Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Storlek: px
Starta visningen från sidan:

Download "Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft"

Transkript

1 Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1 Energi (fr. énergie, lat. energia, grek. energiea = verksamhet, handlingskraft) Betecknas E i denna kurs (W i vissa gymnasieböcker) Exempel: Rörelseenergi (vid låga farter v c) E k = mv2 2 Skalär storhet (saknar riktning) Bevarad i alla processer Allt som händer innebär energiomsättning dvs energi går från en form till en annan. Termodynamik handlar om energiomvandlingar 2

2 Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens andra huvudsats handlar om energikvalitet; t.ex. Det går inte att helt omvandla värmeenergi till t.ex. mekanisk energi Värme går från varmt till kallt 3 Materien består av atomer som bygger upp molekyler som bygger upp den makroskopiska materien. I termodynamiken: makroskopiska egenskaper utan att bry sig om atomer eller molekyler (men ibland går det enklare att förstå om man tänker på dem) Termodynamiskt system = system så stort att man kan behandla systemet utan att bry sig om enskilda partiklar. Statistisk mekanik/statistisk termodynamik behandlar partiklarna statistiskt - sannolikheter för olika processer från partiklarnas egenskaper bro mellan partikeltänkande och makroskopiska teorier - t.ex. termodynamiken 4

3 Termodynamikens ursprung: Försöka förbättra verkningsgraden hos ångmaskiner (kring år 1800) Sadi Carnot: Réflexions sur la puissance notrice du feu (1824, Reflexioner om eldens rörelsekraft ) [Länge bortglömt] Kring 1850: Rankine, Clausius, Lord Kelvin (William Thomson) klassisk termodynamik Slutet av 1800-talet: Boltzmann, Planck (statistisk termodynamik) 5 System (Çengel, 1-3) System = avgränsat område som vi tittar på, t.ex. kaffekoppen, cylindern i en motor,... Öppet system (control volume, open system)= system d är materia kan komma in och ut (t.ex. kaffekoppen, jetmotor...) måste definiera en systemgräns (control surface) Slutet system (control mass, closed system)= ingen materia kan komma över systemgränserna (t.ex. konservburk). Isolerat system = ingenting (varken energi eller materia) kan ta sig in eller ut ur systemet 6

4 Exempel Avgör om följande system är öppna, slutna, isolerade eller.. 1. Frysskåp 2. Soppgryta 3. Bildäck 4. Cylinder i en bilmotor 5. Kaffetermos (med locket på) 6. Universum 7 Energiformer (Çengel 1-4) makroskopiska Rörelseenergi/kinetisk energi (för hela systemet) Lägesenergi/potentiell energi (för hela systemet) mikroskopiska = inre energi (internal energy) Förnimbar energi (sensible energy) = den energi som beror på molekylernas rörelseenergi - translation, rotation, vibration etc. Bunden energi (latent energy) = den energi som kan frigöras vid fasövergångar, i allmänhet växelverkan mellan molekyler Kemisk energi - beror på bindningar inom molekylerna Kärnenergi (nuclear energy) 8

5 Totala energin för ett system: E tot = E k + E p + U = mv2 2 + mgh + U där E k = KE = Systemets rörelseenergi (kinetic energy) E p = PE = Systemets lägesenergi (potential energy) U = Inre energin m = Systemets massa h = Systemets höjd över en referensnivå g 9,82m/s 2 = Tyngdfaktorn V = Systemets fart I många fall i termodynamiken: stationärt (stationary) system d.v.s. E k och E p oförändrade och således E tot = U 9 Systems egenskaper (properties) kan vara (Çengel 1-5) intensiva, d.v.s.inte beroende av hur stort systemet är, exempel temperatur, densitet (ρ = m/v ) extensiva, beroende av hur stort systemet är, exempel massa, volym 10

6 Tillstånd Termodynamiskt tillstånd (thermodynamical state) defineras av alla makroskopiska variabler som beskriver systemet, tex. p, V, T, N, ρ = m/v (densitet), osv. osv. Tillstånded för ett enkelt kompressiblet system beskrivs fullständigt av två oberoende intensiva tillståndsvariabler, t.ex. p, T (Dessutom måste naturligtvis systemets storlek vara känd) [Enkelt kompressibelt system: Endast ett ämne, volymen ändras då trycket ändras, t.ex. en ren gas] 11 Tillståndsändring = termodynamisk process (Yttre påverkan (värme, arbete etc.) Nytt tillstånd (efter väntan på jämvikt.) isoterm = temperaturen konstant isokor = volymen konstant isobar = trycket konstant (adiabatisk = utan värmeutbyte med omvärlden (jfr. senare)) 12

7 Termodynamiskt jämvikt (equilibrium) = det tillstånd ett (slutet) system uppnår efter lång tid (då alla förändringar upphört). Termisk jämvikt = Temperaturen samma i hela systemet ( inget värmeflöde Mekanisk jämvikt = Ingen ändring av trycket med tiden i hela systemet (trycket kan dock vara olika i olika delar) Fas -jämvikt = mängderna av olika faser (t.ex. vätska och gas) oförändrade (dock vandrar molekyler hela tiden mellan faserna - fast lika många åt vardera hållet) Kemisk jämvikt = Ingen ändring av systemets kemiska sammansättning med tiden (dock vandrar molekyler hela tiden mellan de olika ämnena - fast lika många åt vardera hållet) 13 Temperatur OBS! Skilj på termodynamisk temperatur och upplevd temperatur! Upplevd temperatur baseras på värmetransporten bort från kroppen, inte temperaturen i sig! Termodynamikens nollte huvudsats Två system som är i termodynamisk jämvikt med varandra har samma temperatur. (egentligen: om två system är i termisk jämvikt med varandra och ett av dem är i termisk jämvikt med ett tredje system så är också det andra systemet i jämvikt med det tredje ) 14

8 Enheter Absolut temperatur (temodynamiska temperaturskalan): kelvin (1K=1/273,16 av temperaturen för vattnets trippelpunkt) Trippelpunkt: Den temperatur vid vilken gas, vätska och fast fas står i jämvikt med varandra 1 C -celsius samma avstånd mellan temperaturer som i K, men med annan nollpunkt, T = t + 273, 15. (T=temperaturen i kelvin, t=temperaturen i C) Kinetisk energi i materia Partiklarna i all materia är i (oordnad) rörelse (värmerörelse) med stor energi (t.ex. 150 J för 1 l luft vid rumstemperarur) (Kinetisk energi E k för denna rörelse är proportionell mot temperaturen i Kelvin.) 15 Bindningsenergi (Young & Friedman kap 18.2) Elektromagnetisk växelverkan håller ihop partiklar (atomer, molekyler) i s.k. kondenserade faser (Vätskor, fasta kroppar) Attraktiv (tilldragande) kraft p.g.a. elektromagnetisk växelverkan E a. Kvantmekanisk repulsiv (frånstötande) växelverkan E r. 16

9 Växelverkan mellan två atomer i (t.ex.) vätska Potentiell energi r 0 E a Attraktion (tilldragande) E r Repulsion (frånstötande) E Summa Avstånd E b r 0 jämviktsavstånd. E = E a + E r har ett minimum som ger bindningenergin E b = E(r 0 ), den energi som måste tillföras för att partiklarna skall skiljas åt. Om partiklarna har kinetisk energi: Avståndet varierar i gropen (asymmetriskt kring minimet) 17 Värmeutvidgning (Young & Friedman kap. 17.4) Konsekvens av ökad rörelse och större avstånd i fasta ämnen och vätskor. Längdutvidgningen (linear thermal expansion) ges av (med L 0 = ursprunglig längd för föremålet) L = αl 0 T med α= längdutvidgningskoefficient (coefficient of linear expansion) L = L 0 + L = L 0 + L 0 α T = L 0 + L = L 0 (1 + α T) 18

10 För vätskor och gaser används volymsutvidgning (volume thermal expansion) V = βv 0 T med β= volymsutvidgningskoefficient (coefficient of volume expansion) [vissa böcker använder α V i.st.f. β] och V = V 0 + V = V 0 + V 0 α T = V 0 + V = V 0 (1 + β T) Fasta ämnen (sätt V = L 3 och V 0 = L 3 0 ) V = (L 0 (1 + α T)) 3 = V 0 (1 + 3α T +...) β 3α 19 Substansmängd (Young & Friedman Ch. 18.2) Det antal partiklar ett system innehåller SI-enhet: 1 mol = den mängd av en substans som innehåller N A partiklar ( 6, partiklar). N A = Avrogadros tal (definerat som det antal kolatomer det finns i 12 g av 12 C). Molmassa M = hur stor massa en mol av ett ämne har (ex syre 16 g, vatten 18,02 g) Atommassenhetet 1 u = 1 g/n A = 1, kg Relativa molekylmassan M r = m/u (dimensionslös) anger massan för en molekyl delat med 1 u (ex syreatom M r = 16, vatten M r = 18,02) 20

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan. Termodynamik FL1 Grundläggande begrepp Energi Energi Energi kan lagras Energi kan omvandlas från en form till en annan. Energiprincipen (1:a huvudsatsen). Enheter för energi: J, ev, kwh 1 J = 1 N m 1 cal

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

Termodynamik Föreläsning 1

Termodynamik Föreläsning 1 Termodynamik Föreläsning 1 Grundläggande Begrepp Jens Fjelstad 2010 08 30 1 / 35 Klassisk Termodynamik omvandling av energi mellan olika former via värme och arbete (mekaniskt, elektriskt,...) behandlar

Läs mer

Uppvärmning, avsvalning och fasövergångar

Uppvärmning, avsvalning och fasövergångar Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs!

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs! Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs! Säljs vid första föreläsningen. markerar mycket viktigt avsnitt,

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Miljöfysik Föreläsning 3 Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Värmekraftverk Växthuseffekten https://phet.colorado.edu/en/simulations/category/physics Simuleringsprogram

Läs mer

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen Skriftlig deltentamen, FYTA12 Statistisk fysik, 6hp, 28 Februari 2012, kl 10.15 15.15. Tillåtna hjälpmedel: Ett a4 anteckningsblad, skrivdon. Totalt 30 poäng. För godkänt: 15 poäng. För väl godkänt: 24

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

Energibegrepp och deras relationer, i fysiken och i samhället

Energibegrepp och deras relationer, i fysiken och i samhället Energibegrepp och deras relationer, i fysiken och i samhället Seminarium Karlstad 7 okt 2010 Mats Areskoug Nya ämnesplaner i fysik för gy Syfte: förståelse av fysikens betydelse i samhället olika tillämpningar

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Kap 6: Termokemi. Energi:

Kap 6: Termokemi. Energi: Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi Version: 16 maj 201. TFYA12, Rickard Armiento, Föreläsning 1 Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi April 2, 201, KoK kap. 1-2 Formalia Föreläsare och kursansvarig:

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna

Läs mer

Innehållsförteckning

Innehållsförteckning Innehållsförteckning Inledning 2 Grundläggande fysik 3 SI enheter 3 Area och godstjocklek 4 Tryck 5 Temperatur 7 Densitet 8 Flöde 10 Värmevärde 11 Värmeutvidgning 14 Sträckgränser 15 Allmänna gaslagen

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Energi och arbete. Vad innebär energiprincipen? Hur fungerar ett kylskåp? Vad menas med energikvalitet?

Energi och arbete. Vad innebär energiprincipen? Hur fungerar ett kylskåp? Vad menas med energikvalitet? Energi och arbete 9 Vad innebär energiprincipen? Hur fungerar ett kylskåp? Vad menas med energikvalitet? Energins bevarande Energiomvandlingar sker hela tiden i naturen. De flesta ligger utanför mänsklig

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-1 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-1 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur Energi 1. Vad är energi? a. Förmåga att uträtta ett arbete 2. Olika former av energi a. Lägesenergi b. Rörelseenergi c. Värmeenergi d. Strålningsenergi e. Massa f. Kemisk energi g. Elektrisk energi 3.

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH GRUNDLÄGGANDE BEGREPP System (slutet system) = en viss förutbestämd och identifierbar massa m. System Systemgräns Omgivning. Kontrollvolym (öppet system) = en volym som avgränsar ett visst område. Massa

Läs mer

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel

Läs mer

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Entropi 1.1 Inledning Entropi införs med relationen: S = k ln(ω (1 Entropi har enheten J/K, samma som k som är Boltzmanns konstant. Ω är antalet

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas

Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska

Läs mer

Temperatur. Värme är rörelse

Temperatur. Värme är rörelse Temperatur NÄR DU HAR LÄST AVSNITTET TEMPERATUR SKA DU veta vad som menas med värme veta hur värme påverkar olika material känna till celsius-, fahrenheit- och kelvinskalan känna till begreppet värmeenergi

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel IV. Partikeltalet som termodynamisk variabel & faser Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser (pure substances) Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja blandat med

Läs mer

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme

Läs mer

Materiens tillstånd. Bohrs atommodell. Bohrs atommodell. Grundämnen. Idag kan vi se atomer. Atomer Materiens minsta byggstenar.

Materiens tillstånd. Bohrs atommodell. Bohrs atommodell. Grundämnen. Idag kan vi se atomer. Atomer Materiens minsta byggstenar. Materiens tillstånd Atomer Materiens minsta byggstenar Bilder från: http://www.qedata.se/js_ishotell-galleri.htm http://www.webkonzepte.de/ 24/2-2010 Bilder från: www.rock-on-rock-on.com www.konsthantverkarna.se

Läs mer

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs GÖEBORGS UNIERSIE Fysiska institutionen aril 983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skestedt januari 993 FY 400 mars 998 Distanskurs LEKION Delkurs 4 GASER ERMODYNAMIK I detta häfte ingår övningsugifter

Läs mer

Gaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas

Gaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Nollte huvudsatsen och temperatur. mekanisk jämvikt

Nollte huvudsatsen och temperatur. mekanisk jämvikt Mekanisk jämvikt Betrakta två slutna gasbehållare, bägge med en kolv vid ena sidan. Kolverna är fästa i varandra: om ena kolven rör sig innåt rör sig den andra utåt Öppnar skruven så att kolvarna kan röra

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer

Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas

Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Energitransport i biologiska system

Energitransport i biologiska system Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym

Läs mer

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Studieanvisningar i statistisk fysik (SI1161) för F3

Studieanvisningar i statistisk fysik (SI1161) för F3 Studieanvisningar i statistisk fysik (SI1161) för F3 Olle Edholm September 15, 2010 1 Introduktion Denna studieanvisning är avsedd att användas tillsammans med boken och exempelsamlingen. Den är avsedd

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

1. INLEDNING 2. TEORI. Arbete A4 Ab initio

1. INLEDNING 2. TEORI. Arbete A4 Ab initio Arbete A4 Ab initio 1. INLEDNING Med Ab inition-metoder kan man, utgående från kvantmekanikens grundlagar, beräkna egenskaper som t.ex. elektronisk energi, jämviktskonformation eller dipolmoment för atomära

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

Miljöfysik. Föreläsning 4

Miljöfysik. Föreläsning 4 Miljöfysik Föreläsning 4 Fossilenergi Energianvändning i Sverige och omvärlden Förbränningsmotorn Miljöaspekter på fossila bränslen Att utnyttja solenergi Definitioner Instrålnings vinkelberoende Uppkomst

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto Prototyp Produktion i samarbete med MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto FYSIK SNACKS Kraft och motkraft............... 4 Raketmotorn................... 5 Ett fall för Galileo Galilei............

Läs mer

Torsdag 30 oktober. Brownsk rörelse, svartkroppsstrålning (Arne, Janusz)

Torsdag 30 oktober. Brownsk rörelse, svartkroppsstrålning (Arne, Janusz) Torsdag 30 oktober Brownsk rörelse, svartkroppsstrålning (Arne, Janusz) De kommande föreläsningarna kommer att ägnas åt det vi till vardags kallar "modern fysik", dvs. de nya principer man blev nödgad

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

SG1216. Termodynamik för T2

SG1216. Termodynamik för T2 SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl

Läs mer

Kemi och energi. Exoterma och endoterma reaktioner

Kemi och energi. Exoterma och endoterma reaktioner Kemi och energi Exoterma och endoterma reaktioner Energiprincipen Energi kan inte skapas eller förstöras bara omvandlas mellan olika energiformer (energiprincipen) Ex på energiformer: strålningsenergi

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.

Läs mer

Kapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning.

Kapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning. Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 5. 5.3 Den ideala gaslagen 5.4 5.5 Daltons lag för partialtryck 5.6 5.7 Effusion och Diffusion 5.8 5.9 Egenskaper hos några verkliga gaser 5.10 Atmosfärens kemi Copyright

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Instuderingsfrågor för godkänt i fysik år 9

Instuderingsfrågor för godkänt i fysik år 9 Instuderingsfrågor för godkänt i fysik år 9 Materia 1. Rita en atom och sätt ut atomkärna, proton, neutron, elektron samt laddningar. 2. Vad är det för skillnad på ett grundämne och en kemisk förening?

Läs mer

Planering Fysik för V, ht-10, lp 2

Planering Fysik för V, ht-10, lp 2 Planering Fysik för V, ht-10, lp 2 Kurslitteratur: Häfte Experimentell metodik och föreläsningsanteckningar, Kurslaboratoriet 2010 samt Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2009. markerar

Läs mer

Värmelära. Värme 2013-02-22. Fast Flytande Gas. Atomerna har bestämda Atomerna rör sig ganska Atomerna rör sig helt

Värmelära. Värme 2013-02-22. Fast Flytande Gas. Atomerna har bestämda Atomerna rör sig ganska Atomerna rör sig helt Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset CHALMERS 2012-05-21 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset Tentamen omfattar: Avdelning A: Avdelning B:

Läs mer

Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem.

Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem. Kapitel 2 Här hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart

Läs mer

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Ger oss elektrisk ström. Ger oss ljus. Ger oss röntgen och medicinsk strålning. Ger oss radioaktivitet. av: Sofie Nilsson 2 Strålning

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system) Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

rep NP genomgång.notebook March 31, 2014 Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet.

rep NP genomgång.notebook March 31, 2014 Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet. 1. Materia 2. Ellära 3. Energi MATERIA Densitet = Hur tätt atomerna sitter i ett ämne Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet. Vattnets densitet

Läs mer

Bedömningsuppgifter: Skriftligt prov Vatten och Luft Vattentornet (modell och ritning) Scratch (program)

Bedömningsuppgifter: Skriftligt prov Vatten och Luft Vattentornet (modell och ritning) Scratch (program) Planering Tema Vatten Vatten och luft är en självklarhet för oss i Sverige. När vi vrider på kranen kommer det rent vatten och vi andas relativt ren luft. Men vad är vatten egentligen och vilka former

Läs mer

Miljöfysik. Föreläsning 1. Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget

Miljöfysik. Föreläsning 1. Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget Miljöfysik Föreläsning 1 Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget Miljöfysik FKU200 7.5 hp Kursbok : Miljöfysik : Energi för hållbar utveckling (M. Areskoug

Läs mer

Jino klass 9a Energi&Energianvändning

Jino klass 9a Energi&Energianvändning Jino klass 9a Energi&Energianvändning 1) Energi är en rörelse eller en förmåga till rörelse. Energi kan varken tillverkas eller förstöras. Det kan bara omvandlas från en form till en annan. Det kallas

Läs mer

TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP

TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP Avsikten med detta problem är att ta fram en enkel teori för att förstå så kallad laserkylning och optisk sirap. Detta innebär att en stråle

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer