Kap Första huvudsatsen (HS). Teori och begrepp.
|
|
- Marcus Axelsson
- för 8 år sedan
- Visningar:
Transkript
1 Kap Första huvudsatsen (HS). eor och begrepp. ermodynamk = värmets rörelse. Energutbyte: ärme - Arbete. Utbyte System - Omgvnng. System = ntressant del av världen (t.ex. en bägare med kemkaler). Omgvnng = resten av unversum ( prncp). Omgvnngen SOR: Utbyter energ utan att dess temp. ändras ( värmesänka ) rycket ändras nte av systemets volymörändrngar. yper av system: Utbyte med omgvnngen Energ Matera Öppet Ja Ja Slutet Ja Nej Isolerat Nej Nej 2.1 Energ - ärme - Arbete. Arbete = övervnnande av ysskt motstånd, rktad rörelse av matera omg. ärme = energ som överörs p.g.a. temp. skllnad, slumpvs rörelse av matera (molekyler) omg. Exoterm process = avger värme Endoterm process = upptar värme Adabatsk process = värme utväxlas nte Inre energn = summan av (kvantserad) energ på molekylär nvå = translaton, rotaton, vbraton, elektronenerg Energenheter: 1J = 1 kg m 2 s -2 = 1 A s 1 cal = 4,184 J, 1 e = 1, J
2 2.2. Inre energ och Första HS. Inre energn = U är tllståndsunkton, beror endast av tllståndet, nte t.ex. örhstora. Konsekvens: vd tllståndsörändrng gäller U = U - U oberoende av vägen mellan tllstånden () och () 1:a HS: Inre energn är konstant ör ett solerat system För osolerat system: U = q + w där q = tll syst. ört värme och w = på syst. utört arbete q och w beror av vägen mellan () och () men alltså nte deras summa (= U). Adabatskt: q = 0 dvs. U = w ad Samma tllståndsörändrng allmänt: U = q + w lkhet ger q = w ad - w Mekansk denton av värme. 2.3 Expansonsarbete. Övrga slag av arbete: ab Inntesmal process, 1:a HS: du = dq + dw Arbete generellt: dw = - F ds (= krat x sträcka, mnus p.g.a. motrktad krat) Expanson (Fg. 2.6). F = p ex A och ds = dz
3 dw = - p ex A dz = - p ex d Integrerat: Specella all: w = p ex d ) Fr exp. n vacuum: p ex = 0 under hela exp. w = 0 ) Exp. mot konstant yttre tryck: w = p d = p ( ) = p ex ex ex ) Reversbel exp. = Går baklänges vd nntesmal örändrng av vllkor (här om p ex ökas): p = p ex under hela processen vd rev. exp. Isoterm exp. = temp. konstant under hela exp. w = n R p d = d w = n R ln( / ) När > som vd expanson blr w < 0 ty gasen utör arbete på omgvnngen st.. tvärtom. Kompresson tvärtom. d reversbel expanson utör gasen maxmalt arbete på omgvnngen (maxmalt mothåll hela tden). Se ndkatordagram g Av gasen uträttat arbete (= -w) är ytan under resp. p = ()-kurva.
4 ärmeövergångar. För ett system där enda tänkbara ormen av arbete är tryck-volymsarbete gäller: du = dq ntegrerat U = q dvs. vd konstant volym tllörd värme = ökn. nre energ. behöver en lknande tllståndsunkton ör konstant tryck (vanlgt örhållande på lab.). De. Entalp = H = U + p Håller räknng på det arbete som uträttas av omgvn. vd volymsörändrng. llståndsunkton Det kan vsas (just. 2.1) att vd konstant tryck gäller: Relaton H - U. dh = dq p ntegrerat H = q p H = U + (p ) 1 lter lösn. 1 bar ger p = 10 5 (Pa) 10-3 (m 3 ) = 100 J << H eller U kan örsummas vätske- eller ast as. H U Om gaser (deala) bldas/örbrukas gäller: (p ) = n gas R där n gas = (antal mol gas prod.) - (antal mol gas reakt.) H = U + n gas R
5 ärmekapactet = den värmemängd som krävs ör att öka systemets temperatur 1 grad. Betecknas C. Enhet J/K. Speck: värmekap. per massenhet (enh. J K -1 kg -1 eller ev. annan massenhet) C = m C s Molär: värmekap. per mol (enh. enh. J K -1 mol -1 ) C = n C m ärmekap. kan vara beroende av temperaturen. q = C ( ) Spec. konstant volym: U C = ger U = d C d På samma sätt vd konstant tryck: H C p = och H = p C p d.ex. gäller ör entalpökn. vd uppvärmnng och konstant tryck: q p = H = C d = C p p Det senare lkheten gäller om C p ober. av. För deal gas gäller C p = C + n R
6 Mätnng av värmemängder = kalormetr. ) Konstant volym - Bombkalormeter (se g 2.9). Ger upptaget värme som U. Avgvet värme (vanlgt vd t.ex. bränslen) ger negatvt U. ) Konstant tryck: Ex. Lab. 1. Ger H som ovan. Se g ör lamkalormeter. Båda typerna bygger på att man mäter temp. ändrng hos något omgvande medum med känd värmekap. DSC (I2.1, vktgt nom le scences ) må studeras ensklt Adabatska processer. Adabatsk = nget värme år utväxlas syst. - omgvn. Exoterm proc. - värme avges - temp. stger. Endoterm proc. - värme upptas - temp. sjunker. Ex. Adabatsk reversbel gasexpanson (deal gas). Under exp. uträttar gasen arbete på omg. Dvs. dess temp. sjunker ty w = U = C < 0 (q = 0 per de.). Jämörelse mellan reversbla gasexpansoner q w U anm. soterm >0 <0 0 0 q = -w adabat. 0 <0 <0 <0 w = U
Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14
Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera
Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande
Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är
9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och
Manual. För användaren. Manual. eloblock. Elpanna för montage på vägg
Manual För användaren Manual eloblock Elpanna för montage på vägg SE Innehållsförtecknng Innehållsförtecknng 1 Hänvsnng tll dokumentaton...3 1.1 Beakta gällande underlag...3 1.2 Förvara underlagen...3
Tentamen i KFK080 Termodynamik kl 08-13
Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För
Partikeldynamik. Dynamik är läran om rörelsers orsak.
Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är
Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.
Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två
Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi
Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens
Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd
Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:
Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar
Kap Kemisk Termodynamik
Kap. 7+8. Kemsk emdynamk 7.1 Fösta huvudsatsen emdynamk: Vämets öelse, läan m enegns fme ch mvandlnga Eneg: Sthet sm medfö fömåga att utätta abete Abete (w): w F dx elle dw F dx (Pcess sm lede tll öelse
Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum
Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.
Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå
Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!
Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna
Arbetet beror på vägen
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Termodynamik Föreläsning 4
Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner
7. Inre energi, termodynamikens huvudsatser
7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör
Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i
Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå
Övningstentamen i KFK080 för B
Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt
När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet
Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg
Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw
Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman
6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)
6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt
Föreläsning. Projektstart. Prognos världens energibehov. Laboration i Förbränning. Termodynamik och Förbränning 31/
Global energanvändnng Föreläsnng Termodynamk och Förbrännng 31/1 216 Per-Erk Bengtsson Förbrännngsfysk per-erk.bengtsson@forbrf.lth.se Proektstart Proekt: Förbrännngsfysk För alla proekt Förbrännng, samlng
Termodynamik Föreläsning 7 Entropi
ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9
Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad
1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas
Applicera 1:a H.S. på det kombinerade systemet:
(Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R
18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)
18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två
Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi
Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en
Tentamen i Termodynamik, 4p, 8/6 2007, 9-15 med lösningar
STOCKHOLMS UNIVERSITET FYSIKUM K.H. Tentamen i Termodynamik, 4p, 8/6 007, 9-15 med lösningar 1.Kan tillgodoräknas ör betyg G av den som presterat godkänt resultat på duggan) a.visasambandet C P /C V =
2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00
(4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
Tentamen i Termodynamik för K och B kl 8-13
Tentamen i Termodynamik för K och B 081025 kl 8-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas.
Repetition. Termodynamik handlar om energiomvandlingar
Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan
Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten
Bindelinjer gäller för bestämd temp. Hävstångsregeln gäller.
5.7 Temperatur sammansättningsdiagram. Fixera p i stället för T. Diagram som fig. 5.36. Om p A * > p B * blir T A * < T B *. (g) är övre enfasområdet, (l) undre. Bindelinjer gäller för bestämd temp. Hävstångsregeln
Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning
Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com
Temperatur T 1K (Kelvin)
Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt
Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform
Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna
Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Arbete är ingen tillståndsstorhet!
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Kapitel 6. Termokemi
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage
Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att
Kap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta
Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal
Föreläsning. Projektstart. Föreläsningar. Laboration i Förbränning. Termodynamik och Förbränning 5/
Proektstart Förbrännngsfysk: Samlng på torsdag 2/11 kl. 8.15 E421. Kärnfysk: Samlng på torsdag 2/11 kl. 8.15 H322. Matematsk Fysk: Samlng på torsdag 2/11 kl. 8.15 C368 Föreläsnngar Vetenskaplgt skrvande
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,
Kapitel 6. Termokemi
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage
Kap 6: Termokemi. Energi:
Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften
PARTIKELDYNAMIK Def.: En partkel är ett föremål vars utsträcknng saknar betydelse för dess rörelse. (Ej rotaton!) (YF kap. 1.2) Def. : Dynamk = Studer av vad som orsakar rörelse. (YF kap. 4) Observaton:
Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen
Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme
U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)
Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,
EGENSKAPER FÖR ENHETLIGA ÄMNEN
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Centrala Gränsvärdessatsen:
Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar
Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.
Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde
Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM
Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete
Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Tentamen i kemisk termodynamik den 12 juni 2012 kl till (Salarna L41, L51 och L52)
Tentamen i kemisk termodynamik den 12 juni 2012 kl. 14.00 till 19.00 (Salarna L41, L51 och L52) Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv
FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)
FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:
Hur förändras den ideala gasens inre energi? Beräkna också q. (3p)
entamen i kemisk termodynamik den 4 juni 2013 kl. 14.00 till 19.00 Hjälpmedel: Räknedosa, BEA och Formelsamling för kurserna i kemi vid KH. Endast en uppgift per blad! Skriv namn och personnummer på varje
Stela kroppars rörelse i ett plan Ulf Torkelsson
Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns
Tentamen i kemisk termodynamik den 17 januari 2014, kl
entamen i kemisk termodynamik den 7 januari 04, kl. 8.00 3.00 Hjälpmedel: Räknedosa, BEA och Formelsamlin för kurserna i kemi vid KH. Endast en uppift per blad! Skriv namn och personnummer på varje blad!.
Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft
Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,
Termodynamik FL7 ENTROPI. Inequalities
Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?
Tentamen Elektronik för F (ETE022)
Tentamen Elektronk för F (ETE022) 20060602 Tllåtna hjälpmedel: formelsamlng kretsteor. Tal 1 Fguren vsar en förstärkarkopplng med en nsgnal v n = v n (t) = cos(ωt). a: Bestäm utsgnalen v ut (t). C 1 b:
Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2
Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy
Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn
Karlstads Universitet Maskinteknik /HJo
Karlstads Unverstet asnten 9-4-7/Ho orsonssvängnngar I roterande masner nns rs ör torsonnvängnngar, dvs vrdsvängnngar som överlagras på rotatonen. Perodsa störnngar som excterar dessa svängnngar an t.ex.
Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck
Jämviktsvillkor för en kropp
Jämvktsvllkor för en kropp Det förekommer ofta stuatoner där man önskar bestämma vlka vllkor som måste uppfyllas för att en fast kropp skall förbl stllastående, dvs. befnna sg jämvkt. Den här delen av
LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B
GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors
Tentamen i KE1160 Termodynamik den 13 januari 2015 kl 08.00 14.00 Lösningsförslag Ulf Gedde - Magnus Bergström - Per Alvfors 1. (a) Joule- expansion ( fri expansion ) innebär att gas som är innesluten
Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.
Termodynamik FL1 Grundläggande begrepp Energi Energi Energi kan lagras Energi kan omvandlas från en form till en annan. Energiprincipen (1:a huvudsatsen). Enheter för energi: J, ev, kwh 1 J = 1 N m 1 cal
Tentamen i Kemisk termodynamik kl 14-19
Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Tentamen i Kemisk termodynamik kl 8-13
Institutionen för kemi entamen i Kemisk termodynamik 22-1-19 kl 8-13 Hjälmedel: Räknedosa BE och Formelsamling för kurserna i kemi vid KH. Endast en ugift er blad! kriv namn och ersonnummer å varje blad!
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002
UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook
Allmänt om korttidsplanering. Systemplanering 2011. Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem!
Sysemplanerng 2011 Allmän om kordsplanerng Föreläsnng 8, F8: Kordsplanerng av vaenkrafsysem Kapel 5.1-5.2.4 Innehåll: Allmän om kordsplanerng Allmän om vaenkraf Elprodukon Hydrologsk kopplng Planerngsprobleme
Kap 4 energianalys av slutna system
Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2009-12-16 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Kemisk jämvikt. Kap 3
Kemisk jämvikt Kap 3 En reaktionsformel säger vilka ämnen som reagerar vilka som bildas samt förhållandena mellan ämnena En reaktionsformel säger inte hur mycket som reagerar/bildas Ingen reaktion ger
Snabbguide. Kaba elolegic programmeringsenhet 1364
Snabbgude Kaba elolegc programmerngsenhet 1364 Innehåll Informaton Förpacknngsnnehåll 3 Textförklarng 3 Ansvar 3 Skydd av systemdata 3 Frmware 3 Programmera Starta och Stänga av 4 Mnneskort 4 Exportera
Kemi och energi. Exoterma och endoterma reaktioner
Kemi och energi Exoterma och endoterma reaktioner Energiprincipen Energi kan inte skapas eller förstöras bara omvandlas mellan olika energiformer (energiprincipen) Ex på energiformer: strålningsenergi
Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska!
2006-12-22 Sid 2(5) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V Examinator: Derek Creaser Derek Creaser (0702-283943) kommer att besöka tentamenslokalen
VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser
I. Reella gaser iktiga målsättningar med detta kapitel eta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation
Termodynamik (repetition mm)
0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö
ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen
ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet
Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10
Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser
mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel
saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1
Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation
Lnköngs Unvrstt IFM Km 8-1-17 Formlsamlng ör Fyskalsk km rmodynamk, Sktrosko & Kntk Gasr. a n + ( nb) n R van dr Waals gaskvaton Z n R Komrssblttsaktor r nd r rducrad, c krtsk varabl Rducrad varablr c
OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0
OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot
Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y
F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Värmelära. Fysik åk 8
Värmelära Fysik åk 8 Fundera på det här! Varför kan man hålla i en grillpinne av trä men inte av järn? Varför spolar man syltburkar under varmvatten om de inte går att få upp? Varför hänger elledningar
David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Entropi 1.1 Inledning Entropi införs med relationen: S = k ln(ω (1 Entropi har enheten J/K, samma som k som är Boltzmanns konstant. Ω är antalet
Experimentella metoder 2014, Räkneövning 5
Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och