a) B är oberoende av A. (1p) b) P (A B) = 1 2. (1p) c) P (A B) = 1 och P (A B) = 1 6. (1p) Lösningar: = P (A) P (A B) = 1
|
|
- Lina Lindberg
- för 5 år sedan
- Visningar:
Transkript
1 Lösnngar tll tentamen: Matematsk statstk och sgnalbehandlng (ESS0), den 4/-009 Examnator: Serk Sagtov (Kursansvarg: Ottmar Crone) Tllåtna hjälpmedel: Tabell "Beta", utdelad formelsamlng, valfr räknedosa(mnnestömd) Betygsgränser: p Betyg 3, 8p Betyg 4, 4p Betyg 5 Maxpoäng: 30p Antag att du kastar en rättvs sex-sdg tärnng (alla sdor har lka sannolkhet). Betrakta nu händelsen A = {5, 6}, dvs händelsen att v ett vsst slag får åtmnstone 5. Ange var och ett av fallen nedan en händelse B sådan att a) B är oberoende av A. (p) b) P (A B) =. (p) c) P (A B) = och P (A B) = 6. (p) a) B = {,, 3, 4, 5, 6} A B = A, P (A B) = 6 = P (A)P (B) b) B = {3, 4, 5, 6} P (A B) = P (A B) P (B) = P (A) P (B) = /6 4/6 = c) B = {,, 3, 4, 5} A B = {5}, A B = {,, 3, 4, 5, 6} P (A B) = 6, P (A B) = Antag att den stokastska varabeln X är normalfördelad med väntevärde 3 och varans 9. Låt nu Y = 3 X. a) Vad har Y för typ av fördelnng och vad är dess väntevärde och varans? (.5p) b) Vad är sannolkheten att Y är åtmnstone? (p) c) Beräkna Cov(X, Y ). (.5p) a) E[Y ] = 3 E[X] = 0, Var(Y ) = (/3) Var(X) = Y N(0, ) b) Pga att N(0, )-förd. är symmetrsk 0 får v P (Y ) = P (Y ) = c) Cov(X, Y ) = Cov(X, 3 X ) = 3 Cov(X, X) = 3 Var(X) = 3
2 3 Besvara följande små frågor: a) Vad är defntonen av ett typ I-fel respektve ett typ II-fel? (p) b) Vad skall gälla för att en funkton f(x) skall vara en täthetsfunkton för en kontnuerlg stokastsk varabel Y? (p) c) Låt X Exp(π). Vad är P (X = 5)? (p) a) Typ I-fel är slh att förkasta H 0 gvet att H 0 är sann. Typ II-fel är slh att acceptera H 0 gvet att mothypotesen är sann b) f(x) 0, f(x)dx =, P (a Y b) = b a f(x)dx c) P (X = 5) = 0 eftersom X är en kontnuerlg stokastsk varabel 4 Företaget "Däck som bara den AB" får varje dag n en låda med ventler tll de däck som tllverkas fabrken. Varje låda består av 00 ventler och från varje låda som nkommt plockar man slumpmässgt ut 0 stycken som testas för läckage. Om någon av de testade ventlerna läcker skckar man tllbaka hela lådan med ventler tll underleverantören. En vss dag får man n en låda som totalt nnehåller 5 trasga ventler. a) Låt Z beteckna antalet trasga ventler som man stöter på. Vad har Z för sannolkhetsfunkton? (p) b) Hur många av de undersökta ventlerna förväntas vara trasga? (p) c) Vad är sannolkheten att lådan nte skckas tllbaka? (p) d) Vad är sannolkheten att man fnner mer än en trasg ventl? (p) a) Z är hypergeometrskt fördelad med parameter (N, n, m) = (00, 0, 5), f Z (k) = P (Z = k) = k)( (m N m n k ) ( N n) b) E[Z] = mn/n = / c) P (Z = 0) = (5 0)( ) ( 00 0 ) = d) P (Z > ) = P (Z ) = P (Z = ) P (Z = 0) = = Låt X,..., X n vara ett stckprov på X N(µ, σ ). a) Härled och skrv fullständgt ut log-lkelhoodfunktonen (bara den ckelogartmerade lkelhood-funktonen ger nga poäng). (p) b) Fnn maxmum-lkelhoodskattaren för σ. (.5p) c) Är detta en väntevärdesrktg (unbased) skattare för σ (vsa)? (.5p)
3 a) l(µ, σ) = log ( n = ) /σ πσ e (x µ) = n log(σ) σ (x µ) = b) l(µ, σ) σ nσ = = n σ + n σ 3 (x µ) = 0 = ˆσ (X,..., X n ) = = (x µ) = 0 = n (X µ) = c) E[ˆσ (X,..., X n )] = n E[(X µ) ] = n = Var(X ) = = }{{} =σ n nσ = σ 6 Koncentratonen av en aktv ngredens ett flytande tvättmedel förmodas påverkas av typen av katalysator som används tllverknngsprocessen. Man har gjort ett antal mätnngar av koncentratoner med de två katalysatorer som fnns tllgänglga (där enheten är gram aktv ngredens per 00kg tvättmedel) och fått följande data: Katalysator Katalysator n = 6 n = 4 x = 650 x = 550 s = 80 s = 75 a) Konstruera ett tvåsdgt 99%-gt konfdensntervall för den förväntade koncentratonsdfferensen. (.5p) b) Vad drar du för slutsats a)? (motvera) (0.5p) c) Använd ett ensdgt hypotestest (sgnfkansnvå 0.0) för att se om katalysatorerna ger upphov tll någon skllnad förväntad koncentraton. (.5p) d) Ge och motvera de antaganden som du har gjort a) och c)? (0.5p) a) Om varanserna antas vara lka: Konfdensntervallet ges av X X ± t (n+n ) ( α)/ S p S p = (n )S +(n )S n +n n + n 3
4 (6 )80 och v får s p = +(4 ) = = samt t (8).763 Insättnng ger ntervallet ± dvs µ µ (8, 979) Om varanserna antas vara olka: Konfdensntervallet ges av X X ± t (γ) S ( α)/ n + S n (S γ = /n+s /n) (S /n) /(n )+(S /n) /(n ) V får γ = = = 7 (80 /6+75 /4) (80 /6) /(6 )+(75 /4) /(4 ) = = 900±79, och därmed t (7) = Insättnng ger ntervallet ± = 900 ± 78, dvs µ µ (8, 978) b) Katalysator är att föredra då den ger upphov tll mer av den aktva ngredensen slutprodukten. Hade 0 funnts med ntervallet hade det ej gått att göra något uttalande. c) V testar H 0 : µ = µ mot H : µ > µ. Om varanserna antas vara lka: =0 {}}{ Teststatstkan (under H 0 ) ges av T = ( X X ) (µ µ ) S p n + n och den förkastas om T > t (8) 0.99 =.467. Eftersom den observerade teststatstkan T obs = 3.64 >.467 kan v förkasta H 0 på sgnfkansnvån 0.0. Om varanserna antas vara olka: =0 {}}{ Teststatstkan (under H 0 ) ges av T = ( X X ) (µ µ ) S n + S n och den förkastas om T > t (7) 0.99 =.473. Eftersom den observerade teststatstkan T obs = 3.78 >.473 kan v förkasta H 0 på sgnfkansnvån 0.0. I fallet H 0 : µ = µ mot H : µ µ använder man de krtska gränser som ges av kvantlerna uppgft a). d) Förutom antagandet om huruvda de underlggande varanserna är lka eller ej så måste de två stckproven vara oberoende och normalfördelade. 7 En forskare hävdar att åtmnstone 0% av alla hockeyhjälmar har ett vsst tllverknngsfel som skulle kunna ge upphov tll skador hos bäraren. Då man kontrollerar 00 hjälmar upptäcker man att 6 av dessa har det påtalade felet. a) Ta reda på, mha ett lämplgt hypotestest med sgnfkansnvån 0.0, om detta stödjer forskarens påstående. (.5p) 4
5 b) Fnn testets p-värde. (.5p) c) Vad skulle ett 99%-gt konfdensntervall baserat på nformatonen ovan ha för bredd? (.5p) Lösnng: a) V testar H 0 : p = 0. mot H : p 0.. Då antalet (n = 00) oberoende Bernoull-försök som görs (ger oss en Bnomalfördelnng) är stort gäller det att X (antalet trasga hjälmar) är approxmatvt normalfördelat enlgt centrala gränsvärdessatsen. ˆp p app. Teststatstkan ges av T = N(0, ) (under H 0 ). p( p)/n V förkastar H 0 om T > z α/ ˆp = 6/00 = 0.08 Eftersom den observerade teststatstkan T obs = = <.576 kan v ej förkasta H 0 på sgnfkansnvån 0.0 b) Låt Z N(0, ). p värdet = P (Z < 0.943) + P (Z > 0.943) = P (0.943 < Z < 0.943) = (Φ(0.943) Φ(0)) = ( ) = c) z α/ ˆp( ˆp)/n = Vkt (X) (pounds) och systolskt blodtryck (Y ) (blodtryck vd hjärtats sammandragnng) hos 6 slumpmässgt utvalda (och oberoende) män åldrarna 5-30 vsas tabellen nedan. Patentnr Vkt Blodtryck Patentnr Vkt Blodtryck Antag nu att vkt och blodtryck är bvarat normalfördelade. Från värdena ovan får v att x = 4743 y = 3786 x = y = x y = a) Utför en lnjär regresson (där alla koeffcenter samt regressonslnjens slutlga form anges) med blodtryck som svarsvarabel. (p) b) Tolka koeffcenterna (uttryckt termer relaterade tll problemet). (0.5p) c) Skatta korrelatonskoeffcenten. (0.5p) 5
6 d) Testa hypotesen att korrelatonen är 0 på sgnfkansnvån (p) a) µ = E[Y X = x ] = β 0 + β x där X anger vkten och Y blodtrycket. n = 6. ˆβ = S xy x y n xȳ x y = n x y S xx x n x = x n ( x ) = ˆβ 0 = ȳ ˆβ x = Ŷ x = ˆβ 0 + ˆβ x = x b) Då man nte har någon vkt (låter konstgt) ger sambandet att man har blodtryck och det ökar med enheter per pound. c) R = ˆρ = S xy Sxx S yy = x y n x y ( x n ( x ) ) ( = y n ( ) y ) d) V testar H 0 : ρ = 0 mot H : ρ 0. Teststatstkan ges av T = R n som under H R 0 är t-fördelad med n frhetsgrader. V förkastar H 0 om T obs > t (n ) α/ = t(4) =.064. V får T obs = = och kan därmed förkasta H
FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-15 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB0 Sannolkhetsteor Följande gäller för sannolkheter: 0
Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07
Tentamen MATEMATISK STATISTIK Datum: 8 Jun 0 Kurser: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 (TEN2), 6L3000 (TEN2), MATEMATIK2 MED MATEMATISK STATISTIK 6H2208 (TEN2) MATEMATISK STATISTIK 6A2111 (TEN1);
Tentamen i Dataanalys och statistik för I den 5 jan 2016
Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:
Slumpvariabler (Stokastiska variabler)
Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona
1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?
Tentamenskrvnng: TMS45 - Grundkurs matematsk statstk och bonformatk, 7,5 hp. Td: Onsdag den 9 august 2009, kl 08:30-2:30 Väg och vatten Tesen korrgerad enlgt anvsngar under tentamenstllfället. Examnator:
Matematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,
Experimentella metoder 2014, Räkneövning 5
Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och
F13. Förra gången (F12) Konfidensintervall och hypotesprövning Chi-tvåtest. Stratifierat urval
Konfdensntervall och hypotesprövnng Ch-tvåtest F3 Förra gången (F) Stratferat urval Dela n populatonen homogena ata med avseende på atferngsvarabeln Välj atferngsvarabel som har ett samband med undersöknngsvarabeln
ENKEL LINJÄR REGRESSION
Fnansell statstk, vt 0 ENKEL LINJÄR REGRESSION Ordlsta tll NCT Scatter plot Dependent/ndependent Least squares Sum of squares Resdual Ft Predct Random error Analyss of varance Sprdnngsdagram Beroende/oberoende
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda
Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )
Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys
Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,
Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010
Tentamen Tllämpad matematsk statstk för MI och EPI den december Uppgft : Ett företag som tllverkar batterer av en vss typ har tllverknng förlagd tll två olka fabrker. Fabrk A står för 7% av tllverknngen
Test av anpassning, homogenitet och oberoende med χ 2 - metod
Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna
(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-
Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).
Centrala Gränsvärdessatsen:
Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar
FK2002,FK2004. Föreläsning 5
FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd
ESS011: Matematisk statistik och signalbehandling Tid: 14:00-18:00, Datum:
ESS0: Matematisk statistik och signalbehandling Tid: 4:00-8:00, Datum: 20-0-2 Examinatorer: José Sánchez och Bill Karlström Jour: Bill Karlström, tel. 070 624 44 88. José Sánchez, tel. 03 772 53 77. Hjälpmedel:
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Mätfelsbehandling. Lars Engström
Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man
cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,
Förklaring:
rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas
TMS136: Dataanalys och statistik Tentamen
TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:
Svar till övningar med jämna nummer i Milton & Arnold, ht 2010
Svar till övningar med jämna nummer i Milton & Arnold, ht 2010 Kapitel 1 8b) Ja c)s = {h, mh, mmh, mmmh, mmmmh, mmmmm} d) A 1 = {mh}; A 2 = {h, mh}; Nej, A 1 A 2 = {mh} = 10 a)12 b) 60 c) 360 14 a) 2 4
Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.
Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Enkel och multipel linjär regression
TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson,
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, 5--9 Lösningförslag skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen : Sannolikhetsteori
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds
22 5 Innehåll:. Rsk & Odds. Rsk Rato.2 Odds Rato 2. Logstsk Regresson 2. Ln Odds 2.2 SPSS Output 2.3 Estmerng (ML) 2.4 Multpel 3. Survval Analys 3. vs. Logstsk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametrskt
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,
Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Sannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
Tenta i Statistisk analys, 15 december 2004
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.
Tentamentsskrivning: Matematisk Statistik TMA321 1
Tentamentsskrivning: Matematisk Statistik TMA Tentamentsskrivning i Matematisk Statistik TMA Tid: den augusti, 7 Hjälpmedel: Typgodkänd miniräknare, egenhändigt skriven formelsamling om två A4 fram och
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Föreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Repetition. Repetition. Repetition. X: slumpvariabel (s.v.) betraktas innan ett försök är genomfört. x: observerat värde efter försöket är genomfört.
X: slumpvrel (s.v.) etrkts nnn ett försök är genomfört. : oservert värde efter försöket är genomfört. En s.v. är kontnuerlg om den kn nt ll tänkr värden ett ntervll. Fördelnngsfunkton (cdf): F () = P(X
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Mer om konfidensintervall + repetition
1/14 Mer om konfidensintervall + repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/2 2011 2/14 Dagens föreläsning Skattningar som slumpvariabler Väntevärde Varians
Tentamentsskrivning: Matematisk statistik TMA Tentamentsskrivning i Matematisk statistik TMA321, 4.5 hp.
Tentamentsskrivning: Matematisk statistik TMA32 Tentamentsskrivning i Matematisk statistik TMA32, 4.5 hp. Tid: Onsdag den 2 jan, 20 kl 4:00-8:00 Examinator och jour: Erik Broman, tel. 772-354, mob. 073
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 10/ KL
TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 1/1 18 KL 8.-13.. Examinator och jourhavande lärare: Torkel Erhardsson, tel. 8 14 78. Tillåtna hjälpmedel: Formelsamling i matematisk statistik utgiven av
TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).
Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna
Lösningar till tentamen i Matematisk Statistik, 5p
Lösningar till tentamen i Matematisk Statistik, 5p LGR98 27 oktober, 2001 kl. 9.00 13.00 Kursansvarig: Eric Järpe Maxpoäng: 30 Betygsgränser: 12p: G, 22p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.
Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-06-03 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00
(4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.
(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Tentamen (TEN1) TMEL53 Digitalteknik
ISY/Datorteknk Tentamen (TEN) TMEL53 Dgtalteknk Td: 6 8 3, klockan 8 Lokal: TER Lärare: Svert Lundgren, telefon 3 8 5 55 Hjälpmedel: Formelblad som bfogats och mnräknare. Tentan nnehåller 6 uppgfter à
σ 12 = 3.81± σ n = 0.12 n = = 0.12
TMSK17 Matematisk statistik 181020 Lösningsförslag Tid: 9.00-14.00 Telefon: hos tentavakten Examinator: F Abrahamsson 1. För att bestämma den genomsnittliga halten µ av dioxin (lämplig enhet) i sik från
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 ( uppgifter) Tentamensdatum 2018-08-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Niklas Grip Jourhavande
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen (TEN2) Maskininlärning (ML) 5hp 21IS1C Systemarkitekturutbildningen. Tentamenskod: Inga hjälpmedel är tillåtna
Intellgenta och lärande system 15 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen (TEN2) Masknnlärnng (ML) 5hp 21IS1C Systemarktekturutbldnngen Tentamenskod: Tentamensdatum: 2017-03-24 Td:
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)
Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
TMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.
Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar
Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema