Experimentella metoder 2014, Räkneövning 5
|
|
- Patrik Göransson
- för 9 år sedan
- Visningar:
Transkript
1 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och σ z. Bestäm varansmatrsen för x och y. Problem : Enlgt en teor nom samhällsvetenskap råder ett lnjärt samband mellan folkmängden ett land och dess huvudstad. Naturlgtvs är nte sambandet helt exakt, men de som uppfunnt modellen hävdar att den stämmer på to procent när. I tabellen redovsas folkmängden de nordska länderna, samt deras respektve huvudstäder (huvudkommunen. Island Reykjavk Norge Oslo Fnland Helsngfors Danmark Köpenhamn Sverge Stockholm Testa hypotesen att antalet nvånare huvudstaden är en lnjär funkton av antalet nvånare landet. För att uppfylla upphovsmännens krterum på to procent när ansätter v en osäkerhet om folkmängden huvudstäderna om 0%. Tentamensuppgft, Problem 3: I EM-slutspelet fotboll 004 slutade de 4 gruppspelsmatcherna på följande sätt: Grupp A Grupp B Portugal Grekland Schwez Kroaten 0 0 Spanen Ryssland 0 Frankrke England Grekland Spanen England Schwez 3 0 Ryssland Portugal 0 Kroaten Frankrke Spanen Portugal 0 Kroaten England 4 Ryssland Grekland Schwez Frankrke 3 Grupp C Grupp D Danmark Italen 0 0 Tjecken Lettland Sverge Bulgaren 5 0 Tyskland Nederländerna Bulgaren Danmark 0 Lettland Tyskland 0 0 Italen Sverge Nederländerna Tjecken 3 Italen Bulgaren Nederländerna Lettland 3 0 Danmark Sverge Tyskland Tjecken Undersök om antalet mål lagen gjorde en match kan anses vara possonfördelat. Lednng: Varje match bdrar med två värden. Tentamensuppgft,
2 Problem 4: Ett antal mätpunkter y antas kunna beskrvas som en lnjär funkton av x: f(x = A+Bx. Om osäkerheten x är försumbar kan parametrarna A och B bestämmas genom en ovktad anpassnng på normalt sätt även om osäkerheten y är okänd, om v antar att σ y är densamma för alla y. Antag att mätvärdena y är normalfördelade, och vsa att den uppskattnng av σ y som Maxmum Lkelhood metoden ger är σ y = (y A Bx N där A och B betecknar de sanna värdena på parametrarna. Tentamensuppgft, Problem 5: För att bestämma våglängden hos ljuset från en urladdnng konstrueras en spektrometer som avläses genom ett okular. Från precsonen med vlken apparaten konstruerats uppskattas att den ger upphov tll ett systematskt fel på, nm våglängden. Man mäter fyra gånger (avläsnngen är lte besvärlg och får värdena 56,8 nm, 567,4 nm, 55, nm, 555,4 nm. Man vll nu göra flera mätnngar för att öka precsonen. Ange ett lämplgt antal mätnngar, och motvera dtt val. Tentamensuppgft,
3 Problem, lösnng: Vanlg felpropagerng av oberoende fel ger varansen av x som σ x = σ u + σ z, och varansen av y som σ y = σ v + σ z. Kovaransen av x och y ges av förväntansvärdet cov(x, y = E[(x µ x (y µ y ], där medelvärdena är µ x = µ u + µ z och µ y = µ v + µ z. Om v nför δ z = z µ z, och motsvarande för övrga varabler, får v att cov(x, y = E[(u + z µ u µ z (v + z µ v µ z ] = E[(δ u + δ z (δ v + δ z ] = Eftersom u, v och z är oberoende blr alltså E[δ u δ v +δ u δ z +δ z δ v +δ z] = cov(u, v+cov(u, z+cov(z, v+σ z. cov(x, y = σ z Den efterfrågade kovaransmatrsen är alltså ( σ V = u + σz σz σz σv + σz Problem, lösnng: V anpassar data tll en rät lnje för att fnna parametrarna för teorn. Därefter gör v ett χ -test för att kontrollera om teorn verkar stämma. V använder enheten mljoner nvånare landet, och nvånare huvudstaden, vlket ger följande tabell: Land x y σ y w = σ wx wy wxy wx y (nv. (nv. huvudstad Island 0,7,08 0, 85,73 3,5 9,59 5,00 6,5 Norge 4,40 5,0 0,50 3,97 7,46 9,9 87,65 76,8 Fnland 5,0 5,39 0,54 3,44 7,90 8,55 96,47 93,07 Danmark 5,9 6,49 0,65,37,56 5,4 8,5 66,44 Sverge 8,85 7,36 0,74,85 6,34 3,59 0,4 44,59 Summa 94,36 87,40 60,06 40,88 387,7 V använder sedan formlerna (ur formelsamlng för anpassnng tll en rät lnje, a = ( wx wy wx wxy b = vlket ger a = 0,867 och b = 0,866, dvs. ( w wxy wx wy = w wx ( wx, y = 0, ,866x. V kan nu bestämma teorns förutsägelser för folkmängderna huvudstäderna och beräkna bdragen, χ, tll χ -summan: 3
4 Land x y teor y mätt χ Island 0,7,0,08 0,04 Norge 4,40 4,68 5,0 0,47 Fnland 5,0 5,37 5,39 0,00 Danmark 5,9 5,45 6,49,59 Sverge 8,85 8,53 7,36,5 Summa 5,6 V har fem mätnngar, men har bestämt två parametrar ur data, återstår tre effektva frhetsgrader. Den reducerade χ -summan är alltså χ = 5,6 3 =,87. Enlgt appendx D Taylor är p-värdet lka med 4% för χ =,8 och % för χ =,0. V nterpolerar och får p = 0,4 +,87,8 (0, 0,4 = 3%,0,8 Det går knappast att hävda att dessa data motbevsar modellen. Problem 3, lösnng: V gör ett ch-kvadrat test för antagandet att antalet mål är possonfördelat. Först sammnfattar v resultaten en tabell där n ν är antalet gånger ett lag gjort ν mål: ν n ν n ν ν Summa V uppskattar medelvärdet för possonfördelnngen som totala antalet mål dvderat med antalet försök, dvs dubbla antalet matcher: µ 64/48 =,33. Det förväntade antalet gånger ett lag gjort ν mål, om ν är possonfördelat, är f ν = 48 P (ν µ =,33. V bnnar data så att ngen bn har färre än fyra förekomster och beräknar förväntat antal och bdraget tll χ : Bn (k Antal mål (ν Observerat (O k Förväntat (E k χ 0 3,7 0,0 5 6,9 0, 3 4, 0,67 4 > 6 7, 0, Summa 48,0 4
5 Här är χ = (O k E k E k, där O k är är antalet utfall bn k: O = n 0, O = n, O 3 = n, O 4 = n 3 + n 4 + n 5. På lknande sätt är E k det förväntade antalet utfall bn k: E = f 0, E = f, E 3 = f, E 4 = k>3 f k. V betraktar alltså O k som oberoende possonfördelade varabler med medelvärden E k. Ch-kvadratsumman blr,0 för två frhetsgrader (v har beräknat µ och totala antalet försök från data, dvs vårt reducerade ch-kvadratvärde blr χ = 0,55 Enlgt tabell D Taylor är ch-kvadratsannolkheten för detta ca 60%. Fördelnngen är alltså väl förenlg med hypotesen att antalet mål är possonfördelat. Problem 4, lösnng: Inför funktonsvärdena f = A + Bx. Lkelhoodfunktonen blr L = ( ( e y f σ = πσ (π N/ σ N e σ (y f. V derverar med avseende på σ: dl dσ = N σ(π N/ σ N e σ (y f + (π N/ σ N ( σ 3 (y f e σ (y f. Sätter v dervatan tll noll får v N σ(π N/ σ + N (π N/ σ N ( σ 3 (y f = 0 och Nσ + (y f = 0. Alltså blr σ = vlket är det sökta sambandet N (y f, Det är naturlgt att anta att heltalsvarabler är possonfördelade, men detta fall är de faktskt multnomalt fördelade med det totala antalet utfall N = 48. De är alltså nte oberoende. Om antalet försök vore possonfördelat stället för fxerat tll 48 hade v emellertd fått oberoende possonfördelnngar de olka bnnarna. V kan låtsas att v har den stuatonen, det spelar ju ngen roll för vårt test om 48 kom ur en possonfördelnng eller var fxt. Om v skulle utnyttja multnomalstatstk stället skulle v nte förlora någon frhetsgrad på att bestämma totala antalet, men χ -beräknngen blr besvärlg eftersom bnnarna är korrelerade. Om A och B bestäms från mätpunkterna underskattar denna formel systematskt σ. 5
6 Problem 5, lösnng: Om det statstska felet är mndre än det systematska kommer v nte att vnna särsklt mycket på att förbättra den statstska precsonen ytterlgare eftersom det systematska felet kommer att domnera. Standardavvkelsen en mätnng, uppskattad från de fyra värden är σ λ = 7, nm. V tänker oss nu att v gör N stycken mätnngar, så att medelvärdets standardavvkelse, Detta ger att ( 7, N = 36., σ λ N =, nm. Eftersom v redan gjort fyra mätnngar krävs det ytterlgare 3 för att uppnå detta. Krteret är dock nte absolut, v skulle kunna välja att göra 36 mätnngar tll, eller kanske 40. 6
Beräkna standardavvikelser för efterfrågevariationer
Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda
Centrala Gränsvärdessatsen:
Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar
Mätfelsbehandling. Lars Engström
Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man
Tentamen i Dataanalys och statistik för I den 5 jan 2016
Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:
a) B är oberoende av A. (1p) b) P (A B) = 1 2. (1p) c) P (A B) = 1 och P (A B) = 1 6. (1p) Lösningar: = P (A) P (A B) = 1
Lösnngar tll tentamen: Matematsk statstk och sgnalbehandlng (ESS0), 4.00-8.00 den 4/-009 Examnator: Serk Sagtov (Kursansvarg: Ottmar Crone) Tllåtna hjälpmedel: Tabell "Beta", utdelad formelsamlng, valfr
Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )
Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd
Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010
Tentamen Tllämpad matematsk statstk för MI och EPI den december Uppgft : Ett företag som tllverkar batterer av en vss typ har tllverknng förlagd tll två olka fabrker. Fabrk A står för 7% av tllverknngen
Slumpvariabler (Stokastiska variabler)
Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona
Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
FK2002,FK2004. Föreläsning 5
FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd
Experimentella metoder 2013, Räkneövning 3
Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.
Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.
Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man
Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08
Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag
Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07
Tentamen MATEMATISK STATISTIK Datum: 8 Jun 0 Kurser: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 (TEN2), 6L3000 (TEN2), MATEMATIK2 MED MATEMATISK STATISTIK 6H2208 (TEN2) MATEMATISK STATISTIK 6A2111 (TEN1);
Dödlighetsundersökningar på KPA:s
Matematsk statstk Stockholms unverstet Dödlghetsundersöknngar på KPA:s bestånd av förmånsbestämda pensoner Sven-Erk Larsson Eamensarbete 6: Postal address: Matematsk statstk Dept. of Mathematcs Stockholms
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
Test av anpassning, homogenitet och oberoende med χ 2 - metod
Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna
saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1
Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring
PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se
Bankernas kapitalkrav med Basel 2
RAPPORT DEN 16 jun 2006 DNR 05-5630-010 2006 : 6 Bankernas kaptalkrav med Basel 2 R A P P o r t 2 0 0 6 : 6 Bankernas kaptalkrav med Basel 2 R a p p o r t 2 0 0 6 : 6 INNEHÅLL SAMMANFATTNING 31 RESULTAT
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Onsdagen den 18 juni 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras
2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00
(4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.
Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring
PROMEMORIA Datum 007-1-18 FI Dnr 07-1171-30 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers P.O. Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35
N A T U R V Å R D S V E R K E T
5 Kselalger B e d ö m n n g s g r u vattendrag n d e r f ö r s j ö a r o c h v a t t e n d r a g Parameter Vsar sta hand effekter Hur ofta behöver man mäta? N på året ska man mäta? IPS organsk Nngspåver
Almedalsveckan 2011. Snabba fakta om aktuella ämnen under Almedalsveckan 2011 2-3 6-7 8-9. Ungas ingångslöner. Stark som Pippi? Löner och inflation
Almedalsveckan 11 Snabba fakta om aktuella ämnen under Almedalsveckan 11 Stark som Ppp? 2-3 Ungas ngångslöner Välfärdsföretagen 8-9 Löner och nflaton Närmare skattegenomsnttet 1 5 Studemotverade eller
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
Förklaring:
rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas
Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi
Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)
STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen
ETE115 Ellära och elektronik, tentamen oktober 2007
(0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är
ENKEL LINJÄR REGRESSION
Fnansell statstk, vt 0 ENKEL LINJÄR REGRESSION Ordlsta tll NCT Scatter plot Dependent/ndependent Least squares Sum of squares Resdual Ft Predct Random error Analyss of varance Sprdnngsdagram Beroende/oberoende
Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss?
Att dentfera systemvktga banker Sverge vad kan kvanttatva ndkatorer vsa oss? Elas Bengtsson, Ulf Holmberg och Krstan Jönsson* Författarna är verksamma vd Rksbankens avdelnng för fnansell stabltet. Elas
Handlingsplan. Grön Flagg. Ängens förskola
Handlngsplan Grön Flagg Ängens förskola Kommentar från Håll Sverge Rent 2015-10-02 09:58: Vlka rolga och spännande utvecklngsområden som n ska jobba med. Utmana gärna barnen med att ställa öppna frågor
När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet
Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg
KVALITETSDEKLARATION
2019-06-17 1 (8) KVALITETSDEKLARATION Statstk om kommunal famlerådgvnng 2018 Ämnesområde Socaltänst Statstkområde Famlerådgvnng Produktkod SO0206 Referenstd År 2018 2019-06-17 2 (8) Statstkens kvaltet...
Beräkna standardavvikelser för efterfrågevariationer
Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.
VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn
ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats
Mätfelsbehandling. Medelvärde och standardavvikelse
Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger
Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.
Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två
Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126
Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något
Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL
Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)
Ringanalys VTI notat VTI notat Analys av bindemedel
VTI notat 4 004 Rnganalys 00 Analys av bndemedel Författare Lef Vman FoU-enhet Väg- och banteknk Projektnummer 601 Projektnamn Rnganalyser Uppdragsgvare FAS Metodgrupp Förord Rnganalysen har utförts av
1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?
Tentamenskrvnng: TMS45 - Grundkurs matematsk statstk och bonformatk, 7,5 hp. Td: Onsdag den 9 august 2009, kl 08:30-2:30 Väg och vatten Tesen korrgerad enlgt anvsngar under tentamenstllfället. Examnator:
A2009:004. Regional utveckling i Sverige. Flerregional integration mellan modellerna STRAGO och raps. Christer Anderstig och Marcus Sundberg
A2009:004 Regonal utvecklng Sverge Flerregonal ntegraton mellan modellerna STRAGO och raps Chrster Anderstg och Marcus Sundberg Regonal utvecklng Sverge Flerregonal ntegraton mellan modellerna STRAGO
En studiecirkel om Stockholms katolska stifts församlingsordning
En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng
Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy
Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn
Kvalitetsjustering av ICT-produkter
Kvaltetsjusterng av ICT-produkter - Metoder och tllämpnngar svenska Prsndex Producent- och Importled - Enheten för prsstatstk, Makroekonom och prser, SCB December 2006 STATISTISKA CENTRALBYRÅN 2(55) Kontaktnformaton
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys
Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
BEREDSKAP MOT ATOMOLYCKOR I SVERIGE
SSI:1';74-O15 BEREDSKAP MOT ATOMOLYCKOR I SVERIGE John-Chrster Lndll Pack, 104 01 STOCKHOIJ! ;4 aprl 1974 BEREDSOP TJÖT ATOMOLYCKOR I SVERIGE Manuskrpt grundat på ett föredrag vd kärnkraftmötot Köpenhamn,
Fördelning av kvarlåtenskap vid arvsskifte
NATIONALEKONOMISKA INSTITUTIONEN Uppsala unverstet Magsteruppsats Författare: Lars Björn Handledare: Henry Ohlsson HT 2008 Fördelnng av kvarlåtenskap vd arvsskfte En analys av ntergeneratonella fnansella
Sammanfattning, Dag 1
Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma
Industrins förbrukning av inköpta varor INFI
Statstska centralbyrån SCBDOK 3.2 (37) Industrns förbruknng av nköpta varor INFI 2003 NV006 Innehåll 0 Allmänna uppgfter... 2 0. Ämnesområde... 2 0.2 Statstkområde... 2 0.3 SOS-klassfcerng... 2 0.4 Statstkansvarg...
Introduktionsersättning eller socialbidraghar ersättningsregim betydelse för integrationen av flyktingar? 1
UPPSALA UNIVERSITET Natonalekonomska Insttutonen Examensarbete D-uppsats, Ht-2005 Introduktonsersättnng eller socalbdraghar ersättnngsregm betydelse för ntegratonen av flyktngar? 1 Författare: Henrk Nlsson
Steg 1 Arbeta med frågor till filmen Jespers glasögon
k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.
Optimering av underhållsplaner leder till strategier för utvecklingsprojekt
Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77
Beräkning av Sannolikheter för Utfall i Fotbollsmatcher
Natonalekonomska Insttutonen Uppsala Unverstet Examensarbete D Författare: Phlp Jonsson Handledare: Johan Lyhagen VT 2006 Beräknng av Sannolkheter för Utfall Fotbollsmatcher Oddsen på dn sda Sammanfattnng
Beställningsintervall i periodbeställningssystem
Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.
Lönebildningen i Sverige 1966-2009
Rapport tll Fnanspoltska rådet 2008/6 Lönebldnngen Sverge 1966-2009 Andreas Westermark Uppsala unverstet De åskter som uttrycks denna rapport är författarens egna och speglar nte nödvändgtvs Fnanspoltska
Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253
Skolnspektonen Utbldnngsdepartementet 2013-11-06 103 33 Stockholm 1 (6) Yttrande över betänkandet Kommunal vuxenutbldnng på grundläggande nvå - en översyn för ökad ndvdanpassnng och effektvtet (SOU 2013:20)
Tentamen (TEN1) TMEL53 Digitalteknik
ISY/Datorteknk Tentamen (TEN) TMEL53 Dgtalteknk Td: 6 8 3, klockan 8 Lokal: TER Lärare: Svert Lundgren, telefon 3 8 5 55 Hjälpmedel: Formelblad som bfogats och mnräknare. Tentan nnehåller 6 uppgfter à
Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i
Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå
Blixtkurs i komplex integration
Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna
Konsoliderad version av
Konsolderad verson av Styrelsens för ackredterng och teknsk kontroll föreskrfter (STAFS 1993:16) om EEG-märknng av flaskor som tjänar som mätbehållare (STAFS 2011:7). Ändrng nförd t.o.m. STAFS 2011:7 Föreskrfternas
DAGLIGVARUPRISERNA PÅ ÅLAND
Rapport 2000:1 DAGLIGVARUPRISERNA PÅ ÅLAND - EN KOMPARATIV ANALYS I pdf-versonen av denna rapport saknas enkätblanketterna (blaga 2). En fullständg rapport pappersformat kan beställas från ÅSUB, tel. 018-25490,
Kompenserande löneskillnader för pendlingstid
VTI särtryck 361 2004 Kompenserande löneskllnader för pendlngstd En emprsk undersöknng med Svenska data Konferensbdrag från Transportforum 8 9 januar 2003 Lnköpng Gunnar Isacsson VTI särtryck 361 2004
DEL I. Matematiska Institutionen KTH
1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.
Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige
"!# " $ % &('*),+.-0/0%'&%3)5476 8 &(' 9;: +@),>BA % &C6D% &E>>):D4 F GIHJGLKMONQPRKTSVUXW Y[Z]\8 &4^>_\0%"à&b+ & c
Fond-i-fonder. med global placeringsinriktning. Ett konkurrenskraftigt alternativ till globalfonder? En jämförelse med fokus på risk och avkastning.
Uppsala Unverstet Företagsekonomska nsttutonen Magsteruppsats HT 2009 Fond--fonder med global placerngsnrktnng Ett konkurrenskraftgt alternatv tll globalfonder? En jämförelse med fokus på rsk och avkastnng.
Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y
F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v
Handlingsplan. Grön Flagg. Östra förskolan
Handlngsplan Grön Flagg Östra förskolan Kommentar från Håll Sverge Rent 2013-02-20 17:47: Vad härlgt med tteln V ger barnen TID. Bra tänkt! Låter så postvt och självklart men nte alls lätt dagens samhälle.
Skoldemokratiplan Principer och guide till elevinflytande
Skoldemokratplan Prncper och gude tll elevnflytande I Skoldemokratplan Antagen av kommunfullmäktge 2012-02-29, 49 Fnspångs kommun 612 80 Fnspång Telefon 0122-85 000 Fax 0122-850 33 E-post: kommun@fnspang.se
Partikeldynamik. Dynamik är läran om rörelsers orsak.
Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är
Komplettering av felfortplantningsformeln
Kompletterng av felfortplantnngsformeln Varansen och kovaransen Quck Check Eempel med abs. nollpkt. Kompletterng av lnftw funktonen Possonfördelnngen 00-0-0 Fskeperment, 7.5 hp 00-0-0 Fskeperment, 7.5
Experimentella metoder 2014, Räkneövning 4
Experimentella metoder, Räkneövning Problem : På polisstationen i Slottshult är man missnöjd med att polisdistriktet utvidgats till att också omfatta grankommunen Järvsprånget Innan utvidningen hade man
Laser Distancer LD 420. Bruksanvisning
Laser Dstancer LD 40 sv Bruksanvsnng Innehåll Etablera nstrument - - - - - - - - - - - - - - - - - - - - - Introdukton- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Överskt - - - - - - -
Modellering av antal resor och destinationsval
UMEÅ UNIVERSITET Statstska nsttutonen C-uppsats, vt- 2005 Handledare: Erlng Lundevaller Modellerng av antal resor och destnatonsval Aron Arvdsson Salh Vošanovć Sammanfattnng V har denna uppsats analyserat
6.2 Transitionselement
-- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att
Problem i sammanfattande mått i ASI
Allmän SS-rapport 2001:10 Problem sammanfattande mått ASI Av Ingegerd Jansson ISSN 10-258 Förord Statens nsttutonsstyrelse, SS, svarar för planerng, lednng och drft av nsttutoner för tvångsvård av mssbrukare
Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det?
NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Uppsats fortsättnngskurs C Författare: Johan Bjerkesjö och Martn Nlsson Handledare: Patrk Hesselus Termn och år: HT 2005 Arbetslvsnrktad rehablterng för
Forskningsmetodik 2006 lektion 2
Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som
Skolbelysning. Ecophon, fotograf: Hans Georg Esch
Skolbelysnng Ecophon, fotograf: Hans Georg Esch Skolan är Sverges vanlgaste arbetsplats. En arbetsplats för barn, ungdomar och vuxna. Skolmljön ska skapa förutsättnngar för kreatvtet och stmulera nlärnng.
Utbildningsavkastning i Sverige
NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka
Handlingsplan. Grön Flagg. Hamregårds förskola
Handlngsplan Grön Flagg Hamregårds förskola Kommentar från Håll Sverge Rent 2016-03-30 08:43: Vlket härlgt vattentema n ska arbeta med tllsammans med barnen och strålande att n utgått från barnens ntresse
Del A: Begrepp och grundläggande förståelse
STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras
Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)
Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd
PRODUCENTSAMMANSLUTNINGENS/PRODUCENTENS KONTAKTINFORMATION Producentsammanslutningen eller företagets namn * FO-nummer *
1 Producentsammanslutnng Producent UPPFÖLJNINGSUPPGIFER OM EL- OCH ELEKRONIKAVFALL PRODUCENSAMMANSLUNINGENS/PRODUCENENS KONAKINFORMAION Producentsammanslutnngen eller företagets namn * FO-nummer * Darenummer
Hur bör en arbetsvärderingsmodell
Hur bör en arbetsvärderngsmodell specfceras? en analys baserad på mångdmensonell beslutsteor Stg Blomskog Johan Brng RAPPORT 2009:19 Insttutet för arbetsmarknadspoltsk utvärderng (IFAU) är ett forsknngsnsttut
TFYA16: Tenta Svar och anvisningar
160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:
FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB0 Sannolkhetsteor Följande gäller för sannolkheter: 0
Mos. Statens väg- ochtrafi V" NationalRoad&Traffic Research Institute- $-58101Li: Lä & t # % p. i E d $ åv 3 %. ISSN
f y ä M f ; * I) > t ; + Mos -2'2 2 42/9 halkat :4 11980) S l a,th 4. VD /-/ N =0O0U% 2 ISSN 0347-6049 S 3 ä at HP 3 TP Fa e s % Statens väg- ochtraf V" NatonalRoad&Traffc Research Insttute- $-58101L:
2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg
Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet
Industrins förbrukning av inköpta varor (INFI) 2008
STATISTISKA CENTRALBYRÅN 1(97) Industrns förbruknng av nköpta varor (INFI) 2008 NV0106 Innehåll SCBDOK 3.1 0 Admnstratva uppgfter 0.1 Ämnesområde 0.2 Statstkområde 0.3 SOS-klassfcerng 0.4 Statstkansvarg
Gymnasial yrkesutbildning 2015
Statstska centralbyrån STATISTIKENS FRAMTAGNING UF0548 Avdelnngen för befolknng och välfärd SCBDOK 1(22) Enheten för statstk om utbldnng och arbete 2016-03-11 Mattas Frtz Gymnasal yrkesutbldnng 2015 UF0548
Kvalitetssäkring med individen i centrum
Kvaltetssäkrng med ndvden centrum TENA har tllsammans med äldreboenden Sverge utvecklat en enkel process genom vlken varje enskld ndvd får en ndvduell kontnensplan baserad på hans eller hennes unka möjlgheter
Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan?
I er rapport dokumenterar n kontnuerlgt och laddar upp blder. N beskrver vad n har gjort, hur n har gått tllväga arbetsprocessen och hur eleverna fått nflytande. Här fnns utrymme för reflektoner från elever
Klarar hedgefonder att skapa positiv avkastning oavsett börsutveckling? En empirisk studie av ett urval svenska hedgefonder
NATIONALEKONOMISKA INSTITUTIONEN Uppsala unverstet Examensarbete C Författare: Sara Engvall och Matylda Hussn Handledare: Martn Holmén Hösttermnen 2006 Klarar hedgefonder att skapa postv avkastnng oavsett
Handlingsplan. Grön Flagg. Sagomossens förskola
Handlngsplan Grön Flagg Sagomossens förskola Kommentar från Håll Sverge Rent 2015-08-11 12:42: Det låter som en bra dé att ntegrera mljörådet förskolerådet som har en sån bred representaton. N har vktga