Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Storlek: px
Starta visningen från sidan:

Download "Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126"

Transkript

1 Projekt transformetoder Rkke Apelfröjd Sgnaler och System Rum 72126

2 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något av utbldnngsprogrammets tllämpnngsområden och detta sammanhang kunna genomföra och presentera ett mndre projekt. Projekten är enskllda. Ett utav 11 olka passva elektrska flter ska teoretskt utvärderas mha transformteor. Resultaten jämförs med smulerngar (LTspce. En skrftlg rapport lämnas n slutet av projektet.

3 Deadlnes och handlednng Handlednng sker Va mal Svar nom en arbetsdag under vecka Drop-n vecka tsdagar och torsdagar vd lunch. Plats: hus 7 vånng 2 (sgnaler och systems bblotek Extra handlednngstd kan ordnas va malkontakt. En skrftlg rapport pdf-format som kan läsas oberoende av projektbeskrvnngen ska lämnas n Första nlämnng Senast 7 december kl Senast den 14 december kl får n feedback För godkänt projektdel krävs det att alla delar av uppgften är korrekt lösta Andra nlämnng (för de som behöver Senast 21 december kl Extra handlednng vecka 51 ts, torsd vd lunch för ej godkända rapporter. Rapporter som nte lämnas n td eller behöver en tredje nlämnng rättas mån av td slutet av termnen.

4 Vad är transformer? Byte från en funkton, eller domän, tll en annan. transform Färg -domän Storleks -domän Några exempel: summa av polynom (Taylor summa av snusar (Fourer

5 Varför har v transformer? Olka operatoner är olka lätta I olka domän! transform Dekoraton Vkt Taylor serer: En funkton som är svår att dervera analytskt kan approxmeras med ett polynom krng noll och blr lätt att dervera! För små vnklar kan snus för en vnkel approxmeras med vnkeln underlättar bland annat mekanska beräknngar!

6 Varför är snusar så bra? Ljud FFT

7 Varför är snusar så bra? Ljud Ljus H = ϕ re Om sgnalen är tllräcklgt smalbandg räcker det med ett komplext tal för att beskrva förändrngen Detta utnyttjas bl.a. 4G

8 Varför är snusar så bra? Ljud Ljus Elektrska sgnaler (AC Samma frekvens Snus n snus ut!

9 Projektuppgft Gvet ett andra ordnngens flter ska n: Härleda överförngsfunktonen på 2 sätt Mha Laplacetransformer. Mha Ohms lag och mpedanser. Grafskt llustrera denna med frekvens och fasgång Verfera att det är korrekt överförngsfunkton mha snus-nsnus-ut prncpen och smulerngar LTspce. Använda överförngsfunktonen för att ta fram En approxmaton av utsgnalen gvet en fyrkantsvåg mha Fourersereutvecklng, snus-n-snus-ut prncpen och superpostonsprncpen Fltrets stegsvar mha Laplacetransformerng Verfera ovanstående utsgnaler mha smulerngar LTspce.

10 Superpostonsprnspen sn(t 1.4sn(2πt A m p l t u d T d [ s ] + A m p l t u d T d [ s ] 2 A m p l t u d T d [ s ]

11 Fourerserer 1. 2 A m p l t u d e f( t 1 / 2 1 / 2 + s n ( t 6 t e r m s 1 2 t e r m s T m e [ s ]

12 Överförngsfunktonen Ett systems överförngsfunkton beskrver hur nsgnalen ändras Defneras Y ( s Mha Laplacetransformen: H ( s = X ( s Mha Fourertransformen: H ( jω = Y ( jω X ( jω

13 Elektrska flter: fysk Överförngsfunkton: H ( s = U U ( s ( s Bestäms av flterkomponenternas dfferentalekvatoner ut n Restans u( t = R ( t Induktans u( t = L d( t dt Kapactans u( t = 1 C t 0 ( t dt

14 Elektrska flter: Impedanser Överförngsfunkton: Kan utnyttja jω-metoden U U ut ut H ( jω = = = n ( jω ( jω Z Z n I( I( jω jω Z Z ut n Resstorn: Z = R Konensatorn: Spolen: Z = Z = jω L 1 jω C Serekopplng: Z tot = Z 1 + Z 2 Parallellkopplng: Z tot 1 1 ( Z + 1 = Z 1 2

15 Frekvens- och fasgång För en specfk vnkelfrekvens ω ger H(jω ett komplext tal som talar om vad som händer med en snus med frekvensen f=ω/(2π Hz. Absolutbeloppet H(jω anger förstärknngen av snusen H(jω som funkton av ω (eller f kallas systemets frekvensgång Argumentet arg(h(jω anger fasförskjutnngen av snusen. arg(h(jω som funkton av ω (eller f kallas systemets fasgång. Dessa utnyttjas Snus-n-Snus-ut prncpen. Matlab demonstraton 1

16 Snus-n Snus-ut prncpen Vad händer när nsgnalen är en snus? Låt nsgnalen vara x( t = Asn t ( ω + ϕ F r e k v e n s g å n g H ( j w F a s g å n g [ r a d ] F r e k v e n s [ H z ] Utsgnalen blr F r e k v e n s [ H z ] ( jω Asn( ω t + ϕ arg( H ( jω y( t = H + LTspce demonstraton 1

17 Vad gäller när sgnalen nte är en snus? Utnyttja defntonen av överförngsfunktonen Summa av snusar n -> summa av snusar ut ( ( ( ( ( j H t A j H t y t A t x ω ϕ ω ω ϕ ω arg sn ( sn ( + + = + = ( ( ( s X s H s Y = ( ( ( s X s H s Y = = = t y t y t x t x ( ( ( (

18 Vad gäller när sgnalen nte är en snus? Går det att utveckla sgnalen tll en Fouresere? Vad händer t.ex. Om v sänder fyrkantsvågen från det tdgare exemplet genom fltret? 0.1 Tre termers approxmaton Ampltud [V] Td [s] LTspce demonstraton 1

19 Vad gäller när sgnalen nte är en snus? Om nsgnalen nte är perodsk får v arbeta frekvensdomän va Fourertransformen eller Laplacetransformen (beroende på nsgnalen Ex låt nsgnalen vara Heavysdefunktonen. Utsgnalen kallas då för fltrets stegsvar S t e g s v a r T d [ s ] Matlab demonstraton 2

20 Transenta beteenden Snus-n snus-ut prncpen gäller bara när nsgnalen är en snus (=sträcker sg oändlgt framåt och bakåt I tden I praktska sammanhang är oändlgt lång td bara så lång td som det tar vårt flter att stablsera sg. Den tden kan utläsas från stegsvaret Innan fltret har stablserat sg kan utsgnalen bete sg annorlunda från den teoretska sgnalen Detta kallas transenta beteenden. Vd n- och utsgnalsjämförelse där man utgår från snusar ska de göras det när det transenta beteendet avtagt. När v undersöker stegsvaret är det de transenta beteendena v är ntresserade av. LTspce demonstraton 2

21 Härlednngar Rapporterng Skrv med vktga steg I härlednngar men överdrv nte. Skrv algebraska uttryck när det underlättar för läsaren. Defnera alla varabler. Använd text för att förklara vad du gör I olka steg. Var tydlg Skrv med vllka antaganden du gjort dna smulerngar. Använd fgurer och tabeller om det underlättar för läsaren. Rapporten ska kunna förstås utan kännedom tll projektmateralet. Fgurer Ska refereras tll I texten. Spara fgurerna I stt ursprungsformat (ex.fg. Du kan få rest på dem. Axlar ska alltd defneras. Ta bort överflödg nformaton ur fguren. All text I fguren ska vara läsbar.

22 Exempel: Projketlknande flter Plotta fltrets stegsvar. Hur lång td tar det för fltret att stablsera sg? Plotta fltrets frekvens- och fasgång. Vlken typ av flter är det? Vad händer om v sänder x(t=sn(0.2πt genom fltret? Vlken utsgnal skulle v få gvet en fyrkantsvåg som går mellan 0V och 1V med peroden 4s?

23 Exempel: Stegsvar 1. 4 S t e g s v a r 1. 2 U t s g n a l [ V ] Den td det tar för stegsvaret att nå stt slutvärde (här 1 är den td det tar för fltret att stablsera sg (här ca 10s T d [ s ]

24 Exempel: Frekvens- och Fasgång F re k v e n s g å n g H (jw F re k ve n s [ H z ] F a s g å n g [ ra d ] F re k ve n s [ H z ]

25 Exempel: Fyrkantsvåg 1 ns gnal uts gnal 0.8 A m pltud [V ] Td [s ] LTspce smulerngar

26 Lycka tll!

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2007

ETE115 Ellära och elektronik, tentamen oktober 2007 (0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk

Läs mer

Växelström = kapitel 1.4 Sinusformade växelstorheter

Växelström = kapitel 1.4 Sinusformade växelstorheter Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln

Läs mer

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå

Läs mer

Inledning och Definitioner

Inledning och Definitioner Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement

Läs mer

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa LET 624 (6 hp) Sd nr 1 TENTAMEN KURSNAMN PROGRAM: namn REALTIDSSYSTEM åk / läsperod DAI2 samt EI3 KURSBETECKNING LET 624 0209 ( 6p ) EXAMINATOR TID FÖR TENTAMEN Onsdagen den 19/10 2011 kl 14.00 18.00 HJÄLPMEDEL

Läs mer

TENTAMEN Datum: 11 feb 08

TENTAMEN Datum: 11 feb 08 TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

KURS-PM för. Namn på kurs (YTLW37) 40 Yhp. Version 1.1 Uppdaterad

KURS-PM för. Namn på kurs (YTLW37) 40 Yhp. Version 1.1 Uppdaterad KURS-PM för Namn på kurs (YTLW37) 40 Yhp Verson 1.1 Uppdaterad -02-18 Kursens syfte: Syftet med den avslutande LIA-peroden är att den studerande ska få fördjupad erfarenhet från ett mjukvaruprojekt som

Läs mer

socialen.info 1 of 14 Antal svar i procent Antal svar Mycket viktigt 81,6% 40 Ganska viktigt 18,4% 9 Mindre viktigt 0,0% 0 Oviktigt 0,0% 0

socialen.info 1 of 14 Antal svar i procent Antal svar Mycket viktigt 81,6% 40 Ganska viktigt 18,4% 9 Mindre viktigt 0,0% 0 Oviktigt 0,0% 0 socalen.nfo 1. Artklar om socalpoltk mm Socaltjänsten.nfo har en egen redakton som skrver och publcerar artklar om socalpoltk, socalförsäkrngar, arbetsmarknad, ntegraton mm. Artklarna publceras på nätet

Läs mer

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det?

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det? NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Uppsats fortsättnngskurs C Författare: Johan Bjerkesjö och Martn Nlsson Handledare: Patrk Hesselus Termn och år: HT 2005 Arbetslvsnrktad rehablterng för

Läs mer

Tillfälliga elanläggningar (Källor: SEK handbok 415 oktober 2007, SS4364000 kap 704, ELSÄK-FS)

Tillfälliga elanläggningar (Källor: SEK handbok 415 oktober 2007, SS4364000 kap 704, ELSÄK-FS) Approved by/godkänt av (tjänsteställebetecknng namn) QFD Dck Erksson Issued by/utfärdat av (tjänsteställebetecknng namn telefon) To/Tll (tjänsteställebetecknng namn) Instrukton Ttle/Rubrk Fle name/flnamn

Läs mer

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006 INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter

Läs mer

i = 1. (1.2) (1.3) eller som z = x + yi

i = 1. (1.2) (1.3) eller som z = x + yi Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.

Läs mer

FK2002,FK2004. Föreläsning 5

FK2002,FK2004. Föreläsning 5 FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd

Läs mer

Generellt ägardirektiv

Generellt ägardirektiv Generellt ägardrektv Kommunala bolag Fastställt av kommunfullmäktge 2014-11-06, 223 Dnr 2014.0450.107 2 Generellt ägardrektv för Fnspångs kommuns drekt eller ndrekt helägda bolag Detta ägardrektv ska antas

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Grön Flagg-rapport Borrby förskola 18 maj 2015

Grön Flagg-rapport Borrby förskola 18 maj 2015 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 18 maj 2015 Kommentar från Håll Sverge Rent 2015-05-11 09:08: skckar tllbaka enl tel samtal 2015-05-18 15:32: Det har vart rolgt att läsa er

Läs mer

Blixtkurs i komplex integration

Blixtkurs i komplex integration Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna

Läs mer

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)

Läs mer

Steg 1 Arbeta med frågor till filmen Jespers glasögon

Steg 1 Arbeta med frågor till filmen Jespers glasögon k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Tentamen Elektronik för F (ETE022)

Tentamen Elektronik för F (ETE022) Tentamen Elektronk för F (ETE022) 20060602 Tllåtna hjälpmedel: formelsamlng kretsteor. Tal 1 Fguren vsar en förstärkarkopplng med en nsgnal v n = v n (t) = cos(ωt). a: Bestäm utsgnalen v ut (t). C 1 b:

Läs mer

gymnasievalet 2019 Dags att välja gymnasium

gymnasievalet 2019 Dags att välja gymnasium gymnasevalet 2019 Dags att välja gymnasum Botkyrka A5 Gymnasevalet 2019.ndd 1 2018-10-26 15:26 Vad gllar du? Vad vll du göra nästa höst? Det börjar bl dags att välja program och gymnaseskola tll hösten

Läs mer

Slumpvariabler (Stokastiska variabler)

Slumpvariabler (Stokastiska variabler) Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Grön Flagg-rapport Förskolan Kalven 20 jan 2016

Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Kommentar från Håll Sverge Rent 2016-01-20 09:07: Förskolan Kalven, n har lämnat n en toppenrapport även denna gång! Bra områden

Läs mer

Attitudes Toward Caring for Patients Feeling Meaninglessness Scale

Attitudes Toward Caring for Patients Feeling Meaninglessness Scale Atttudes Toward Carng for Patents Feelng Meannglessness Scale Detta frågeformulär handlar om olka exstentella känslor, tankar, förståelse samt stress som kan uppstå vården av patenter lvets slutskede.

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

Utbildningsavkastning i Sverige

Utbildningsavkastning i Sverige NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka

Läs mer

Lösningar modul 3 - Lokala nätverk

Lösningar modul 3 - Lokala nätverk 3. Lokala nätverk 3.1 TOPOLOGIER a) Stjärna, rng och buss. b) Nät kopplas ofta fysskt som en stjärna, där tll exempel kablar dras tll varje kontorsrum från en gemensam central. I centralen kan man sedan

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet

Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen

Läs mer

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar. LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper

Läs mer

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss?

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss? Att dentfera systemvktga banker Sverge vad kan kvanttatva ndkatorer vsa oss? Elas Bengtsson, Ulf Holmberg och Krstan Jönsson* Författarna är verksamma vd Rksbankens avdelnng för fnansell stabltet. Elas

Läs mer

Tentamen i Dataanalys och statistik för I den 5 jan 2016

Tentamen i Dataanalys och statistik för I den 5 jan 2016 Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Industrins förbrukning av inköpta varor INFI

Industrins förbrukning av inköpta varor INFI Statstska centralbyrån SCBDOK 3.2 (37) Industrns förbruknng av nköpta varor INFI 2003 NV006 Innehåll 0 Allmänna uppgfter... 2 0. Ämnesområde... 2 0.2 Statstkområde... 2 0.3 SOS-klassfcerng... 2 0.4 Statstkansvarg...

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,

Läs mer

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

Beryll Tävlingsförslag av Johan Johansson & Joakim Carlsson Modernisering av mineralutställningen vid SBN - ett steg mot bättre lärandemiljö

Beryll Tävlingsförslag av Johan Johansson & Joakim Carlsson Modernisering av mineralutställningen vid SBN - ett steg mot bättre lärandemiljö Sda 1 eryll Joakm Carlsson eryll Tävlngsförslag av Johan Johansson & Joakm Carlsson Modernserng av mneralutställnngen vd SN - ett steg mot bättre lärandemljö Luleå teknska unverstet Sda 2 eryll Joakm Carlsson

Läs mer

SAMMANTRÄDESPROTOKOLL. Sammanträdesdatum 19.2.2013

SAMMANTRÄDESPROTOKOLL. Sammanträdesdatum 19.2.2013 SAMMANTRÄDESPROTOKOLL Nr 1/2013 1/1 Sammanträdestd Tsdagen den 19 februar 2013 kl. 13.00-14.40 Sammanträdesplats Kommungården Beslutande: Ersättare: Broända, Helena Wstbacka, Inger Enfors, Vdar Furu, Danel,

Läs mer

Snabbguide. Kaba elolegic programmeringsenhet 1364

Snabbguide. Kaba elolegic programmeringsenhet 1364 Snabbgude Kaba elolegc programmerngsenhet 1364 Innehåll Informaton Förpacknngsnnehåll 3 Textförklarng 3 Ansvar 3 Skydd av systemdata 3 Frmware 3 Programmera Starta och Stänga av 4 Mnneskort 4 Exportera

Läs mer

gymnasievalet 2019 Dags att välja gymnasium

gymnasievalet 2019 Dags att välja gymnasium gymnasevalet 2019 Dags att välja gymnasum Vad gllar du? Vktga datum Vad vll du göra nästa höst? Det börjar bl dags att välja program och gymnaseskola tll hösten 2019. Våga välja program och skola efter

Läs mer

Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014

Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014 Kommentar från Håll Sverge Rent 2014-02-25 11:44: Inskckad av msstag. 2014-04-17 09:52: Bra jobbat, Förskolan Fjäderkobben!

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253

Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253 Skolnspektonen Utbldnngsdepartementet 2013-11-06 103 33 Stockholm 1 (6) Yttrande över betänkandet Kommunal vuxenutbldnng på grundläggande nvå - en översyn för ökad ndvdanpassnng och effektvtet (SOU 2013:20)

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se

Läs mer

Jag vill tacka alla på företaget som har delat med sig av sina kunskaper och erfarenheter vilket har hjälpt mig enormt mycket.

Jag vill tacka alla på företaget som har delat med sig av sina kunskaper och erfarenheter vilket har hjälpt mig enormt mycket. Förord Detta examensarbete har utförts på uppdrag av nsttutonen för Industrell produkton på Lunds Teknska Högskola, och genomförts på företaget. Jag vll tacka alla på företaget som har delat med sg av

Läs mer

Grön Flagg-rapport Berga förskola 2 jun 2015

Grön Flagg-rapport Berga förskola 2 jun 2015 Illustratoner: Anders Worm Grön Flagg-rapport Berga förskola 2 jun 2015 Kommentar från Håll Sverge Rent 2015-06-02 13:53: Vlken jättebra rapport n skckat n tll oss. Det är härlgt att läsa hur n utvecklat

Läs mer

Grön Flagg-rapport Förskolan Arken 14 nov 2014

Grön Flagg-rapport Förskolan Arken 14 nov 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Arken 14 nov 2014 Kommentar från Håll Sverge Rent 2014-11-14 09:03: Ännu en gång har n skckat n en mponerande rapport. N har fna, tydlga utvecklngsområden

Läs mer

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI) STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Kommentar från Håll Sverge Rent 2014-04-15 15:26: N har på ett engagerat och varerat sätt arbetat med ert Grön flagg-arbete.

Läs mer

Projekt 3: Diskret fouriertransform

Projekt 3: Diskret fouriertransform Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.

Läs mer

Beställningsintervall i periodbeställningssystem

Beställningsintervall i periodbeställningssystem Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.

Läs mer

Skoldemokratiplan Principer och guide till elevinflytande

Skoldemokratiplan Principer och guide till elevinflytande Skoldemokratplan Prncper och gude tll elevnflytande I Skoldemokratplan Antagen av kommunfullmäktge 2012-02-29, 49 Fnspångs kommun 612 80 Fnspång Telefon 0122-85 000 Fax 0122-850 33 E-post: kommun@fnspang.se

Läs mer

Grön Flagg-rapport Rots skola 30 dec 2014

Grön Flagg-rapport Rots skola 30 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Rots skola 30 dec 2014 Kommentar från Håll Sverge Rent 2014-12-30 15:1: Vlken toppenrapport n har skckat n tll oss- trevlg läsnng. N har fna, tydlga utvecklngsområden

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Gymnasial yrkesutbildning 2015

Gymnasial yrkesutbildning 2015 Statstska centralbyrån STATISTIKENS FRAMTAGNING UF0548 Avdelnngen för befolknng och välfärd SCBDOK 1(22) Enheten för statstk om utbldnng och arbete 2016-03-11 Mattas Frtz Gymnasal yrkesutbldnng 2015 UF0548

Läs mer

Företagsrådgivning i form av Konsultcheckar. Working paper/pm

Företagsrådgivning i form av Konsultcheckar. Working paper/pm Workng paper/pm 2012:02 Företagsrådgvnng form av Konsultcheckar En effektutvärderng av konsultcheckar nom ramen för regonalt bdrag för företgsutvecklng Tllväxtanalys har uppdrag att utvärdera effekterna

Läs mer

TSDT08 Signaler och System I Extra uppgifter

TSDT08 Signaler och System I Extra uppgifter TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +

Läs mer

Industrins förbrukning av inköpta varor (INFI) 2008

Industrins förbrukning av inköpta varor (INFI) 2008 STATISTISKA CENTRALBYRÅN 1(97) Industrns förbruknng av nköpta varor (INFI) 2008 NV0106 Innehåll SCBDOK 3.1 0 Admnstratva uppgfter 0.1 Ämnesområde 0.2 Statstkområde 0.3 SOS-klassfcerng 0.4 Statstkansvarg

Läs mer

Centrala Gränsvärdessatsen:

Centrala Gränsvärdessatsen: Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar

Läs mer

Aktiebolaget Cilikattegel. Aktie : Bolagsordning. Lidköping 1909

Aktiebolaget Cilikattegel. Aktie : Bolagsordning. Lidköping 1909 Aktebolaget Clkattegel Akte : Bolagsordnng Ldköpng 1909 EOD Mljoner böcker bara en knapptrycknng bort. I mer än 10 europeska länder! Tack för att du väljer EOD! Europeska bblotek har mljontals böcker från

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock

Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock Moment 2 - gtal elektronk Föreläsnng 2 Sekvenskretsar och byggblock Jan Thm 29-3-5 Jan Thm F2: Sekvenskretsar och byggblock Innehåll: Sekvenser Latchar och vppor Regster Introdukton - byggblock Kodare

Läs mer

Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.

Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden. Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man

Läs mer

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats

Läs mer

2014 års brukarundersökning inom socialtjänstens vuxenavdelning i Halmstads kommun

2014 års brukarundersökning inom socialtjänstens vuxenavdelning i Halmstads kommun Halmstads kommun Socalförvaltnngen Vuxenavdelnngen 2014 års brukarundersöknng nom socaltjänstens vuxenavdelnng Halmstads kommun Sammanställnng av enkätresultat För rapport svarar Danel Johansson, Utvärderngsrngen

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 007-1-18 FI Dnr 07-1171-30 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers P.O. Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35

Läs mer

Jämviktsvillkor för en kropp

Jämviktsvillkor för en kropp Jämvktsvllkor för en kropp Det förekommer ofta stuatoner där man önskar bestämma vlka vllkor som måste uppfyllas för att en fast kropp skall förbl stllastående, dvs. befnna sg jämvkt. Den här delen av

Läs mer

Innehåll Etablera instrument Funktioner Tekniska data Inställningar Meddelandekoder Underhåll Garanti Säkerhetsföreskrifter Funktioner

Innehåll Etablera instrument Funktioner Tekniska data Inställningar Meddelandekoder Underhåll Garanti Säkerhetsföreskrifter Funktioner DEWALT DW03201 Innehåll Etablera nstrument - - - - - - - - - - - - - - - - - - - - - - - - 2 Introdukton - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Överskt - - - - - - - -

Läs mer

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn

Läs mer

Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014

Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014 Kommentar från Håll Sverge Rent 2014-12-09 16:00: N har bra och spännande utvecklngsområden, och vad som är ännu bättre n gör

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

Viktig information från din kommun!

Viktig information från din kommun! Vktg nformaton från dn kommun! Att bry sg om, är att öka tryggheten för oss alla! Foto: Johnny Franzén V vll alla uppnå det goda lvet. Där är tryggheten och säkerheten vktga beståndsdelar. Därför är de

Läs mer

Handlingsplan. Grön Flagg. Hamregårds förskola

Handlingsplan. Grön Flagg. Hamregårds förskola Handlngsplan Grön Flagg Hamregårds förskola Kommentar från Håll Sverge Rent 2016-03-30 08:43: Vlket härlgt vattentema n ska arbeta med tllsammans med barnen och strålande att n utgått från barnens ntresse

Läs mer

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt

Läs mer

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM OBS! Dna högtalare (medföljer ej) kan sklja sg från de som vsas på bld denna bruksanvsnng. modell RNV70 HIFI-SYSTEM Underhåll och specfkatoner Läs bruksanvsnngen nnan du börjar använda utrustnngen. Se

Läs mer

Grön Flagg-rapport Förskolan Duvan 4 jun 2014

Grön Flagg-rapport Förskolan Duvan 4 jun 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Duvan 4 jun 2014 Kommentar från Håll Sverge Rent 2014-06-04 12:54: Vad rolgt att ta del av era tankar och ert arbete med Grön Flagg! Det är härlgt

Läs mer

TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen

TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen 0/4/04 :4 Dagens föreläsnng Repetton kretselement och samband Tvåpolssatsen TST0 lektronk ffektanpassnng Operatonsförstärkaren (nför labb ) Nodanalys Föreläsnng Kent Palmkvst S, SY 3 Praktska saker Repetton,

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

KVALITETSKRITERIER FÖR NÄTBASERADE LÄROMEDEL

KVALITETSKRITERIER FÖR NÄTBASERADE LÄROMEDEL KVALITETSKRITERIER FÖR NÄTBASERADE LÄROMEDEL Arbetsgruppsrapport 16.12.2005 Duplkat 3/2006 Utbldnngsstyrelsen och författarna Tm Eja Högman ISBN 952-13-2767-7 (nb.) ISBN 952-13-2768-5 (pdf) ISSN 1237-6590

Läs mer

BEREDSKAP MOT ATOMOLYCKOR I SVERIGE

BEREDSKAP MOT ATOMOLYCKOR I SVERIGE SSI:1';74-O15 BEREDSKAP MOT ATOMOLYCKOR I SVERIGE John-Chrster Lndll Pack, 104 01 STOCKHOIJ! ;4 aprl 1974 BEREDSOP TJÖT ATOMOLYCKOR I SVERIGE Manuskrpt grundat på ett föredrag vd kärnkraftmötot Köpenhamn,

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

Grön Flagg-rapport Pepparrotens förskola 15 aug 2014

Grön Flagg-rapport Pepparrotens förskola 15 aug 2014 Illustratoner: Anders Worm Grön Flagg-rapport Pepparrotens förskola 15 aug 2014 Kommentar från Håll Sverge Rent 2014-08-15 13:51: Det är fnt att få läsa om hur n har arbetat aktvt med nflytande och delaktghet

Läs mer