Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är
|
|
- Astrid Jansson
- för 6 år sedan
- Visningar:
Transkript
1 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och att dsspera värme-energ resstorn. Om v kan gnorera denna sstnämnda Joule-uppvärmnng så får v energn som går n magnetfältet. Om nget annat förändras kretsen, t.ex. kretsen behåller sn stela form och befnner sg hela tden vla, så har det utförda arbetet bara gått åt att öka på kretsens magnetska energ: du M IdΦ (9.7) Elektrodynamk, vt 13, Ka Nordlund 9.1 Elektrodynamk, vt 13, Ka Nordlund Magnetsk energ för en solerad krets 9.. Magnetsk energ för kopplade kretsar Arbetet som ett batter utför då det för en laddnng dq runt en krets, från batterets anod A tll dess katod B är: Låt oss nu bestämma den magnetska energn för N st kopplade kretsar. Arbetet som kretsarnas batterer utför är där k är batterets spännng. Krchhoffs II lag: dw k dq k (9.1) E + k, j j (9.) då Joule-uppvärmnngen nte beaktas. dw k I dφ (9.8) 1 utför nu ntegrerngen under antagande att strömmarna och flödena ökar samtdgt alla kretsar, så att den tllfällga strömmen krets är Om all resstans kan kombneras tll en enda resstor: k E + RI (9.3) så att dw k dq k dq( E + RI) Idt( E + RI) IdtE + RI dt (9.4) Elektrodynamk, vt 13, Ka Nordlund 9. Detta ger För lnjära magnetska meda gäller att Φ I, så nduktansen I αi (9.9) di I dα (9.1) L dφ di Φ I (9.11) Elektrodynamk, vt 13, Ka Nordlund 9.4
2 som ger I L Φ. får nu att får: Men så att har nu di Φ L dα (9.1) L L dφ di (9.13) dφ Φ dα (9.14) U dw b N I 1 j1 N I 1 j1 1 M j I j dαα 1 M j I I j 1 j1 1 L I 1 M j di j +M 1 I 1 I + M 13 I 1 I M 1N I 1 I N W k dw k 1 1 N 1 I αφ dα I dφ använde L M och M j M j. +M 3 I I 3 + M 4 I I M N I I N M N 1,N I N 1 I N (9.18) Elektrodynamk, vt 13, Ka Nordlund 9.5 Elektrodynamk, vt 13, Ka Nordlund I Φ dαα 1 I Φ (9.15) 1 För ett system av N st kopplade, statonära och stela kretsar har v alltså att den lagrade magnetska energn är U M 1 I Φ (9.16) Om nge yttre fält är närvarande är flödesförändrngarna orsakade av de övrga kretsarna. Då gäller 1 Exempel 1: En solerad krets: Φ LI (9.19) U 1 IΦ 1 LI 1 L Exempel : Två kopplade kretsar: Φ (9.) U 1 L 1I L I + M 1I 1 I (9.1) Beteckna x I 1 /I. Eftersom U får v dφ dφ j j1 j1 dφ j di j di j M j di j (9.17) j1 U 1 I (L 1x + L + M 1 x) (9.) Nu kan v beräkna mnm-energn som funkton av förhållandet mellan strömmarna x genom att dervera parentesen och sätta uttrycket tll noll, x M 1 L 1 (9.3) Elektrodynamk, vt 13, Ka Nordlund 9.6 Elektrodynamk, vt 13, Ka Nordlund 9.8
3 och efter verferng att andra dervatan är postv. Mnm-energn: så att eller U mn 1 I (M 1 + L M 1 ) 1 L 1 L M L 1 L 1 I 1 (9.4) L 1 ett uttryck som v använde oss av tdgare. M 1 + L 1L (9.5) L 1 L M 1 (9.6) Totala energn för det magnetska fältet är nu U 1 I Φ 1 I dr j A j C j 1 I dr j A j C j 1 d j J j A (9.9) j j Låt volymerna vara sådana att deras summa fyller upp hela volymen. får då U 1 d J A (9.3) där J j J j. Elektrodynamk, vt 13, Ka Nordlund 9.9 Elektrodynamk, vt 13, Ka Nordlund Det magnetska fältets energ Fältekvatonen för H är ju Som för elektrska laddnngsfördelnngar kan v generalsera energn för magnetska kretsar med hjälp av det fält dessa kretsar ger upphov tll. Betrakta ett system av kretsar ett lnjärt magnetskt medum. Flödet genom en av dessa kretsar är Φ da B A (9.7) En komplcerad krets kan delas upp ett flertal slutna slngor. Detta gjorde v redan tdgare när v granskade kretsar med Krchhoffs lagar. kan nu skrva så v får Med hjälp av fås nu H J (9.31) U 1 d ( H) A (9.3) (F G) ( F) G ( G) F (9.33) Φ da B da j B A j A j da j ( A) j A j dr j A (9.8) j C j U 1 d ( (H A) + ( A) H) 1 da (H A) + 1 d ( A) H A 1 da (H A) + 1 d B H (9.34) A Elektrodynamk, vt 13, Ka Nordlund 9.1 Elektrodynamk, vt 13, Ka Nordlund 9.1
4 Om strömmar nte förekommer oändlgheten och de magnetska materalen nte är oändlgt stora dör A bort som 1/r, och H som B som A som 1/r p.g.a. magnetskt materal och som 1/r p.g.a. strömmar. Kombnatonen av H och A dör alltså bort som 1/r 3. da är proportonell mot r, så yt-ntegralen dör bort som 1/r och försvnner oändlgheten. stter nu kvar med U M 1 d B H (9.35) där omfattar hela rummet. Detta är energn för ett lnjärt magnetskt system. Energtätheten för sotropska lnjära meda är enlgt första sektonen. får nu att dw I du M (9.4) så att den magnetska kraften på komponenten är F ( U M ) I (9.41) För vrdmoment fås τ ( θ U M ) I (9.4) u M 1 B H 1 µh 1 µ B (9.36) Elektrodynamk, vt 13, Ka Nordlund 9.13 Elektrodynamk, vt 13, Ka Nordlund Krafter och vrdmoment på stela kretsar Flödet genom systemet hålls konstant betraktar nu ett magnetskt system där en komponent tllåts röra sg under nverkan av magnetfältet. Strömmen systemet hålls konstant Fortfarande gäller som nu är noll. får då att dw k IdΦ (9.43) Det arbete som den magnetska kraften F utför på en rörlg komponent är dw Φ du M (9.44) dw I F dr dw k du M (9.37) där dw k är arbetet som utförs av externa batterer för att hålla strömmen konstant, och du M är förändrngen systemets magnetska energ. Uttrycket för energn ger genast att Å andra sdan, batterets arbete är du M 1 I dφ (9.38) och Motsvarande, F ( U M ) Φ (9.45) τ ( θ U M ) Φ (9.46) dw k IdΦ du M (9.39) Elektrodynamk, vt 13, Ka Nordlund 9.14 Elektrodynamk, vt 13, Ka Nordlund 9.16
5 Exempel 1: Bestäm kraften mellan två stela kretsar som bär de konstanta strömmarna I 1 och I. Låt krets 1 utöva en kraft på krets, som flyttas som helhet. De flöden som kretsarna ger upphov tll genom sg själva ändras nte, eftersom strömmarna och tvärsnttsytorna är oföränderlga. Det enda som ändrar är kretsarnas nbördes poston. Alltså ändrar endast det ömsesdga flödet, och v får F U ( 1 L 1I L I + MI 1I ) I 1 I M (9.47) där enlgt Neumanns formel v har att M µ dr 4π C r 1 r (9.48) µ I 1 I 4π µ I 1 I 4π Å andra sdan, Bot-Savarts lag säger att 1 ds 1 ds r, C s 1 s + r 1, r, s 1 s + r 1, r, ds 1 ds (9.5) C s 1 s + r 1, r, 3 F µ 4π I dr ( (r r 1 )) 1I (9.53) C r 1 r 3 kan nu för att vara konsekventa använda samma varabler Bot-Savarts lag som den tdgare ekvatonen, men noterngarna blr lättare om v stället återgår tll r 1, r : µ ( dr )(r r 1 ) F I 1 I (9.54) 4π C r 1 r 3 Detta uttryck och Bot-Savarts lag måste vara samma. bevsar detta! Elektrodynamk, vt 13, Ka Nordlund 9.17 Elektrodynamk, vt 13, Ka Nordlund 9.19 Skrv om: har: r 1 r 1, + s 1 (9.49) r r, + s (9.5) Här är r, ( 1, ) nån fxerad punkt för kretsen, t.ex. dess massmedelpunkt. Denna rör sg om kretsen rör sg. s är en vektor som löper över kretsens kontur, och vars orgo är massmedelpunkten. I uttrycket för den ömsesdga nduktansen löper ntegrerngen över konturerna: dr ( (r r 1 )) (dr (r r 1 )) (r r 1 )(dr ) (9.55) enlgt BAC-CAB-regeln. Ssta termen ger oss det F -uttryck v härlett ovan, så v vsar att första termen försvnner. Denna term ger ntegralen C (dr (r r 1 )) r 1 r 3 dr (r r 1 ) (9.56) C r r 1 3 M µ ds 1 ds 4π C s s + r 1, r, (9.51) Utför ntegralen över C först. I ntegranden kommer r 1 att vara en konstant, så att v kan nföra varabeln v r r 1 med dv dr : Derverng med avseende på r betyder för stela kretsar att v derverar med avseende på massmedelpunkten för krets : µ ds 1 ds F U I 1 I r, 4π C s 1 s + r 1, r, Elektrodynamk, vt 13, Ka Nordlund 9.18 C dv v v 3 dvv dv dr C v 3 1 C v ( ) 1 (9.57) v C d för att en sluten kurvntegral över bara en varabel säkert blr. Elektrodynamk, vt 13, Ka Nordlund 9.
6 OK! Från tdgare vet v att B () µ NI L (cos α 1 + cos α ) µ ( NI L + a + µ NI L ( ) L ( L) + a ) + f + 1 ( 1) + f (9.58) med betecknngarna /L och f a/l. Elektrodynamk, vt 13, Ka Nordlund 9.1 Elektrodynamk, vt 13, Ka Nordlund 9.3 Exempel : Låt en solenod med längden L och N st lndnngar av en tråd som bär strömmen I vara nästan fylld med en järnstav med den konstanta permablteten µ och den konstanta tvärsnttsarean A πa. Låt solenoden ha sn symmetraxel parallell med -axeln. Approxmera att magnetfältet är konstant all rktnngar som är vnkelräta mot, nom solenoden. Låt solenodens ändpunkter vara och L. Om nu staven dras ut så att ena änden är < < L medan den andra är utanför solenoden, bestäm den kraft som påverkar staven det nya läget. Strömmen hålls konstant under utdragandet. Om solenodens rade är 1% av dess längd, d.v.s. f, 1 fås ett B () beroende som fguren. Från detta ser v att B utanför staven är mycket svagt, så v kan gnorera fältet där ute våra räknngar. Den magnetska energn är nu U 1 d µh 1 d AµH 1 ( A d µ H + L d µh ) (9.59) Elektrodynamk, vt 13, Ka Nordlund 9. Elektrodynamk, vt 13, Ka Nordlund 9.4
7 Kraften är F U 1 A ( d µ H + 1 A ( L d µh ) d µ H ( ) + µ H ( ) µ H ( ) + 1 ( L A d µ H ( ) + µh ( L) L µh ( ) )(9.6) Här användes Lebn ntegralregel: ) Exempel 3: Bestäm den cylnderradella kraften på en solenods lndnngar, per längd. Antalet lndnngar är N, strömmen dessa är I, solenodens rade är R och dess längd är L. Ignorera fältet utanför solenoden. Energn är U M 1 d µh 1 ( ) NI µ d L 1 ( ) NI µπr L (9.63) L [ ] b(u) dxf(x, u) u a(u) b(u) a(u) dx f(x, u) u enlgt tdgare approxmaton. Kraften den cylnderradella rktnngen är, om strömmen hålls konstant: +f(b(u), u) u b(u) f(a(u), u) a(u) (9.61) u F ρ ( U M ) ρ ρ U M 1 ( ) NI µπrl (9.64) L Elektrodynamk, vt 13, Ka Nordlund 9.5 Elektrodynamk, vt 13, Ka Nordlund 9.7 Observera att ntegralerna är en hjälpvarabel som ntegreras bort och nte syns utanför ntegralen. får nte dervera med avseende på denna! Den sökta kraften per längd är Nu försvnner de flesta termerna för dervatorna med avseende på på termer som nte beror på denna varabel blr noll, och v får F 1 ) (µ A H ( ) µh ( ) F ρ πrn 1 µni L Om stället flödet hålls konstant får v ett mnustecken. (9.65) 1 A(µ µ)h ( ) 1 A(µ µ (1 + χ M ))H ( ) 1 Aχ Mµ H ( ) (9.6) Kraften är rktad tll vänster fguren, d.v.s. solenoden vll dra n staven. Elektrodynamk, vt 13, Ka Nordlund 9.6 Elektrodynamk, vt 13, Ka Nordlund 9.8
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Inledning och Definitioner
Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement
LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B
GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,
TFYA16: Tenta Svar och anvisningar
160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:
Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)
Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).
Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006
INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter
Stela kroppars rörelse i ett plan Ulf Torkelsson
Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns
Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi
Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en
5. Elektrisk ström Introduktion Kontinuitetsekvationen
5. Elektrsk ström Koppars denstet ρ = 8.96 g/cm 3 samt atommassa m = 63.546u. lltså blr koppars atomdenstet ρ a = 8.49 10 22 atomer/cm 3 och antalet elektroner tråden [RMC] N el = N at = π0.01 2 1 8.49
Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)
Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd
Föreläsning i Elektromagnetisk fältteori: Vektoranalys
Föreläsnng Elektromagnetsk fältteor: Vektoranalys 1 Inlednng 2 Multplkaton vektorer Koordnatsystem 4 Rumsdervator 5 Teorem, dtteter 6 Övnngsuppgfter Eva Palmberg, Chalmers teknska högskola 1 1 Inlednng
Blixtkurs i komplex integration
Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna
ETE115 Ellära och elektronik, tentamen oktober 2007
(0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,
Växelström = kapitel 1.4 Sinusformade växelstorheter
Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln
Tentamen i ETE115 Ellära och elektronik, 16/8 2017
Tentmen ETE Ellär och elektronk, 6/8 07 Tllåtn hjälpmedel: Formelsmlng kretsteor. Observer tt uppgftern nte är sorterde svårghetsordnng. All lösnngr skll ges tydlg motverngr. Två metllobjekt bldr en kondenstor.
Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i
Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå
Jämviktsvillkor för en kropp
Jämvktsvllkor för en kropp Det förekommer ofta stuatoner där man önskar bestämma vlka vllkor som måste uppfyllas för att en fast kropp skall förbl stllastående, dvs. befnna sg jämvkt. Den här delen av
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
Tentamen Elektronik för F (ETE022)
Tentamen Elektronk för F (ETE022) 20060602 Tllåtna hjälpmedel: formelsamlng kretsteor. Tal 1 Fguren vsar en förstärkarkopplng med en nsgnal v n = v n (t) = cos(ωt). a: Bestäm utsgnalen v ut (t). C 1 b:
Slumpvariabler (Stokastiska variabler)
Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i
i = 1. (1.2) (1.3) eller som z = x + yi
Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.
Strålningsfält och fotoner. Kapitel 23: Faradays lag
Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara
Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad
1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik
Tllämpnngar av dekomposton: Flervaruflödesproblemet v = mn j: x k c k x k xj k = r k för alla N, k C (1) x k b för alla (, j) A (2) j:(j,) A x k 0 för alla (, j) A, k (3) Struktur: Om man relaxerar kapactetsbvllkoren
Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3
Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Tid och plats: januari 2, kl. 4.9., i MA. Kursansvarig lärare: Christian Sohl, tel. 222 34 3. Tillåtna hjälpmedel: Formelsamling i elektromagnetisk
Kap Första huvudsatsen (HS). Teori och begrepp.
Kap. 2.1-6. Första huvudsatsen (HS). eor och begrepp. ermodynamk = värmets rörelse. Energutbyte: ärme - Arbete. Utbyte System - Omgvnng. System = ntressant del av världen (t.ex. en bägare med kemkaler).
2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg
Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet
Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.
Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två
14. Potentialer och fält
4. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast
Övningstenta: Lösningsförslag
Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Integraler av vektorfält Mats Persson
Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:
Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten
TENTAMEN Datum: 11 feb 08
TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
14. Potentialer och fält
14. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast
Strålningsfält och fotoner. Våren 2016
Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
Karlstads Universitet Maskinteknik /HJo
Karlstads Unverstet asnten 9-4-7/Ho orsonssvängnngar I roterande masner nns rs ör torsonnvängnngar, dvs vrdsvängnngar som överlagras på rotatonen. Perodsa störnngar som excterar dessa svängnngar an t.ex.
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Bra tabell i ert formelblad
Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare
Strålningsfält och fotoner. Våren 2013
Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
Partikeldynamik. Dynamik är läran om rörelsers orsak.
Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är
Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126
Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något
Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock
Moment 2 - gtal elektronk Föreläsnng 2 Sekvenskretsar och byggblock Jan Thm 29-3-5 Jan Thm F2: Sekvenskretsar och byggblock Innehåll: Sekvenser Latchar och vppor Regster Introdukton - byggblock Kodare
Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar
Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna
När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet
Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ
1 Föreläsning 10 7.3.1-7.3.3, 7.3.6, 8.1.2 i Griffiths Maxwells ekvationer (Kap. 7.3) åra modellagar, som de ser ut nu, är E(r,t) = B(r,t) Faradays lag H(r,t) = J(r,t) Ampères lag D(r,t) = ρ(r,t) Gauss
Experimentella metoder 2014, Räkneövning 5
Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och
Tentamen 1FY802 Fysik - Elektricitetslära och magnetism 26 februari 2011
Tentamen FY80 Fysk - Eektrctetsära och magnetsm 6 februar 0 Hjäpmede: Physcs Handbook eer annan formesamng samt räknedosa, samt bfogad formesamng. För att erhåa fu poäng på en uppgft krävs en fuständg
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.
6.2 Transitionselement
-- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att
8. Elektromagnetisk induktion
8. Elektromagnetisk induktion [RMC] Elektrodynamik, vt 2013, Kai Nordlund 8.1 8.1. Faradays lag [Jackson, W. V. Houston: The laws of electromagnetic induction, m. J. Phys. 7 (1939) 373] År 1831 utförde
Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006
Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, oktober, 006 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori Varje uppgift ger 0 poäng. Delbetyget
IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------
Tentamen 1FY808 Fysik - Elektricitetslära och magnetism 13 januari 2012
Tentamen FY808 Fysk - Eektrctetsära och magnetsm 3 januar 0 Hjäpmede: Physcs Handbook eer annan formesamng samt räknedosa, samt bfogad formesamng. För att erhåa fu poäng på en uppgft krävs en fuständg
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
1.1 Stokes sats. Bevis. Ramgard, s.70
1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).
Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths
1 Föreläsning 8 7.1 i Griffiths Ohms lag (Kap. 7.1) i är bekanta med Ohms lag i kretsteori som = RI. En mer generell framställning är vårt mål här. Sambandet mellan strömtätheten J och den elektriska fältstyrkan
TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med
TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform
Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna
Biomekanik, 5 poäng Masscentrum
Boekank, 5 poäng Masscentru Masscentru Tyngdpunkt Spelar en central roll no såväl statk so dynak. Masscentru tllhör de storheter an använder för att sna beräknngar beskrva en kropp sn helhet. Istället
8. Elektromagnetisk induktion
[RM] 8. Elektromagnetisk induktion problematiskt både i att det inte är fråga om en kraft i enheter av Newton, dels för att termen har många olika, delvis inkonsistenta definitioner (se wikipedia:electromotive
8. Elektromagnetisk induktion
8. Elektromagnetisk induktion [RM] Elektrodynamik, vt 2013, Kai Nordlund 8.1 8.1. Faradays lag [Jackson, W. V. Houston: The laws of electromagnetic induction, m. J. Phys. 7 (1939) 373] År 1831 utförde
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
Motorprincipen. William Sandqvist
Motorprincipen En strömförande ledare befinner sig i ett magnetfält B (längden l är den del av ledaren som befinner sig i fältet). De magnetiska kraftlinjerna får inte korsa varandra. Fältet förstärks
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.
Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken
Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl
KH HÅFASHESÄRA entamen FE för ngenjörstllämpnngar (SE5) den 5 jun 9 l. 8-. Resultat ommer att fnnas tllgänglgt senast den jun. Klagomål på rättnngen sall vara framförda senast en månad därefter. OBS! entand
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
Mätfelsbehandling. Lars Engström
Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF0) och F (ETE055) Tid och plats: 4 januari, 06, kl. 8.00.00, lokal: Sparta B. Kursansvarig lärare: Anders Karlsson, tel. 40 89. Tillåtna hjälpmedel:
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från
SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
15825 93FY51 1 93FY51/ STN1 Elektromgnetism Tent 15825: svr och nvisningr Uppgift 1 Från Couloms lg och E F/q hr vi uttrycket: E 1 4πε ρl dl r Vi väljer cylindrisk koordinter och sätter r zẑ ˆR och dl
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
TFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Tentamen Modellering och simulering inom fältteori, 8 januari, 2007
1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget