P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.
|
|
- Johanna Hellström
- för 6 år sedan
- Visningar:
Transkript
1 P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare med effekten 400 W. Värmningen avbryts efter 1110 s (18.5 min); luftens volym är då 2.52 m 3. Cylinderns ytterhölje är i kontakt med omgivande luft som håller konstant tryck och temperaturen T 0 = 23.5 C. Luften i cylindern kan betraktas som en ideal gas (varierande c p och c v ). Cylinderns massa kan försummas, liksom resistansvärmarens massa och volym inuti cylindern. Bestäm (a) luftens temperatur i cylindern då värmingen avbryts (b) cylinderns värmeutbyte med omgivningen (c) processens entropigenerering, S gen,tot (1p) (5p) (2p) Givet: Luft; P 1 = 105 kpa, T 1 = 300 K, V 1 = 1.40 m 3 ; värmning, Ẇ e,in = 400 W, t = 1110 s, V 2 = 2.52 m 3, T 0 = T surr = 23.5 C. Sökt: (a) T 2, (b) Q out, (c) S gen,tot (a)processenbetraktassom isobar,p 2 = P 1 (friktionsfrikolv).idealgas: PV = mrt; slutet system T 2 = (V 2 /V 1 )T 1 = 540 K. (b) Energibalans, enkelt kompressibelt system (gasen): E in E out = E = U, där E in = W e,in = Ẇe,in t = kj, E out = Q out +W b,out. Eftersom värmningen sker långsamt kan processen betraktas som kvasistatisk, W b = P dv. Vid konstant tryck och kvasistatisk process gäller U + W b = U + W b,out = H = m(h 2 h 1 ), d.v.s. Q out = W e,in m(h 2 h 1 ); m = P 1 V 1 /(RT 1 ); Table A-1: R = kjkg 1 K 1 m = kg.TableA-21:h 1 = kJ/kg,h 2 = kJ/kg,d.v.s. H = m(h 2 h 1 ) = kj, Q out = ( ) kj = kj. (c) Utvidgat system, T k = T 0 på systemgränser S gen,tot. Entropibudget: S in S out +S gen,tot = S; S in = 0, S out = Q out /T 0, S = m(s 2 s 1 ), s 2 s 1 = s 0 2 s0 1 (ideal gas, P 2 = P 1 ), d.v.s. S gen,tot = m(s 0 2 s0 1 )+ Q out /T 0. Med s 0 1 = kjkg 1 K 1 och s 0 2 = kjkg 1 K 1 ur Table A-21, samt T 0 = Kfås S gen,tot = ( )kJ/K = kj/k. Svar: (a) T 2 = 540 K, (b) Q out = 27.1 kj, (c) S gen,tot = 1.11 kj/k. Kommentar: (b,c) Alt. Q out = W e,in W b U, W b = P 1 (V 2 V 1 ) =
2 117.6 kj; U = m(u 2 u 1 ), u 1 = kj/kg, u 2 = kj/kg, U = kJ,Q out = ( )kJ = 27.16kJ,S gen,tot = kj/k. Med h = c p,avg T, där c p,avg = c p (T avg ), T avg (T 1 + T 2 )/2 = 420 K, c p,avg kjkg 1 K 1 fås Q out kj (+2.3%), S gen,tot kj/k (+0.2%); sämre noggrannhet. P2. I ett munstycke inkommer vattenånga med hastigheten 11.5 m/s vid trycket 800 kpa och temperaturen 350 C, se figur. Vid munstyckets utlopp är trycket 300 kpa och temperaturen 300 C. Munstyckets tvärsnittsarea vid inloppet är 800 cm 2 och dess värmeförlust (per tidsenhet) till omgivande luft (vid 15 C) är 17.4 kw. Bestäm (a) massflödet genom munstycket (b) utloppshastigheten och utloppsarean (2p) (6p) Givet: T 1 = 350 C; P 1 = 800 kpa; V 1 = 11.5 m/s, A 1 = m 2 ; P 2 = 300 kpa; T 2 = 300 C; Q out = 17.4 kw. Sökt: (a) ṁ, (b) V 2 och A 2 (a) ṁ = V 1 A 1 /v 1 ; tillstånd 1 är överhettad ånga, Table A-6: v 1 = m 3 /kg, vilket ger ṁ = kg/s. (b) Energibalans, stationära förhållanden, kontrollvolym: Ė in = Ėout, d.v.s. ṁ(h 1 +V1 2/2) = ṁ(h 2 +V2 2/2)+ Q out, vilket ger V 2 = 2(h 1 h 2 Q out /ṁ)+v 2 1 ; Q out /ṁ = kj/kg. Även tillstånd 2 är överhettad ånga, Table A-6: h 2 = kj/kg, h 1 = kj/kg. Insättning ger V 2 = m/s. ṁ = V 2 A 2 /v 2 A 2 = ṁv 2 /V 2. Med v 2 = m 3 /kg ur Table A-6 fås A 2 = m 2 = cm 2. Svar: (a) ṁ = 2.60 kg/s, (b) V 2 = 415 m/s; A 2 = 54.8 cm 2. P3. För att ta reda på strömningsmotståndet för ett luftskepp konstrueras en modell i skala 1:10 (L m /L p = 1/10), som sedan testas genom försök i
3 en bred och djup vattenränna (vattentemperatur 25 C). Vid försöken i vattenrännan kan strömningen anses opåverkad av den fria vätskeytan. Det är tänkt att luftskeppet i fullskala (prototyp) skall färdas med hastigheten 60 km/h relativt omgivande luft, vid en höjd över havet på ca m där tryck och temperatur förväntas vara 90 kpa och 8.5 C. Mätresultat från modellförsöken illustreras i figuren nedan, F D,m (V m ). 2.5 Modell, strömningsmotstånd i kn 2 FD,m[kN] V m [m/s] (a) Vilken modellhastighet V m ger likformig strömning med prototypens tänkta förhållanden? (5p) (b) Bestäm strömningsmotståndet för prototypen enligt (a) ovan. (3p) Givet: modell, vatten, T m = 25 C, F D,m (V m ) enligt figur; prototyp, luft, T p = 8.5 C, p p = 90 kpa, V p = 60 km/h = (60/3.6) m/s, L p = 10L m. Sökt: (a) V m för likformiga förhållanden, (b) F D,p. (a) Eftersom de fria vätskeytorna i modellförsöket inte inverkar samt att strömningarna kan betraktas som inkompressibla och stationära gäller enligt Reynolds likformighetslag, Re m = Re p ( ) FD ρv 2 L 2 p = ( ) FD ρv 2 L 2 m där Re = ρvl/µ. Tabell A1: ρ m = kg/m 3, µ m = Pas. Luften kan betraktas som en ideal gas, ρ p = p p /(RT p ). Med R = Jkg 1 K 1 (Tabell A1) och T p = K fås ρ p = kg/m 3.
4 Tryckberoendet för dynamisk viskositet µ kan försummas; Tabell A1 ger µ p = Pas (linjär interpolation). (ρvl/µ) m = (ρvl/µ) p V m = (ρ p /ρ m )(µ m /µ p )(L p /L m )V p. Insättning med V p = m/s ger V m = 9.40 m/s. (b) Via linjär interpolation (rät linje) i figuren för V m = 9.4 m/s, mellan mätpunkter vid 9 m/s (F D,m 1.65 kn) och 10 m/s (F D,m 2.04 kn), fås F D,m = 1.8 kn. Likformighet F D,p = (ρ p /ρ m )(V p /V m ) 2 (L p /L m ) 2 F D,m, d.v.s. F D,p = (1.113/997.0)(16.67/9.40) 2 (10/1) kn = 0.63 kn. Svar: (a) V m = 9.4 m/s, (b) F D,p = 0.63 kn. P4. Strålen från en brandbils vattenkanon skall vid ett flöde av 2.6 m 3 /min och lodrät stråle kunna nå upp till höjden H = 20 m från den vattenpost som bilen är ansluten till. Trycket vid sektion (1), vid utloppet från vattenposten, är 70 kpa högre än omgivande tryck. Slangen som är ansluten till vattenposten har innerdiametern 100 mm; ytråhet, ǫ = 0.45 mm. Slangens längd från sektion (1) fram till inkopplingen i brandbilen är 10 m (figuren är inte skalenlig!). Tryckförlusterna från denna inkoppling och ända upp till strålens maximala höjd kan uttryckas som 0.75ρV1 2, där ρ är vattnets densitet och V 1 är medelhastigheten i sektion (1). Engångsförluster längs slangen kan försummas. Vattnets temperatur är 15.0 C; tyngdacceleration, g = 9.81 m/s 2. Beräkna den effekt som brandbilens pump måste tillföra vattnet. (8p) Givet: V = (2.6/60) m 3 /s, H = 20 m, p 1,g = p 1 p a = 70 kpa, D = 100 mm, l = 10 m, ǫ = 0.45 mm, p f,2 = 0.75ρV1 2, T = 15.0 C, g = 9.81 m/s 2.
5 Sökt: Ẇ s,in Ẇ s,in = ṁw s,in = Vρw s,in, där w s,in är pumparbetet (till vattnet). För lodrät stråle är hastigheten noll vid maximal höjd. Bernoullis utvidgade ekvation mellan sektion (1) och sektion (2) vid strålens maximala höjd (z 1 = 0, V 1 = V, z 2 = H, V 2 = 0, p 2 = p a ): p 1 + ρv 2 /2 = p a +ρgh+ p f ρw s,in ; p f = p f,1 + p f,2, där p f,1 = (fl/d)ρv 2 /2, p f,2 = 1.5ρV 2 /2 (K L = 1.5). Detta ger ρw s,in = ρgh + (fl/d + 0.5)ρV 2 /2 p 1,g, där V = 4 V/(πD 2 ) = m/s. Friktionsfaktor, f = φ(re,ǫ/d), Re = ρvd/µ, ǫ/d = Tabell A1: ρ = kg/m 3, µ = Pas Re = ; turbulent strömning, Re > Haalands formel, ekv. (8.16), ger f = , d.v.s. fl/d = Insättning ger ρw s,in = ( ) kpa = kpa, Ẇ s,in = kw. Svar: Ẇ s,in = 7.8 kw. Kommentar: Förluster i själva pumpen innebär att axeleffekten som krävs är högre än den effekt som levereras till vattnet; med en verkningsgrad av 80% blir axeleffekten 25% högre (1/0.80 = 1.25). Med ǫ = 0.15 mm (3 gånger lägre) fås Ẇs,in = 7.25 kw ( 6.5%). Med dubbelt så lång slang (l = 20 m) och ǫ = 0.45 mm fås Ẇ s,in = 9.70 kw (+25.1%); ǫ = 0.15 mm Ẇs,in = 8.71 kw (+12.4%). Christoffer Norberg
Givet: ṁ w = 4.50 kg/s; T 1 = 20.0 C; T 2 = 70.0 C; Voil = 10.0 dm 3 /s; T 3 = 170 C; Q out = 11.0 kw.
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA 21 oktober 2008; inkl. teorisvar/lösningar. T1. Definiera eller förklara kortfattat (a) kinematisk viskositet ν = µ/ρ, där µ är fluidens dynamiska viskositet
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl. 14.00 18.00. P1. En sluten cylinder med lättrörlig kolv innehåller 0.30 kg vattenånga, initiellt vid 1.0 MPa (1000 kpa) och
MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter
TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)
Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:
Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad
Termodynamik Föreläsning 5
Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5
T1. Behållare med varmt vatten placerat i ett rum. = m T T
Behållare med armt atten placerat i ett rum Giet: m 45 kg,, 95 C ; placeras i ett tätslutande, älisolerat rum med stela äggar, olym rum 90 m,, C ; ärmeutbyte ger till slut termisk jämikt; P 0 kpa Behållarens
-rörböj med utloppsmunstycke,
S Rörböj 80 Givet: Horisontell 80 kpa at 80 -rörböj ed utlosunstycke A 600 (inlo) A 650 (fritt utlo) at 00 kpa volyflöde V 0475 /in vatten 0 C hoogena förhållanden över tvärsnitt friktionseffekter kan
MMVF01 Termodynamik och strömningslära Exempel på tentamensuppgifter
MMVF01 Termodynamik och strömningslära Exempel på tentamensuppgifter TERMODYNAMIK T-1 Betrakta en välisolerad liggande cylinder som delats upp i två utrymmen m.h.a. en lättrörlig kolv av koppar (Cu). Kolven,
Lite kinetisk gasteori
Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl
MMVF01 Termodynamik och strömningslära Lösningar till exempel på tentamensuppgifter TERMODYNAMIK
TERMODYNAMIK MMVF01 Termodynamik och strömningslära Lösningar till exempel på tentamensuppgifter T-1 Betrakta en välisolerad liggande cylinder som delats upp i två utrymmen m.h.a. en lättrörlig kolv av
Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-05-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt
Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,
Lösningar/svar till tentamen i MTM119/052 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9/05 Hydromekanik Datum: 005-08-4 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Kap 4 energianalys av slutna system
Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =
B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva
Arbete är ingen tillståndsstorhet!
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR
DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska
1. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens inlopp ges av. p = d
MEKANIK KTH Förslag till lösningar vid tentamen i 5C9 Teknisk strömningslära för M den 6 maj 004. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens
p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):
BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:
EGENSKAPER FÖR ENHETLIGA ÄMNEN
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
PTG 2015 Övning 4. Problem 1
PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser
Lektion 5: Innehåll. Bernoullis ekvation. c 5MT007: Lektion 5 p. 1
Lektion 5: Innehåll Bernoullis ekvation c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation Reynoldstal (Re) c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation Reynoldstal (Re)
Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)
Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:
p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.
BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:
Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14
Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter
Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-03-8 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion
Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ
FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)
FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),
HYDRAULIK (ej hydrostatik) Sammanfattning
HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016
Kap 5 mass- och energianalys av kontrollvolymer
Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)
Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta
TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16
CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
MMVA01 Termodynamik med strömningslära
MMVA01 Termodynamik med strömningslära Repetitionsfrågor strömningslära (inkl. svar i kursiv stil, utan figurer) 1 augusti 018 INLEDNING 1.1 Definiera eller förklara kortfattat (a) fluid = medium som kontinuerligt
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden
v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.
STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater gäller:
PTG 2015 övning 1. Problem 1
PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är
LEONARDO DA VINCI ( )
LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.
Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν
RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär
2-52: Blodtrycket är övertryck (gage pressure).
Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA
Institutionen för ENERGIVETENSKAPER ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA av Daniel Eriksson och Christoffer Norberg maj 01 ÖVNINGSUPPGIFTER KAPITEL 1 1.1 Om U är en hastighet, en längd, kinematisk
TYP-TENTAMEN I TURBOMASKINERNAS TEORI
Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida
Arbetet beror på vägen
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.
Strömning Förberedelser Läs i "Fysik i vätskor och gaser" om strömmande gaser och vätskor (sid 141-160). Titta därefter genom utförandedelen på laborationen så att du vet vilka moment som ingår. Om du
KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT
KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT Stationär, endimensionell strömning, perfekt gas, konstant tvärsnitt. Inget tekniskt eller visköst arbete, försumbara variationer i potentiell
Vätskans densitet är 770 kg/m 3 och flödet kan antas vara laminärt.
B1 En vätska passerar nedåt genom ett vertikalt rör med innerdiametern 1 dm. Den aktuella vätskan är kemiskt instabil och kräver en extra omsorgsfull hantering. Detta innebär bl.a. att storleken av den
Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.
Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200
Magnus Persson, Linus Zhang Teknisk Vattenresurslära LTH TENTAMEN Vatten VVR145 4 maj 2012, 8:00-10:30 (del 2) 8-13:00 (del 1+2)
Magnus Persson, Linus Zhang Teknisk Vattenresurslära LTH TENTAMEN Vatten VVR145 4 maj 2012, 8:00-10:30 (del 2) 8-13:00 (del 1+2) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Lärobok, föreläsningsanteckningar,
Tentamen i teknisk termodynamik (1FA527)
Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare
Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen
Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 24 januari 2013 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Ljudhastigheten i is är 180 m 55 10 3 s 3,27 103 m/s. Ur diagrammet avläser vi att det tar 1,95
bh 2 π 4 D2 ] 4Q1 πd 2 =
MEKANIK KTH Förslag till lösningar vid tentamen i 5C1921 Teknisk strömningslära för M den 27 maj 2005 1. Medelhastigheten i rören är ū 1 4Q 1 πd 2 ochikanalenär den ū 2 och ges av Q 2 [bh 2 π ] 4 D2 Kravet
MMVA01 Termodynamik med strömningslära
INLEDNING MMVA01 Termodynamik med strömningslära 1.1 Deniera eller förklara kortfattat (a) uid Repetitionsfrågor strömningslära (inkl. svar i kursiv stil, utan gurer) 18 augusti 010 = medium som kontinuerligt
Applicera 1:a H.S. på det kombinerade systemet:
(Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R
TENTAMEN I TURBOMASKINERNAS TEORI
Kraftverksteknik TMT JK/MG/IC 9-4- TENTAMEN I TURBOMASKINERNAS TEORI Tisdagen den te april 9, kl. 8.-., sal M:L Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida Börja för varje ny
ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA
Institutionen för ENERGIVETENSKAPER ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA av Daniel Eriksson och Christoffer Norberg augusti 010 ÖVNINGSUPPGIFTER KAPITEL 1 1.1 Om V är en hastighet, en längd och
Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde:
Termodynamik FL5 MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM Konserveringslag för materie Massabalans (materiebalans): Massa är konserverad och kan varken skapas eller förstöras under en process. Slutna
mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel
PTG 2015 övning 3. Problem 1
PTG 2015 övning 1 Problem 1 Vid vilket tryck (i kpa) kokar vatten ifall T = 170? Tillvägagångssätt : Använd tabellerna för mättad vattenånga 2 1 Åbo Akademi University - TkF Heat Engineering - 20500 Turku
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2
Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
MITTHÖGSKOLAN, Härnösand
MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104
ENERGIPROCESSER, 15 Hp
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,
WALLENBERGS FYSIKPRIS 2013
WALLENBERGS FYSIKPRIS 2013 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna
Räkneövning/Exempel på tentafrågor
Räkneövning/Exempel på tentafrågor Att lösa problem Ni får en formelsamling Huvudsaken är inte att ni kan komma ihåg en viss den utan att ni kan använda den. Det finns vissa frågor som inte kräver att
kanal kanal (Totalt 6p)
. vå lika fläktar, se bilaga och, arbetar arallellt mot samma huvudledning. Den ena hämtar via en kanal atmosfärsluft (5 C) medan den andra hämtar hetluft (7 C) av atmosfärstryck via en annan likadan kanal.
Lösningar/svar till tentamen i F0031T Hydromekanik Datum:
Lösningar/svar till tentamen i F003T Hydromekanik Datum: 00-06-04 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))
Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa
Inlämningsuppgift 2. Figur 2.2
Inlämningsuppgift 2 2.1 En rektangulär tank med kvadratisk botten (sidlängd 1.5 m) och vertikala väggar innehåller vatten till en höjd av 0.8 m. Vid tiden t = 0 tas en plugg bort från ett cirkulärt hål
6 Tryck LÖSNINGSFÖRSLAG. 6. Tryck Tigerns tryck är betydligt större än kattens. Pa 3,9 MPa 0,00064
6 Tryck 601. a) Då minskar arean till hälften. Tyngden är densamma. Trycket ökar då till det dubbla, dvs. 2Pa. b) Om man delar hundralappen på mitten så halveras både area och tyng. trycket blir då detsamma
Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00
Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1
Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
Termodynamik Föreläsning 7 Entropi
ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9
Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10
Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser
Tentamen i Termodynamik CBGB3A, CKGB3A
Tid: 2010-10-19, kl. 08:15 13:15 Tentamen i Termodynamik CBGB3A, CKGB3A Tillåtna hjälpmedel: Physics handbook, miniräknare, en handskrien A4 (en sida) eller Formelsamling i Industriell Energiteknik (Curt
Isentropisk verkningsgrad hos turbiner, pumpar, kompressorer och dysor
Isentropis verningsgrad hos turbiner, pumpar, ompressorer och dysor Verningsgraden försämras vid närvaro av irreversibiliteter. En reversibel modell används för att utreda utrustningens ideala prestanda.
Hydraulik - Lösningsförslag
Hydraulik - Lösningsförslag Sven Rönnbäck December, 204 Kapitel Övning. Effeten från en hydraulmotor är 5kW vid flödet q = liter/s. tryckskillanden över motorn beräknas via den hydrauliska effekten, P
Tentamen i: Hydraulik och Pneumatik. Totalt antal uppgifter: 10 + 5 Datum: 2012-03-26. Examinator: Hans Johansson Skrivtid: 14.00 19.
KARLSTADS UNIVERSITET Fakulteten för teknik- och naturvetenskap Tentamen i: Hydraulik och Pneumatik Kod: MSGB24 Totalt antal uppgifter: 10 + 5 Datum: 2012-03-26 Examinator: Hans Johansson Skrivtid: 14.00
Räkneövning 2 hösten 2014
Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
PROV 3, A-DELEN Agroteknologi Vid inträdesprovet till agroteknologi får man använda en formelsamling.
PROV 3, A-DELEN Agroteknologi Vid inträdesprovet till agroteknologi får man använda en formelsamling. Man bör få minst 10 poäng i både A- och B-delen. Om poängtalet i A-delen är mindre än 10 bedöms inte
Föreläsning i termodynamik 28 september 2011 Lars Nilsson
Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant
Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.
Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,
Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.
Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift
4 rörelsemängd. en modell för gaser. Innehåll
4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen
1. Kraftekvationens projektion i plattans normalriktning ger att
MEKANIK KTH Föslag till lösninga vid tentamen i 5C92 Teknisk stömningsläa fö M den 26 augusti 2004. Kaftekvationens pojektion i plattans nomaliktning ge att : F ṁ (0 cos α) F ρv 2 π 4 d2 cos α Med givna
Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?
TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:
TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V
CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.
TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR120 8 JANUARI 2005, 08:00-13:00
Joakim Malm Teknisk Vattenresurslära LTH TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 8 JANUARI 00, 08:00-:00 Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning: Betyg: Lärobok, föreläsningsanteckningar
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:
Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng