TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) kl i V

Storlek: px
Starta visningen från sidan:

Download "TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V"

Transkript

1 CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) kl i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning. Luftkonditioneringsanläggningen har ett kylbehov av 10 kw, dvs. tillförd effekt till förångaren i kylcykeln är 10 kw. I sådana här kylmaskiner använder man ofta R14a som arbetsmedium, men i den här ugiften skall vi undersöka vad det blir för skillnad om vi använder vatten istället (utslä av R14a bidrar till växthuseffekten). Antag att förångningstemeraturen är 10 C och att kondenseringstemeraturen är 45,8 C. utloet från förångaren består av mättad ånga och att utloet från kondensorn består av mättad vätska komressorns isentroverkningsgrad är 0,7 Beräkna vilket arbete (i kw) som behöver tillföras i komressorn och hur stort volymsflödet (i m /s) är i inloet till komressorn! Som jämförelse kan nämnas (dessa värden behövs inte för att lösa ugiften och de kan skilja s betydlt från de för vatten) att för R14a så är komressorarbetet ca 2,2 kw och volymsflödet ca, m /s. (6 ) Lösningsförslag: Låt cykelberäkningen börja efter förångaren (och låt det vara unkt 2). Där vet vi att vi har mättad vattenånga vid 10 C. abell ger H 2 = 2519,2 kj/kg och S 2 = 8,8998 kj/(kg K). Komressorn antas adiabatisk och vi börjar med att söka tillstånd efter förlustfri komression, dvs. vid isentro förändring. Vi behöver veta vilket tryck vi skall komrimera till. Vi vet att kondenseringstemeraturen är 45,8 C, och tabell ger då trycket 10 ka. Vid detta tryck och med S =S 2 fås (interolation) H = 2877,2 kj/kg (Att låta bli att interolera och istället direkt använda det mycket närlgande värdet för 200 C är OK om det kommenterats). I utloet från kondensorn (och inloet till förångaren eftersom stryningen är isental) så är H 4 = H 1 = 191,81 kj/kg. Arbetet som tillförs komressorn kan beräknas som is W s m ( H H2) / Vi saknar massflödet för att kunna beräkna detta uttryck. Det fås ur en balans över kondensorn: Q c 10 kw Q c m ( H2 H1) m 4, 10 kg/s H 2 H 1 (2519,2-191,78) kj / kg Ur detta fås att det tillförda arbetet (er tidsenhet) blir 2,2 kw. För att få volymsflödet i inloet till komressorn behövs densiteten i unkt 2 ur tabell fås ρ = 0, kg/m. Det ger V 2 m / 0,457 m /s. Svar: illfört arbete blir 2,2 kw och volymsflödet 0,457 m /s. Kommentar: Som synes är komressorarbetet (och därmed elförbrukningen) lika stort för båda medierna, medan volymsflödet är 10 ggr större för vatten, vilket gör att en volymmässt mycket större utrustning behövs när vatten i denna tillämning används som arbetsmedium istället för R14a.

2 CHALMERS 2 () ermodynamik (KVM090) 2. I den här ugiften skall vi studera komressorberäkning med hjäl av tillståndsekvation. För gasen vi skall komrimera gäller följande tillståndsekvation: V a b Z 1 R R R a) Visa att för ovanstående tillståndsekvation så kan ändringen i entali och entroi mellan två unkter (med givna och ) beräknas som H H C ( ) a( ) S S C ln( ) R ln( ) b( ) Du får utgå från lämla uttryck (numrerade ekvationer) i kursboken (dock inte från ekvationer som är del av exemel), men du måste ange vilka och du måste motivera valet av ekvation (dvs. visa att förutsättningarna för att ekvationen skall vara gilt är ufyllda). (4 ) b) Använd ekvationerna ovan för att beräkna entaliändringen vid en adiabatisk förlustfri komression (dvs. då komressorns isentroverkningsgrad = 1). ivna data: a = -1, m /mol, b =, m /(mol K), C = 87 J/(mol K), 1 = 280 K, 1 = 0,4 Ma och 2 = 1,7 Ma. Som alternativ kan du lösa denna delugift för idealgas istället, men det ger max 1. (2 ) Lösningsförslag: a) En beräkning av tillståndsändring med hjäl av tillståndsekvation delas lämlen u som (se kaitel 7 i E-L): M2 M1 ( M2 M2 ) ( M2 M1 ) ( M1 M 1 ) där M kan vara t.ex H eller S. Den givna tillståndsekvationen kan ses som att Z är en funktion av och. Det betyder att formlerna i kaitel 7.6 i E-L är de som är tillämla för att kunna beräkna avvikelsen från idealgas vid givna och. Beräkningarna med dessa ger: H H Z d a d a a (E-L ekv. 7.1): ( ) d 2 R R R R 0 Ref S S Z d a b a d (E-L ekv 7.2): ( Z 1) ( ) ( ) b R d (E-L ekv 2.41): H b R 2 R R R R 0 0 C d 2 2 (E-L ekv.2): S2 S1 C ln( ) R ln( ) 1 1 H H H ( C är konstant) C ( ) R enom att ställa samman ovanstående ekvationer så erhålls slututtrycken. VSB.

3 CHALMERS () ermodynamik (KVM090) b) Vid en adiabatisk förlustfri komression är entroin konstant. Ur givet uttryck för entroiändringen får vi då 2 2 S2 S1 C ln( ) R ln( ) b( 2 1 ) R b 2 2 ln( ) ln( ) ( 2 1) 0,189 1 C 1 C 2 1 ex(0,189) Svar: Entaliändringen blir,0 kj/mol. 8, K kj H 2 H1 C ( 2 1 ) a( 2 1 ) 2,99 mol. Vid beräkning av gas-vätske-jämvikt för blandningar är det ibland möjlt att förenkla dessa genom att antaga att en av faserna enbart består av ett rent ämne. Detta gäller bland annat fukt luft vid normala tryck och temeraturer. Fukt lufts gasfas kan beskrivas som en ideal blandning av vattenånga och torr luft. orr luft kan beskrivas som en ideal gas med molvikten M luft = kg/mol och C =1005 J/(kg K). Fukt lufts vätskefas är alltså rent vatten. För förhållandena i denna ugift kan dessutom Raoult s lag anses gälla. I denna ugift studerar vi första steget i en avfuktningsanläggning. I ett rör (inloet till avfuktningsanläggningen) strömmar en gasblandning bestående av 10,00 mol torr luft /s (0,29 kg/s) och 0,270 mol vattenånga/s (0,00487 kg/s). rycket är 100 ka och temeraturen 00 K. Vattenångans entali vid dessa förhållanden är 2550, kj/kg. as Fukt luft in Kylare Vätska (vatten) asblandningen asserar en värmeväxlare och kyls (vid konstant tryck) så mycket att en del av vattenångan börjar kondensera. Efter kylningen delas flödet u i en vätskeström och en gasström. Vi vill unå att vätskeströmmen (rent vatten) är 0,01 mol/s. Antag att vi har gas/vätske-jämvikt efter kylningen! ill vilken temeratur behöver vi kyla och vilken effekt (kw) behöver kylaren ha? (6 ) Lösningsförslag: Allting är känt i inloet, och i vätskeutloet (index L) känner vi allt utom temeraturen. Den temeraturen är densamma som i gasutloet (index ), eftersom jämvikt råder i searationskärlet. Vad vet vi då om? Flödet av torr luft måste vara detsamma som i inloet, eftersom inget har gått någon annan väg. Vattenflödet (vattenånga) är det som inte gått ut i L, dvs.

4 CHALMERS 4 () ermodynamik (KVM090) F (0, 27 0,01) mol/s 0, 29 mol/s F 0,29 y1 0,024 F F , 29 y 2,4 ka Vi vet att det råder jämvikt och att Raoults lag är tillämar. Det gör att vi kan finna temeraturen genom att i ångtabell finna den temeratur vid vilken vattens (artial)tryck är 2,4 ka. Det är 20 C (29,15 K). Entalin vid denna temeratur är för mättad ånga 27,4 kj/kg och för vätska 8,91 kj/kg. Eftersom vi har ideal blandning kan vi beräkna kylbehovet med hjäl av följande balans över kylaren + searationskärlet: luft luft w w w w w w 0 Q C ( ) m m H m H m H in in in L L Q / W 1005 ( ,15) 0,29 (...) Q 2,00 kw 1,4 kw,4 kw Svar: Vi behöver kyla till 20,0 C och kylarens effekt behöver vara,4 kw.

5 ermodynamik (KVM090) lycerol (1,2,-roantriol) har mycket lågt ångtryck. Följande exerimentella data kommer från Ross och Heideger [J. Chem. Eng. Data 7, 505 (1962)]: /K /10 a emeraturen vid trielunkten för glycerol är 291 K och smältentalin, fus H, vid samma temeratur 18. kj mol 1 [ibson och iauque, J. Am. Chem. Soc. 45, 9 (192)]. a) Beräkna ångbildningsentalin, va H, för glycerol samt ångtrycket över flytande glycerol vid 40 K. ( ) b) Beräkna ångtrycket över fast glycerol vid 285 K. ( ) Kom ihåg att redogöra för aroximationer och antaganden. otalt: 6 oäng 5. Betrakta följande gasfasjämvikt: 2H 2 + O 2 2H 2 O. ermodynamiska data (vid 25 C) för reaktanter och rodukter: Molekyl : H 2 O 2 H 2 O f H /kj mol S /J K 1 mol C /J K 1 mol a) Beräkna, med hjäl av givna data, ett så bra värde som möjlt å jämviktskonstanten för reaktionen vid 1000 K. Redogör för aroximationer. ( ) b) Via statistisk termodynamik har jämviktskonstanten vid 2000 K beräknats till Om artialtrycket av H 2 vid jämvikt är a hur stort var då artialtrycket av H 2 innan reaktionen (vid 2000 K), om man började med en stökiometrisk blandning av H 2 och O 2 (och ingen H 2 O var närvarande)? ( ) otalt: 6 oäng

6 ermodynamik (KVM090) Kortfattade lösningsförslag till tentamen i ermodynamik , ugifterna 4 och 5 4.a) Utgående från Claeyrons ekvation och med aroximationerna V V V R/ och svagt -beroende hos entalin fås Clausius-Claeyrons (CC) ekvation (Elliott/Lira s. 260), ( ) 2 ln = ( vah 1 1 ) eller ln = vah 1 R 2 1 R + C. 1 lotta ln mot 1/. od anassning (R 2 = 0.996). Lutningen ger va H = kj mol 1. Med trycket i enheten ma blir konstanten C = 8.066, vilket ger 1805 ma (dvs 1.8 a) vid 40 K ln /ma K/ 4.b) Sublimeringsentalin ges av sub H = fus H + va H = kj mol 1. Vi kan behandla rocessen S V analogt med L V, dvs med Clausius- Claeyrons ekvation. Först beräknas trycket över flytande glycerol motsvarande = 291 K: = ma (antag att ekvationen gäller även för denna temeratur). Detta tryck råder också över fast glycerol eftersom vi befinner oss vid trielunkten. Insättning av (, ) i CC-ekvationen med sub H (antas ha svagt -beroende) ger C = (med trycket i ma). Nu kan ekvationen utnyttjas för beräkning av trycket över fast glycerol vid 285 K. Resultatet är 4.2 ma.

7 ermodynamik (KVM090) a) Beräkna H, S och C för reaktionen: H = 2 ( ) = J mol 1 S = = J K 1 mol 1 C = = J K 1 mol 1. Räkna om entali- och entroiändringarna (ideal gas, isobar temeraturändring 1 = K 2 = 1000 K). Antag att C är -oberoende: H ( 2 ) = H ( 1 ) + C ( 2 1 ) J mol 1, S ( 2 ) = S ( 1 ) + C ln J K 1 mol 1. Beräkna för reaktionen vid 1000 K: = H S J mol 1. Utnyttja nu = R ln K = K b) Jämviktskonstanten (antag idealgasblandning, dvs a i i / ): K = i a ν i i i ( i ) νi = 2 H 2 O 2 H 2 O2 = 2 H2O H 2 /2, där vi i sista ledet utnyttjat att vi har en stökiometrisk blandning, dvs O2 = H2 /2. Sätt in givna data och beräkna trycket av vattenånga: H2 O a. artialtrycken vid t = 0 och jämvikt: 2H 2 + O 2 2H 2 O t = /2 0 Jämvikt 0 H2 O ( 0 H2 O)/2 H2 O Dvs ekvationen = ger 0 = bar.

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

kanal kanal (Totalt 6p)

kanal kanal (Totalt 6p) . vå lika fläktar, se bilaga och, arbetar arallellt mot samma huvudledning. Den ena hämtar via en kanal atmosfärsluft (5 C) medan den andra hämtar hetluft (7 C) av atmosfärstryck via en annan likadan kanal.

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

Läs mer

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs GÖEBORGS UNIERSIE Fysiska institutionen aril 983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skestedt januari 993 FY 400 mars 998 Distanskurs LEKION Delkurs 4 GASER ERMODYNAMIK I detta häfte ingår övningsugifter

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

Tentamen i Kemisk termodynamik kl 8-13

Tentamen i Kemisk termodynamik kl 8-13 Institutionen för kemi entamen i Kemisk termodynamik 22-1-19 kl 8-13 Hjälmedel: Räknedosa BE och Formelsamling för kurserna i kemi vid KH. Endast en ugift er blad! kriv namn och ersonnummer å varje blad!

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset CHALMERS 2012-05-21 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset Tentamen omfattar: Avdelning A: Avdelning B:

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30 CHALMERS (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM09 och KVM090) 204-0-4 kl. 08.30-2.30

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-08-21 kl.

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2009-06-02 08.30-12.30 för K2 och Kf2 i V-huset.

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2009-06-02 08.30-12.30 för K2 och Kf2 i V-huset. CHALMERS 2010-05-10 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2009-06-02 08.30-12.30 för K2 och Kf2 i V-huset. Tentamen omfattar: Avdelning A: Avdelning

Läs mer

Tentamen, Termodynamik och ytkemi, KFKA01,

Tentamen, Termodynamik och ytkemi, KFKA01, Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14 Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K, Kf och M (KVM091 och KVM090) 01-10-3 kl. 08.30-1.30

Läs mer

Tentamen KFKA05, 26 oktober 2016

Tentamen KFKA05, 26 oktober 2016 Tillåtna hjälmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling samt SI Chemical Data och TEFYMA eller motsvarande. Alla beräkningar skall utföras så noggrant som möjligt

Läs mer

Uppvärmning, avsvalning och fasövergångar

Uppvärmning, avsvalning och fasövergångar Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) förmiddag

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) förmiddag CHALMERS 1 (3) Energi och Miljö/ärmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KM090/91) ENAMEN I ERMODYNAMIK för K2 och Kf2 (KM091 och KM090) 2009-10-20 förmiddag Hjälpmedel:

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Kap 6: Termokemi. Energi:

Kap 6: Termokemi. Energi: Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl. 08.30-12.30 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termoynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl.

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Hur förändras den ideala gasens inre energi? Beräkna också q. (3p)

Hur förändras den ideala gasens inre energi? Beräkna också q. (3p) entamen i kemisk termodynamik den 4 juni 2013 kl. 14.00 till 19.00 Hjälpmedel: Räknedosa, BEA och Formelsamling för kurserna i kemi vid KH. Endast en uppgift per blad! Skriv namn och personnummer på varje

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

Innehållsförteckning

Innehållsförteckning Innehållsförteckning Inledning 2 Grundläggande fysik 3 SI enheter 3 Area och godstjocklek 4 Tryck 5 Temperatur 7 Densitet 8 Flöde 10 Värmevärde 11 Värmeutvidgning 14 Sträckgränser 15 Allmänna gaslagen

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska!

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska! 2006-12-22 Sid 2(5) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V Examinator: Derek Creaser Derek Creaser (0702-283943) kommer att besöka tentamenslokalen

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

2. Reglertekniska grunder

2. Reglertekniska grunder 2. Reglertekniska grunder 2.1 Signaler oc system Ett system växelverkar med sin omgivning via insignaler, som åverkar systemets beteende, oc utsignaler, som beskriver dess beteende. Beroende å sammananget

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer

Tentamen i Termodynamik för K och B kl 8-13

Tentamen i Termodynamik för K och B kl 8-13 Tentamen i Termodynamik för K och B 081025 kl 8-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas.

Läs mer

Övningstentamen i KFK080 för B

Övningstentamen i KFK080 för B Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

T1. Behållare med varmt vatten placerat i ett rum. = m T T

T1. Behållare med varmt vatten placerat i ett rum. = m T T Behållare med armt atten placerat i ett rum Giet: m 45 kg,, 95 C ; placeras i ett tätslutande, älisolerat rum med stela äggar, olym rum 90 m,, C ; ärmeutbyte ger till slut termisk jämikt; P 0 kpa Behållarens

Läs mer

Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln.

Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln. Repetition F11 Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: G m = G m + RT ln P P Repetition F11 forts. Ångbildning o ΔG vap = ΔG P vap + RT

Läs mer

Tentamen KFK080 för B,

Tentamen KFK080 för B, entamen KFK080 för B, 010-10-0 illåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt krävs att

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

jämvikt (där båda faserna samexisterar)? Härled Clapeyrons ekvation utgående från sambandet

jämvikt (där båda faserna samexisterar)? Härled Clapeyrons ekvation utgående från sambandet Tentamen i kemisk termodynamik den 14 december 01 kl. 8.00 till 13.00 (Salarna E31, E3, E33, E34, E35, E36, E51, E5 och E53) Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Tillämpad termodynamik. Värmetransporter. Ledning. Tre former för värmetransport. Ledning Konvektion Strålning. Värmeledningstal för några material

Tillämpad termodynamik. Värmetransporter. Ledning. Tre former för värmetransport. Ledning Konvektion Strålning. Värmeledningstal för några material Tillämpad ermodynamik Värmeransporer Föreläsning 8 Tre former för värmeranspor Ledning Konvekion Srålning Ledning Förekommer i fasa eller sillasående medier Fouriers lag λ För endimensionell fall (plan

Läs mer

2-52: Blodtrycket är övertryck (gage pressure).

2-52: Blodtrycket är övertryck (gage pressure). Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck

Läs mer

TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl

TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl. 14.00 18.00. P1. En sluten cylinder med lättrörlig kolv innehåller 0.30 kg vattenånga, initiellt vid 1.0 MPa (1000 kpa) och

Läs mer

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller:

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Introduktion till energiteknik Provmoment: Tentamen Ladokkod: TK2211 Tentamen ges för: Energiingenjör 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2013-04-04

Läs mer

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer

Läs mer

Tentamen i kemisk termodynamik den 17 januari 2014, kl

Tentamen i kemisk termodynamik den 17 januari 2014, kl entamen i kemisk termodynamik den 7 januari 04, kl. 8.00 3.00 Hjälpmedel: Räknedosa, BEA och Formelsamlin för kurserna i kemi vid KH. Endast en uppift per blad! Skriv namn och personnummer på varje blad!.

Läs mer

WALLENBERGS FYSIKPRIS 2014

WALLENBERGS FYSIKPRIS 2014 WALLENBERGS FYSIKPRIS 2014 Tävlingsuppgifter (Finaltävlingen) Riv loss detta blad och lägg det överst tillsammans med de lösta tävlingsuppgifterna i plastmappen. Resten av detta uppgiftshäfte får du behålla.

Läs mer

Beräkning av rökgasflöde. Provningsjämförelse 2009. Gunnar Nyquist. Institutionen för tillämpad miljövetenskap

Beräkning av rökgasflöde. Provningsjämförelse 2009. Gunnar Nyquist. Institutionen för tillämpad miljövetenskap ITM-rapport 184 Beräkning av rökgasflöde Provningsjämförelse 2009 Gunnar Nyquist Institutionen för tillämpad miljövetenskap Department of Applied Environmental Science Beräkning av rökgasflöde Provningsjämförelse

Läs mer

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. F5 LE1460 Analog elektronik 2005-11-23 kl 08.15 12.00 Alfa En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. ( Impedans är inte samma sak som resistans. Impedans

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2009-12-16 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck

Läs mer

1. Horisontella öppna vindsbjälklag alternativt svagt lutande öppna vindsbjälklag s.k. ryggåstak

1. Horisontella öppna vindsbjälklag alternativt svagt lutande öppna vindsbjälklag s.k. ryggåstak 1(13) Uppgifter som inhämtas från tillverkare eller leverantör av produkt med bestyrkta egenskaper Det är tillverkaren alternativt leverantören som ansvarar för riktigheten i underlaget. Observera att

Läs mer

Räkna om ppm till mg/nm 3 normaliserat till 10% O 2!

Räkna om ppm till mg/nm 3 normaliserat till 10% O 2! Räkna om ppm till mg/nm 3 normaliserat till 10% O 2! Med de nya miljökraven enligt CEN-standard följer nya enheter för vad vi skall ange som gränsvärden. Vi kommer att få vänja oss vid en ny sort som heter

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Trycket beror på ytan

Trycket beror på ytan Inledning Trycket beror på ytan Du har två föremål med samma massa och balanserar dem på varsin handflata. Det ena föremålet har en mycket smalare stödyta än det andra. Förmodligen känns föremålet med

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors Tentamen i KE1160 Termodynamik den 13 januari 2015 kl 08.00 14.00 Lösningsförslag Ulf Gedde - Magnus Bergström - Per Alvfors 1. (a) Joule- expansion ( fri expansion ) innebär att gas som är innesluten

Läs mer

Namn Födelsedatum Mailadress Susanne Almquist 890308 susal716@student.liu.se. Oliver Eriksson 931109 olier456@student.liu.se

Namn Födelsedatum Mailadress Susanne Almquist 890308 susal716@student.liu.se. Oliver Eriksson 931109 olier456@student.liu.se KYLSKÅPSPROJEKTET Grupp 1 Mi1A TMMI44 Namn Födelsedatum Mailadress Susanne Almquist 890308 susal716@student.liu.se Oliver Eriksson 931109 olier456@student.liu.se Johan Boström 941112 johbo700@student.liu.se

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ

Läs mer

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt.

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N11C TGENE13h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2016-03-16 Tid: 9:00-13:00 Hjälpmedel: Alvarez. Formler och

Läs mer

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare

Läs mer

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto Prototyp Produktion i samarbete med MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto FYSIK SNACKS Kraft och motkraft............... 4 Raketmotorn................... 5 Ett fall för Galileo Galilei............

Läs mer

Kemisk Dynamik för K2, I och Bio2

Kemisk Dynamik för K2, I och Bio2 Kemisk Dynamik för K2, I och Bio2 Fredagen den 11 mars 2005 kl 8-13 Uppgifterna märkta (GKII) efter uppgiftens nummer är avsedda både för tentan i Kemisk Dynamik och för dem som deltenterar den utgångna

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

Bruksanvisning EuroFire mod 2080-84.

Bruksanvisning EuroFire mod 2080-84. 1(6) Rev 1 Bruksanvisning EuroFire mod 2080-84. Tack för att ni valde en EuroFire Kamin som värmekälla i ert hem, vi hoppas att ni skall få mycket glädje av detta val. Var vänlig och förvara dessa informationsblad

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),

Läs mer

Värmelära. Värme 2013-02-22. Fast Flytande Gas. Atomerna har bestämda Atomerna rör sig ganska Atomerna rör sig helt

Värmelära. Värme 2013-02-22. Fast Flytande Gas. Atomerna har bestämda Atomerna rör sig ganska Atomerna rör sig helt Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda

Läs mer

Handbok Byggavfuktare modell Attack

Handbok Byggavfuktare modell Attack Handbok Byggavfuktare modell Attack Drift och underhåll INNEHÅLL SÄKERHET...3 TILLÄMPLIGA TEKNISKA STANDARDER OCH REGELVERK...4 DRIFT OCH UNDERHÅLL...5 INKOPPLING AV DRÄNERINGSRÖR...8 PERIODISKT UNDERHÅLL...9

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ladokkod: Tentamen ges för: Tentamen 4ET07 Bt TentamensKod: Tentamensdatum: Måndag 30 maj 06 Tid: 9.00-3.00 Hjälmedel: Valfri miniräknare Formelsamling: Energiteknik-Formler

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 4 14.4.2011 Förbränningsvärme balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt Spontanitet, Entropi, och Fri Energi 17.1 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 17.5 17.6 och kemiska reaktioner 17.7 och inverkan av tryck 17.8

Läs mer