Del A: Begrepp och grundläggande förståelse

Storlek: px
Starta visningen från sidan:

Download "Del A: Begrepp och grundläggande förståelse"

Transkript

1 STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras Resonemang, ekvationslösningar och uträkningar får inte vara så knapphändiga att de blir svåra att följa För varje problem skall tydligt framgå vilket svar som ges När så är möjligt skall svaret bestå av si ror med rätt enheter Antalet värdesi ror skall stå i rimlig proportion till i texten angivna värdesi ror Avdrag görs om lösningar eller svar inte utformas i enlighet med ovanstående För godkända betyg krävs minst 5 poäng på del A, samt ett sammanlagt antal poäng som är olika för olika betyg För betyg E krävs minst 15 poäng sammanlagt Hjälpmedel : UTDELAD RÄKNEDOSA, PHYSICS HANDBOOK, BIFOGAD FORMELSAMLING MED TABELLER, BANAN Del A: Begrepp och grundläggande förståelse 1 Sture brukar sälja mobiltelefoner utanför Konsum vid Slussen Han får 00 kr i provision för varje telefon han säljer Nu får han ett erbjudande om att stå där mellan 14 och 16 på torsdagseftermiddagen Han brukar i genomsnitt få in ungefär 500 kr på ett sådant pass Nu har han ont om pengar och skulle behöva 1000 kr till en akut utgift Uppskatta sannolikheten för att han skulle få ihop sina 1000 kr om han accepterar erbjudandet om jobb Antag att antalet sålda telefoner är poissonfördelat (p) Figuren visar funktionen f(x) En mätning ger värdet x m =0,7 med ett relativt fel på 10% Bestäm r = f(x m ) med fel! (p)

2 3 Sture brukar jobba på ett café i Stockholms finanskvarter Han tycker sig ha lagt märke till att försäljningen av bakelser på eftermiddagen visar ett samband med börsutvecklingen följande dag Han ser en möjlighet till förtjänst, men vill först på statistisk väg undersöka om det finns ett samband, så han samlar in följande data: Antal sålda bakelser Börsförändring i procent 17 +1, 8 0,84 0 1,38 3 3, 16 +0,7 9 +0,71 5 1, ,30 Undersök med lämplig statistisk metod om dessa data är förenliga med slumpmässiga variationer eller tyder på ett samband (p) 4 Man gör två ekvivalenta mätningar av samma storhet Felen är normalfördelade med standardavvikelsen 0 Hur sannolikt är det att medelvärdet av de två mätningarna avviker med mindre än 0 från det sanna värdet (p) 5 Du har utarbetat en teori för brythållfastheten hos olika konstruktionsdetaljer som utsätts för kraftverkan För att testa teorin utsätter du sådana föremål för krafter och registrerar den kraft som ger ett brott Genom att mäta flera gånger på identiska föremål tar du fram medelvärde och standardavvikelse för brottkraften Du gör detta för tio olika typer av föremål Sedan beräknar du en chikvadratsumma baserad på din teori och de tio medelvärdena Vad drar du för slutsats om du får a: =1,7? b: =8,4? c: = 15,3? d: = 34,1?

3 Del B: Fördjupande uppgifter 6 En skruvfabrikant har levererat skruvar till datortillverkaren BananaComp Skruvarna används allihop för att tillverka 6000 datorer Sedan meddelar skruvfabrikenten att man under en tid haft ett fel på en av sina maskiner, vilket lett till att levereransen innehållit 1000 försvagade skruvar Dessa skruvar har varit blandade med andra på ett helt slumpmässigt sätt BananaComp har använt 5 skruvar av den aktuella typen i var och en av sina datorer, och av dessa 5 skruvar håller sex hårddisken på plats Man anser att en dator måste betraktas som defekt om den innehåller två eller fler försvagade skruvar, eller om åtminstone en av hårddiskens skruvar är försvagad Du har just köpt en av dessa nya datorer från BananaComp! Hur stor är sannolikheten att den är defekt? (5p) 7 För att bestämma tyngaccelerationen g kan man använda en Atwoodsk fallmaskin, som är konstruerad för att minska accelerationen i fallet så att tiden blir lättare att mäta Figuren nedan visar en sådan maskin Två vikter, m och M>mär förbundna med ett tunt snöre som löper över en lätt trissa med försumbar friktion Den accelererande kraften blir (M m)g och den totala massan blir M + m, så Newtons kraftlag ger (M m)g =(M + m)a där a är accelerationen Tiden det tar för M att falla sträckan s fås ur sambandet s = at Detta ger En sådan mätning ger resultatet s =(1,300 ± 0,00)m M = (815 ± 4)g m = (787 ± 4)g t =(4,1 ± 0,1)s g = M + m M m a = M + m M m s t Bestäm ett värde på g med fel utifrån ovanstående mätvärden! (Det är tillåtet, men inte nödvändigt, att förenkla räkningarna med lämpliga approximationer) (5p)

4 8 Tre stokastiska variabler x, y och har medelvärden µ x, µ y och µ, och standardavvikelserna x, y och Bestäm medelvärden och variansmatris för de två variablerna a = x + b = y (5p) 9 Vid radioaktivt sönderfall minskar aktiviteten proportionellt mot e t där är sönderfallskonstanten Halveringstiden ges av T 1/ = ln För att bestämma halveringstiden för ett radioaktivt ämne placerar man ett prov i en behållare där det finns ett GM-rör Bakgrunden har bestämts mycket noga till 0,8 pulser per sekund Man räknar antalet pulser från GM-röret under tio minuter och får följande resultat: intervall (minuter) antal pulser Bestäm halveringstiden med fel! (5p)

5 Uppgift 1, lösning: Inkomsten blir I = 00, där är antalet sålda telefoner Medelvärdet av I är 500, vilket betyder att medelvärdet av är µ =,5 För att han ska få ihop 1000 kr måste Sture sälja fem telefoner eller fler, dvs det krävs att > 4 Eftersom är poissonfördelat kan vi beräkna denna sannolikhet som P ( > 4) = 1 (P (0) + P (1) + P () + P (3) + P (4)) där P (0) = e µ =0,08, P (1) = µp (0) = 0,05, P () = µ P (1) = 0,57, P (3) = µ 3 P () = 0,14, P (4) = µ 4 P (3) = 0,134 Detta ger P ( > 4) = 1 0,89 och svaret blir att sannolikheten är 11% Uppgift, lösning: Ur figuren får vi direkt, som ovan, att f(x m ) = 6, och alltså Felet i r får vi genom felfortplantning: r = 3844 r = dr dx m x m = f(x m )f 0 (x m ) x m där x m = 10% x m =0,07 Ur figuren kan vi få df dx genom att dra tangenten (som ovan) Detta ger att f 0 (x m )= 63/0,5 = 16 Vi får alltså att r = ,07 = 115 Svaret blir r = 3800 ± 1100 Alternativt kan vi läsa av grafen för x =0,7 + 0,07 och x =0,7 0,07 och bilda skillnaden, vilket ger f = = 18, och sedan beräkna felet i r = f som r =f f = f f = 6 18 = 1116 Eller också kan vi direkt bilda r = f(0,7 + 0,07) f((0,7 0,07) = = 3 Med två värdesi ror i felet blir svaret desamma för dessa två metoder som för den första

6 Uppgift 3, lösning: För att undersöka om det finns ett samband beräknar vi den linjära korrealtionskoe cienten r och utnyttjar tabell för att beräkna p-värdet för nollhypotesen att samband saknas Räkningarna kan sammanfattas i en tabell: antal börsförbakelser (x) ändring (y) x x y y (x x) (y y) (x x)(y y) 17 1, 0,5 1,70 0,06,89 0,43 8 0,84 8,75 0,36 76,56 0,13 3,14 0 1,38 3,5 0,90 10,56 0,81,9 3 3, 6,5,74 39,06 7,50 17,1 16 0,7 0,75 0,75 0,56 0,56 0,56 9 0,71 7,75 1,19 60,06 1,4 9,3 5 1,91 8,5 1,43 68,06,04 11, ,3 0,75 1,78 0,56 3,17 1,34 Medelvärde: 16,75 0,48 Summa: 55,5 18,53 39,39 Korrelationskoe cienten blir P (x x) r = pp (x x) P (y y) = 0,57 För åtta avläsningar ger tabell C att sannolikheten för r > 0,57 ligger mellan 1% (för r > 0,57 0,5 0,5) och 1% (för r > 0,6) En linjär interpolation ger p = 1% + 0,1 (1% 1%) = 15% Sannolikheten för ett lika stort eller större r är alltså 15%, och slutsatsen blir att man med signifikansnivån 10% inte kan säga att det finns ett samband (Men om Sture tyckt sig se ett negativt samband och ville testa för detta skulle han acceptera att det finns ett sådant Sannolikheten för r< 0,57 är ju 7,5%) Uppgift 4, lösning: Kalla mätvärden för x 1 och x Båda kommer från samma normalfördelning med ett medelvärde µ (det sanna värdet) och standardavvikelse 0 Medelvärdet x = x 1+x blir också normalfördelat runt det sanna värdet, och får standardavvikelsen x = p 0 Vi har alltså att 0 = p x,så frågan är hur sannolikt det är att från en normalfördelning med standardavvikelse = x få ett värde som ligger längre än p =1,41 från medelvärdet Ur tabell A läser vi av att sannolikheten att hamna innanför 1,41 är 84,15%, vilket alltså är den sökta sannolikheten Uppgift 5, lösning: Eftersom teorin redan var formulerad och inte anpassades till mätningarna förväntar vi oss en -fördelning med tio frihetsgrader om teori och analys är korrekta a: Det reducerade chikvadrat-värdet blir e = /N dof =0,17 för tio frihetsgrader Tabell D är långt mindre än man skulle i medelvärdets ger chikvadratsannolikheten p = 100% Detta betyder att förvänta sig Antagligen är felen överskattade (Du kanske glömt faktorn p 1 N standardavvikelse, eller helt enkelt räknat fel) b: Här är e =0,84 för tio frihetsgrader och tabell D ger ett p-värde nära 60% Det ger inte anledning att misstro teorin, och tyder inte heller på någon felräkning c: För e =1,53 blir chikvadratsannolikheten p 13% Slutsatsen blir densamma som i b Det lägre p-värdet kan mycket väl vara en slump d: Med e =3,41 blir p avsevärt mindre än 0,1% (det sista värdet i tabellen, för e =3,0) Det är högst troligt att teorin är felaktig, eller att det finns systematiska fel i mätningarna

7 Uppgift 6, lösning: De 1000 försvagade skruvarna har slumpmässigt fördelats bland de 6000 datorerna Antalet försvagade skruvar i en given dator,, blir då med god approximation poissonfördelat med medelvärdet µ = För att datorn skall klassas som defekt skall den antingen ha minst två försvagade skruvar, eller en försvagad skruv som råkat hamna vid hårddisken Sannolikheten för minst två skruvar blir P ( > 1) = 1 P (0) P (1) = 1 e µ µe µ 3 =1 =0,594 e Till den skall läggas sannolikheten för att datorn har en försvagad skruv och att den hamnat bland de sex som håller i hårddisken, dvs P (1) 6 5 = 6 =0,031 Sannolikheten att datorn e 5 är defekt blir alltså P defekt =0, ,031 = 63% Alternativt kan man beräkna sannolikheten för att datorn inte är defekt, som sannolikheten att den innehåller noll defekta skruvar plus sannolikheten att den innehåller en sådan skruv som inte hamnat vid hårddisken: 1 P defekt = P (0) + P (1) Poissonfördelningen gäller exakt när antalet försök (defekta skruvar) går mot oändligheten samtidigt som sannolikheten att lyckas (att skruven hamnar i en given dator) går mot noll Här är antalet defekta skruvar stort (1000) och sannolikheten att hamna i en given dator liten (1/6000), så poissonfördelningen kan användas Man kan istället säga att sannolikheten att en skruv är defekt är p = 1000/31000, och använda binomialfördelningen för att finna sannolikheten för noll resp en defekt skruv som P (0) = (1 p) 5 ; P (1) = 5(1 p) 51 p Detta är emellertid också en approximation eftersom det totala antalet skruvar inte är oändligt utan bara drygt , så p beror på hur många skruvar av de två typerna som redan gått åt Uppgift 7, lösning: Insättning i formeln ger g =8,85 m/s I kvoten M+m M m är felen i M + m och M q m båda lika med M + m =4 p g, men eftersom det relativa felet i M m är så mycket större kan vi försumma felet i M + m Likaså är det relativa felet i s litet och kan försummas Räkning med relativa fel ger g M m t 5,66 0, = = =0,043 g M m t 8 4,1 Vi får alltså g =8,85 p 0,043 = 1,84 m/s, och slutresultatet g =(8,8 ± 1,8)m/s Man kan förstås istället använda felfortplantingsformeln = 4sm t = 4sM t = g t

8 och beräkna s g M m s t =1,84 m/s Det kan vara värt att påpeka att M + m och M m faktiskt är okorrelerade eftersom M och m har lika stora fel, vilket kan visas med en räkning liknande den i nästa uppgift Man kan alltså införa x = M +m och y = M m, vilket förenklar formeln för g, och sedan använda felfortplantningsformeln för x,y,s och t, utan kovarianstermer Det kan också påpekas att M m = (8 ± 6) m/s ligger så nära noll, jämfört med felets storlek, att den linjära approximationen för M+m M m inte är så bra över hela felintervallet Det kan därför vara motiverat att öka respektive minska M m till övre respektive undre felgränsen och bestämma asymmetriska fel i g Detta ger (med felet i t adderat i kvadrat) g = m/s Medelvärdet av de två felen blir 1,9 m/s, att jämföras med 1,84 m/s Uppgift 8, lösning: Medelvärdet av a blir och på motsvarande sätt blir µ a = E(a) =E(x + ) =E(x)+E() =µ x + µ, µ b = µ y µ 8,8 +,3 1,5 Vi antar att kovarianserna mellan x,y och alla är noll eftersom de till skillnad från standardavvikelserna inte getts i uppgiften (av misstag angavs ej att x,y och är oberoende) Varianserna av a och b ges då av felfortplantningsformeln som a = x +, b = y + Kovariansen för a och b är cov(a, b) =E[(a µ a )(b µ b )] = E[ a b ]=E[( x + )( y )] med a a µ a, och motsvarande för övriga Vi får cov(a, b) =E[( x y x + y )] = E[ ] =, eftersom vi antar att kovarianserna cov(x, y) = cov(x, ) = cov(y, ) = 0 Variansmatrisen blir x + V = y + Om vi inte antar att cov(x, y) =cov(x, ) =cov(y, ) = 0 får vi istället a = x + + cov(x, ), och V = b = y + cov(y, ), x + + cov(x, ) cov(x, y) cov(x, )+cov(y, ) cov(x, y) cov(x, )+cov(y, ) y + cov(y, ) Uppgift 9, lösning: Vi subtraherar bakgrunden b = 60 0,8 = 13,68 från antalet sönderfall N i varje minutintervall och logaritmerar sedan så att vi får en variabel y som beror linjärt på tiden Felet i N b är p N,ochfeletiy =ln(n b) blir y = p N N b :

9 N N b y y Vi kan nu ställa upp en tabell för att göra en viktad minsta kvadratanpassning av en linjär funktion av tiden x till dessa y-värden Vi använder tiden mitt i respektive intervall Vikterna är w = 1 y x/min y y w wx/min wy wx /min wxy/min 0,5 4,54 0,111 81,39 40,69 369,18 0,35 184,59 1,5 4,8 0,18 60,8 91, 60,36 136,84 390,54,5 3,79 0,17 33,87 84,67 18,40 11,67 31,01 3,5 3,31 0,34 18,0 63,7 60,1 3,00 10,75 4,5,51 0,414 5,838 6,7 14,66 118, 65,97 5,5 3,01 0,87 1,14 66,79 36,57 367,36 01,15 6,5,3 0,515 3,777 4,55 8,43 159,56 54,80 7,5 1,99 0,66,55 19,14 5,08 143,5 38,09 8,5 1,0 1,4 0,648 5,51 0,78 46,85 6,61 9,5 0,8,934 0,116 1,10 0,03 10,48 0,31 summa: 19,35 43,66 883, , ,81 En anpassning av en rät linje ger riktningskoe cienten hx X X X i b = w wxy wx wy / med = X X X w wx wx Insättning ger =1, min och b = 0,376 min 1 Feletib ges av b = q P w = 0,040 min 1 Sönderfallskonstanten blir = b =(0,38 ± 0,04) min 1, och T 1/ = ln =1,84 min Det relativa felet i T 1/ blir detsamma som i,dvs T 1/ = T 1/ =0,19 Slutresultatet blir T 1/ =(1,8 ± 0,) min = (110 ± 11) s

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H./C.F./C.W. Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, 18/6 013, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H Tentamensskrivning i Experimentella metoder, 12p, för kandidatprogrammet i fysik, 9/6 2015, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer motiveras.

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Onsdagen den 18 juni 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson,

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

Experimentella metoder 2014, Räkneövning 4

Experimentella metoder 2014, Räkneövning 4 Experimentella metoder, Räkneövning Problem : På polisstationen i Slottshult är man missnöjd med att polisdistriktet utvidgats till att också omfatta grankommunen Järvsprånget Innan utvidningen hade man

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.

Läs mer

Uppgift 1. f(x) = 2x om 0 x 1

Uppgift 1. f(x) = 2x om 0 x 1 Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 2015 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Uppgift a b c d e Vet inte Poäng

Uppgift a b c d e Vet inte Poäng TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-03-16 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 Gripenberg I1. Vi antar att antalet telefonsamtal som kommer till ett servicenummer under en tidsperiod med längden

Läs mer

Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen

Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p) Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan.

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan. Matematisk statistik Tentamen: 28 5 27 kl 8 13 FMS 32 Matematisk statistik AK för V och L, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter

Läs mer

16. Max 2/0/ Max 3/0/0

16. Max 2/0/ Max 3/0/0 Del III 16. Max 2/0/0 Godtagbar ansats, visar förståelse för likformighetsbegreppet, t.ex. genom att bestämma en tänkbar längd på sidan med i övrigt godtagbar lösning med korrekt svar (8 cm och 18 cm)

Läs mer

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat. Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004, TEN 06-06-0 Hjälpmedel: Formler oh tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall vara

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

TENTAMEN Datum: 14 feb 2011

TENTAMEN Datum: 14 feb 2011 TENTAMEN Datum: 14 feb 011 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF1001 TEN 1 (Matematisk statistik ) Ten1 i kursen HF1001 ( Tidigare kn 6H301), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 13:15-17:15

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 Avd. Matematisk statistik SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 0 Allmänna anvisningar Arbeta med handledningen, och skriv rapport, i grupper om två eller tre personer. Närvaro vid laborationstiden

Läs mer

Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.

Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer. KOD: Kurskod: PC1244 Kursnamn: Metod Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-11-08 Tillåtna hjälpmedel: Miniräknare Tentan består av 13 frågor, totalt 40 poäng. Det krävs

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M MAM801 IEK309 Institutionen för matematik Datum Skrivtid

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M MAM801 IEK309 Institutionen för matematik Datum Skrivtid LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M MAM801 IEK309 Institutionen för matematik Datum 2008-01-19 Skrivtid 0900 1400 Tentamen i: Statistik AI, 10p Antal uppgifter: 6 Krav för G: 11 Lärare: Robert Lundqvist,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-06-02 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mikael Stenlund Examinator:

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-10-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

SF1901: Medelfel, felfortplantning

SF1901: Medelfel, felfortplantning SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error

Läs mer

Labbrapport svängande skivor

Labbrapport svängande skivor Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan

Läs mer

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Lufttorkat trä Ugnstorkat trä

Lufttorkat trä Ugnstorkat trä Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer