förskolan Duvan 4 jun 2014

Grön Flagg-rapport Förskolan Duvan 4 jun 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Duvan 4 jun 2014 Kommentar från Håll Sverge Rent 2014-06-04 12:54: Vad rolgt att ta del av era tankar och ert arbete med Grön Flagg! Det är härlgt

Läs mer

Handlingsplan. Grön Flagg. Bosgårdens förskolor

Handlingsplan. Grön Flagg. Bosgårdens förskolor Handlngsplan Grön Flagg Bosgårdens förskolor Kommentar från Håll Sverge Rent 2015-08-11 14:16: Det är nsprerande att läsa hur n genom röstnng tagt tllvara barnens ntressen när n tagt fram er handlngsplan.

Läs mer

Sammanfattning, Dag 1

Sammanfattning, Dag 1 Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Borrby förskola 13 feb 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Borrby förskola 13 feb 2014 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 13 feb 2014 Kommentar från Håll Sverge Rent 2014-02-07 14:13: N har en bra rapport och det är nte långt från ett godkännande. V skulle vlja

Läs mer

Grön Flagg-rapport Förskolan Arken 14 nov 2014

Grön Flagg-rapport Förskolan Arken 14 nov 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Arken 14 nov 2014 Kommentar från Håll Sverge Rent 2014-11-14 09:03: Ännu en gång har n skckat n en mponerande rapport. N har fna, tydlga utvecklngsområden

Läs mer

Handlingsplan. Grön Flagg. Östra förskolan

Handlingsplan. Grön Flagg. Östra förskolan Handlngsplan Grön Flagg Östra förskolan Kommentar från Håll Sverge Rent 2013-02-20 17:47: Vad härlgt med tteln V ger barnen TID. Bra tänkt! Låter så postvt och självklart men nte alls lätt dagens samhälle.

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann 732G70 Statstk A Föreläsnngsunderlag skapad av Karl Wahln Föreläsnngssldes uppdaterade av Bertl Wegmann Insttutonen för datavetenskap (IDA) Lnköpngs unverstet vt 2016 Kaptel 2 Populatoner, stckprov och

Läs mer

Kvalitetsjustering av ICT-produkter

Kvalitetsjustering av ICT-produkter Kvaltetsjusterng av ICT-produkter - Metoder och tllämpnngar svenska Prsndex Producent- och Importled - Enheten för prsstatstk, Makroekonom och prser, SCB December 2006 STATISTISKA CENTRALBYRÅN 2(55) Kontaktnformaton

Läs mer

1. Anpassningstest. Chi-Square test. Multinomial experiment. Multinomial experiment. Vad gör g r ett anpassningstest?

1. Anpassningstest. Chi-Square test. Multinomial experiment. Multinomial experiment. Vad gör g r ett anpassningstest? Ch-Square test 1. Anpassnngstest 1. Anpassnngstest (Goodness of Ft). Oberoendetest (Independence Test) uwe.menzel@genpat.uu.se Vad gör g r ett anpassnngstest? Hur bra passar en statsts modell tll observerade

Läs mer

Citeringsstudie av natur och samhällsvetenskapliga institutioner vid Stockholms universitet,

Citeringsstudie av natur och samhällsvetenskapliga institutioner vid Stockholms universitet, Cterngsstude av natur och samhällsvetenskaplga nsttutoner vd Stockholms unverstet, 2008 2010 Per Ahlgren, Stockholms unverstetsbblotek 1 Inlednng I förelggande rapport redogörs för en bblometrsk stude,

Läs mer

Almedalsveckan 2011. Snabba fakta om aktuella ämnen under Almedalsveckan 2011 2-3 6-7 8-9. Ungas ingångslöner. Stark som Pippi? Löner och inflation

Almedalsveckan 2011. Snabba fakta om aktuella ämnen under Almedalsveckan 2011 2-3 6-7 8-9. Ungas ingångslöner. Stark som Pippi? Löner och inflation Almedalsveckan 11 Snabba fakta om aktuella ämnen under Almedalsveckan 11 Stark som Ppp? 2-3 Ungas ngångslöner Välfärdsföretagen 8-9 Löner och nflaton Närmare skattegenomsnttet 1 5 Studemotverade eller

Läs mer

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17 1 Inlednng Jag undervsar tyskar på folkhögskolan Nürnberg med omgvnngar. Inför uppgften att utföra en perforsanalys av en elevtext lät mna mest avancerade elever skrva en uppsats om vad de tyckte var svårt

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa LET 624 (6 hp) Sd nr 1 TENTAMEN KURSNAMN PROGRAM: namn REALTIDSSYSTEM åk / läsperod DAI2 samt EI3 KURSBETECKNING LET 624 0209 ( 6p ) EXAMINATOR TID FÖR TENTAMEN Onsdagen den 19/10 2011 kl 14.00 18.00 HJÄLPMEDEL

Läs mer

Optimering i samband med produktionsplanering av, och materialförsörjning vid, underhåll av flygmotorer

Optimering i samband med produktionsplanering av, och materialförsörjning vid, underhåll av flygmotorer Optmerng samband med produktonsplanerng av, och materalförsörjnng vd, underhåll av flygmotorer Nclas Andréasson 1 och Torgny Almgren 2 1. Matematk Chalmers teknska högskola 412 96 Göteborg 31-772 53 78

Läs mer

GRÄNSBETECKNINGAR _. --- --- ALLMÄN PLATS KVARTERSMARK :B,H ' =-'.=.' ~ 1-~.1-._. - J. K Ll_... +000,0 Föreskriven höjd över nollplanet.

GRÄNSBETECKNINGAR _. --- --- ALLMÄN PLATS KVARTERSMARK :B,H ' =-'.=.' ~ 1-~.1-._. - J. K Ll_... +000,0 Föreskriven höjd över nollplanet. DETALJPLAN FÖR DELAR AV Hötorget Hötorgsgatan och kv Sgyn SKARA TÄTORT SKARA KOMMUN UPPRÄTTAD DEN 3 FEBRUAR OCH REVDERAD DEN 10 MARS 1994 ÖSTEN ANDERSSON STADSARKTEKT Planbestämmelser ERK WESTLN PLANARKTEKT

Läs mer

FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB0 Sannolkhetsteor Följande gäller för sannolkheter: 0

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Kommentar från Håll Sverge Rent 2014-04-15 15:26: N har på ett engagerat och varerat sätt arbetat med ert Grön flagg-arbete.

Läs mer

Klarar hedgefonder att skapa positiv avkastning oavsett börsutveckling? En empirisk studie av ett urval svenska hedgefonder

Klarar hedgefonder att skapa positiv avkastning oavsett börsutveckling? En empirisk studie av ett urval svenska hedgefonder NATIONALEKONOMISKA INSTITUTIONEN Uppsala unverstet Examensarbete C Författare: Sara Engvall och Matylda Hussn Handledare: Martn Holmén Hösttermnen 2006 Klarar hedgefonder att skapa postv avkastnng oavsett

Läs mer

Grön Flagg-rapport Idala förskola 30 dec 2014

Grön Flagg-rapport Idala förskola 30 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Idala förskola 30 dec 2014 Kommentar från Håll Sverge Rent 2014-12-30 10:40: N har bra och spännande utvecklngsområden, och vad som är ännu bättre n gör dem

Läs mer

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige "!# " $ % &('*),+.-0/0%'&%3)5476 8 &(' 9;: +@),>BA % &C6D% &E>>):D4 F GIHJGLKMONQPRKTSVUXW Y[Z]\8 &4^>_\0%"à&b+ & c

Läs mer

Tentamen (TEN2) Maskininlärning (ML) 5hp 21IS1C Systemarkitekturutbildningen. Tentamenskod: Inga hjälpmedel är tillåtna

Tentamen (TEN2) Maskininlärning (ML) 5hp 21IS1C Systemarkitekturutbildningen. Tentamenskod: Inga hjälpmedel är tillåtna Intellgenta och lärande system 15 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen (TEN2) Masknnlärnng (ML) 5hp 21IS1C Systemarktekturutbldnngen Tentamenskod: Tentamensdatum: 2017-03-24 Td:

Läs mer

5.4 Feluppskattning vid lösning av ekvationssystem.

5.4 Feluppskattning vid lösning av ekvationssystem. Vetenskaplga beräknngar III 58 5.4 Feluppskattnng vd lösnng av ekvatonssystem. V har tdgare påpekat, att pvot -elementen bör vara olka noll, för att man skall kunna tllämpa Gauss elmnerngsmetod. Men det

Läs mer

Stokastisk reservsättning med Tweedie-modeller och bootstrap-simulering

Stokastisk reservsättning med Tweedie-modeller och bootstrap-simulering Matematsk statstk Stockholms unverstet Stokastsk reservsättnng med Tweede-modeller och bootstrap-smulerng Totte Pkanen Examensarbete 2005:4 Postadress: Matematsk statstk Matematska nsttutonen Stockholms

Läs mer

Handlingsplan. Grön Flagg. Salvägens förskola

Handlingsplan. Grön Flagg. Salvägens förskola Handlngsplan Grön Flagg Salvägens förskola Kommentar från Håll Sverge Rent 2014-12-02 11:11: N har valt fna och ntressanta utvecklngsområden med många olka typer av aktvteter som kan skapa nyfkenhet och

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

TAOP61 Optimering av realistiska sammansatta system. Speciellt med denna kurs. Uppdateringar. Kursplan

TAOP61 Optimering av realistiska sammansatta system. Speciellt med denna kurs. Uppdateringar. Kursplan TAOP61 Optmerng av realstska sammansatta system Examnator: Ka Holmberg ka.holmberg@lu.se, 013-282867 Kurshemsda: http://courses.ma.lu.se/gu/taop61/ Ltteratur: Ka Holmberg: Optmerng (Lber, 2010/2018) Ka

Läs mer

Grön Flagg-rapport Förskolan Tornastugan 28 mar 2013

Grön Flagg-rapport Förskolan Tornastugan 28 mar 2013 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Tornastugan 28 mar 2013 Kommentar från Håll Sverge Rent 2013-03-28 09:33: Det är klart att n blr godkända med en sådan fn rapport! Det är nsprerande

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Förskolan Ekebacken 3 mar 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Förskolan Ekebacken 3 mar 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Ekebacken 3 mar 2014 Kommentar från Håll Sverge Rent 2014-02-20 10:01: N har vktga utvecklngsområden men v skckar tllbaka er rapport för att v önskar

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer