PTG 2015 övning 3. Problem 1

Storlek: px
Starta visningen från sidan:

Download "PTG 2015 övning 3. Problem 1"

Transkript

1 PTG 2015 övning 1 Problem 1 Vid vilket tryck (i kpa) kokar vatten ifall T = 170? Tillvägagångssätt : Använd tabellerna för mättad vattenånga 2 1

2 Åbo Akademi University - TkF Heat Engineering Turku Finland 4 2

3 5 Problem 1 Svar: Från Lerviks tabell får vi p(t = 170) = 7,920 bar = 792,0 kpa eller Från Table B.2, Saturation Temperature Table får vi p(t = 170) = 0,7917 MPa = 791,7 kpa 6

4 Problem 2 Vad är den specifika volymen för mättad vattenånga vid 600 kpa? Tillvägagångssätt: Använd tabellerna för mättad vattenånga 7 8 4

5 9 Problem 2 Svar: Från Table B.1, Saturation Pressure Table får vi v V (p = 0,6 MPa) = 0,157 m / 10 5

6 Problem Vilken är temperaturen för mättad vattenånga då den specifika volymen är v = 0,468 m /? Tillvägagångssätt : använd tabellerna för mättad vattenånga

7 Problem Svar: Från Table B 2, Saturation Temperature Table får vi T(v V = 0,468 m /) = Problem 4 En behållare med volymen 85 m innehåller 10 vatten som vätska och ånga vid termiskt jämviktstillstånd vid trycket 0,01 MPa. Ge temperaturen och beräkna massan samt volymen för både gas och vätskefasen. 14 7

8 15 Problem 4 Givet: V = 85 m m = 10 p 1 = 0,010 MPa = 10 kpa Beräkna för H 2 O: V L, V V, m L, m V Från tabeller: v V, v L, T boil 16 8

9

10 Problem 4 Från tabellen: v L 0, m Vi beräknar v och x: v V 14,67 m T boil 45,81 C V v m tot tot 85 m 8,5 m 10 v vl x v v x V L 8,5m 0,00101m 0,579 14,67 m 0,00101m

11 Problem 4 Vi räknar ut massorna och volymerna utgående från x: mv x m m V L m m V tot m V x m tot 0, ,79 m tot m V m L m L m tot m V 10 5,79 4,21 V vl m L L V L v m L L 0, m 4,21 0, m V V V tot V L 85 m 0, m 84,9958 m Trots att vätskans volym är närapå försumbar utgör den nästan hälften av massan. 21 Problem 5 En stel tank med volymen,97 m rymmer 2 ånga vid trycket 1 bar. Ångan kyls ned då värme leds till atmosfären. Då det interna trycket når 10 kpa, kommer tankens väggar att kollapsa. a) Skissa processen i ett p v diagram; kom ihåg att inkludera mättnadslinjen i diagrammet. b) Vilken är ångans utgångstemperatur i tanken ( C)? c) Vilken temperatur kommer att råda i tanken då väggarna kollapsar ( C)? d) Vid ögonblicket då tanken kollapsar, hur många av vattnet är i vätskeform? e) Vad är den totala förändringen i inre energi (kj) för processen? Ökar eller minskar U? Erhåll egenskaperna för H 2 O från ångtabeller

12 Problem 5 Givet: m(h 2 O) = 2 p 1 = 1 bar = 100 kpa p 2 = 10 kpa V 1 =,97 m V 2 = V 1 Vi antar att vattnet är rent och att vi har en stel tank, vilket betyder att volymen är konstant

13 Problem 5 a) För att rita ett p v diagram måste vi bestämma vattnets tillstånd i processen 1 2 Tillstånd 1: v V 1 1,985 m 1 m,97 m 2 Vi kollar den specifika volymen för mättad vattenånga vid 100 kpa

14 Problem 5 a) För att rita ett p v diagram måste vi bestämma vattnets tillstånd i processen 1 2 Tillstånd 1: v V 1 1,985 m 1 g m,97 m 2 1,694 m v (100 kpa) Den specifika volymen i detta tillstånd är större än den specifika volymen för en mättad gas i samma tillstånd gasen är överhettad 27 Problem 5 a) Tillstånd 2: v 2 = v 1, p 2 = 10 kpa Kollar specifika volymerna för mättad vattenånga och för vatten som vätska vid mättningstillstånd vid 10 kpa 28 14

15 29 Problem 5 a) Tillstånd 2: 0, m 1,985 m 14,67 m Den specifika volymen för detta tillstånd ligger mellan de specifika volymerna för mättad gas och vätska blandning 0 15

16 Tillstånd 1 Tillstånd 2 1 Tillstånd 1 Tillstånd

17 Problem 5 En stel tank med volymen,97 m rymmer 2 ånga vid trycket 1 bar. Ångan kyls ned då värme leds till atmosfären. Då det interna trycket når 10 kpa, kommer tankens väggar att kollapsa. a) Skissa processen i ett p v diagram; kom ihåg att inkludera mättnadslinjen i diagrammet. b) Vilken är ångans utgångstemperatur i tanken ( C)? c) Vilken temperatur kommer att råda i tanken då väggarna kollapsar ( C)? d) Vid ögonblicket då tanken kollapsar, hur många av vattnet är i vätskeform? e) Vad är den totala förändringen i inre energi (kj) för processen? Ökar eller minskar U? Erhåll egenskaperna för H 2 O från ångtabeller. 4 17

18 Superheated Vapour Table används, med interpolation: Känt: 1,985 m Linjär interpolation: y y a T T yb ya x x T b T a x x b a 1 a v1 va vb va a 200 C 150 C 1,985 m 1,964 m T1 150 C 160, C 2,172 m 1,964 m 5 Problem 5 En stel tank med volymen,97 m rymmer 2 ånga vid trycket 1 bar. Ångan kyls ned då värme leds till atmosfären. Då det interna trycket når 10 kpa, kommer tankens väggar att kollapsa. a) Skissa processen i ett p v diagram; kom ihåg att inkludera mättnadslinjen i diagrammet. b) Vilken är ångans utgångstemperatur i tanken ( C)? c) Vilken temperatur kommer att råda i tanken då väggarna kollapsar ( C)? d) Vid ögonblicket då tanken kollapsar, hur många av vattnet är i vätskeform? e) Vad är den totala förändringen i inre energi (kj) för processen? Ökar eller minskar U? Erhåll egenskaperna för H 2 O från ångtabeller. 6 18

19 Problem 5 c) Saturated water pressure table ger oss värdet då vi känner till trycket. p 2 10 kpa T 2 T L 45,81 C 7 Problem 5 En stel tank med volymen,97 m rymmer 2 ånga vid trycket 1 bar. Ångan kyls ned då värme leds till atmosfären. Då det interna trycket når 10 kpa, kommer tankens väggar att kollapsa. a) Skissa processen i ett p v diagram; kom ihåg att inkludera mättnadslinjen i diagrammet. b) Vilken är ångans utgångstemperatur i tanken ( C)? c) Vilken temperatur kommer att råda i tanken då väggarna kollapsar ( C)? d) Vid ögonblicket då tanken kollapsar, hur många av vattnet är i vätskeform? e) Vad är den totala förändringen i inre energi (kj) för processen? Ökar eller minskar U? Erhåll egenskaperna för H 2 O från ångtabeller. 8 19

20 Problem 5 d) Hur stor andel av vattnet är i vätskeform då systemet kollapsar? Från tidigare har vi: v m v m V 14, , 985 v m L 0, Ångfraktionen: x v v Problem 5 d) 1,985 m 0,00101m 14,674 m 0,00101m 2 L 2 vv vl Vätskefraktionen: 1 x 0, ,15 m L,2 m x 0, ,7 tot

21 Problem 5 En stel tank med volymen,97 m rymmer 2 ånga vid trycket 1 bar. Ångan kyls ned då värme leds till atmosfären. Då det interna trycket når 10 kpa, kommer tankens väggar att kollapsa. a) Skissa processen i ett p v diagram; kom ihåg att inkludera mättnadslinjen i diagrammet. b) Vilken är ångans utgångstemperatur i tanken ( C)? c) Vilken temperatur kommer att råda i tanken då väggarna kollapsar ( C)? d) Vid ögonblicket då tanken kollapsar, hur många av vattnet är i vätskeform? e) Vad är den totala förändringen i inre energi (kj) för processen? Ökar eller minskar U? Erhåll egenskaperna för H 2 O från ångtabeller. 41 Superheated vapour table ger oss den interna energin för tillstånd 1 m.h.a. interpolation: v 1 1,985 m yb ya y ya xb xa u u u u 1 b a 1 ua v1 va vb va 2658,1 kj x x 2642,6 kj a 2582,8 kj 2658,1 kj 1,985 m 2,172 m 1,964 m 1,964 m 42 21

22 För den interna energin för tillstånd 2 fås:,,,,,, 191,82 kj 0,15 495,0 kj kj kj 247,9 191,82 4 Problem 5 e) Detta ger oss: 2 495,0 kj 2642,6 kj 4295 kj Den interna energin minskar 44 22

23 Problem 6 I planen för ett havsvärmekraftverk används varmt vatten nära havsytan för att tillförse värme till kraftcykeln. Cykeln avger värmen till det kalla vattnet vid havsbottnen. Ifall vattnets temperaturer vid ytan jämte bottnen är 24 och, respektive, vad är den maximala effektiviteten för denna cykel? Slide 4/46 PET sustainable renewable energy Kolla även in kursen New Energy Technologies 45 Problem 6 Den maximala effektiviteten fås med Carnots effektivitet: Q Q T in in in Q Q T ut ut ut W (1) (2) Ingen energi förstörs Ingen entropi skapas (2) Ger oss : Q Kombineras med (1): ut Qin T T in Q in ut Qin T T in ut W Q in Q ut T H W T L 46 2

24 Vi bryter ut arbetet: Problem 6 Definierar effektiviteten: W Q in Kombinerar ekvationerna för W & W Q in T 1 T T W Q in 1 T ut in 27 K 1 0, % K ut in T H Q in Q ut T L W 47 Problem 7 En ångpanna ska alstra 55 /s ånga vid 475 C och 10,0 MPa. a. Beräkna hur stor värmeström (i MW) måste överföras i ångpannan för att alstra denna ångström, ifall pannvattnet inkommer vid temperaturen 110 C. b. Ångan ska ledas till en ångturbin. Beräkna vilken effekt turbinen kan leverera i idealfallet där ångan expanderar till mättningstillstånd (vapour) vid konstant entropi. Vilken temperatur (i C)hardenutkommande ångan? c. Denna ångström får sedan passera genom en trycksänkningsventil (strypventil) så att dess tryck sjunker till 140 kpa. Vad blir temperaturen (i C) och specifika entalpin (i kj/) efter denna ventil? d. Hurstorvattenström(i/s)vid100 C borde vid detta tryck, 140 kpa, insprutas i denna ångström så att ångan uppnår ett mättningstillstånd igen? Använd tabellen för vatten/vattenånga eller det bifogade diagrammet

25 49 Problem 7 a) Beräkna hur stor värmeström (i MW) måste överföras i ångpannan för att alstra denna ångström, ifall pannvattnet inkommer vid temperaturen 110 C. Vi behöver entalpin för in och utflödena: Q m tot h 2 h

26 T 110 C 1 T 475 C h kj h kj Problem 7 a) Detta ger oss: Q m 55 s tot h 2 h 1 00 kj 480 kj 155,1 MW 52 26

27 Problem 7 b) Ångan ska ledas till en ångturbin. Beräkna vilken effekt turbinen kan leverera i idealfallet där ångan expanderar till mättningstillstånd (vapour) vid konstant entropi. Vilken temperatur (i C)hardenutkommande ångan? Vi behöver entalpin för ångan som kommer ut ur turbinen. Denna kan resoneras fram genom att entropin hålls konstant och ångan blir mättad: 5 T 190 C 1 s 6,5 kj 2 s K 2 h kj

28 Problem 7 b) Vi kan räkna ut turbinens effekt m.h.a. entalpierna: P m 55 s tot h 2 h 00 kj 2790 kj 28,1 MW 55 Problem 7 c) Denna ångström får sedan passera genom en trycksänkningsventil (strypventil) så att dess tryck sjunker till 140 kpa. Vad blir temperaturen (i C) och specifika entalpin (i kj/) efter denna ventil? Vid strypning av ångströmmen hålls entalpin konstant: h 4 h 2790 kj 56 28

29 1 2 p 4 0,14 MPa 4 T 155 C 4 57 Problem 7 d) Hur stor vattenström (i /s) vid 100 C borde vid detta tryck, 140 kpa, insprutas i denna ångström så att ångan uppnår ett mättningstillstånd igen? Mål: mättningstillstånd vid 0,14 MPa: Hitta: entalpin för den mättade vattenångan, h 5 entalpin för vattnet vid 100 C, h

30 1 2 p 4 0,14 MPa % 100% h 420kJ 6 h 2690kJ 5 59 Problem 7 d) Vi får: m w h m h 6 v 4 m w m vh5 m w m v h5 h h h s kj kj 2, kj 2690 kj s 60 0

31 Problem 8 Betrakta kondenskraftverket i figuren, och den medföljande datatabellen. Pumpeffekten är 4 kj/. Bestäm värdena (i kw/(/s) = kj/ ånga eller vatten) för: a) värmeöverföringen mellan ångpanna och turbin b) effekten från turbinen c) värmeöverföringen från kondensorn d) värmeöverföringen till ångpannan (värmen kommer från en ugn) e) den termiska verkningsgraden för anläggningen (i %). 61 Problem 8 Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet 1 2,0 MPa 00 C 2 1,9 MPa 290 C 15 kpa 90 % 4 14 kpa 45 C 62 1

32 6 Problem 8 Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 15 kpa 90 % 4 14 kpa 45 C 64 2

33 1,8 MPa: 2,0 MPa: 1,9 1,8 006,9 2,0 1,8 000,8 006,9 kj kj 00,9 65 Problem 8 Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 4 14 kpa 45 C 66

34 0,9 2599,1 0,1 225,94 kj kj 261,8 67 Problem 8 Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 261,8 kj/ 4 14 kpa 45 C 68 4

35 69 Problem 8 Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 261,8 kj/ 4 14 kpa 45 C 188,4 kj/ 70 5

36 Problem 8 a) Värmeöverföringen mellan ångpanna och turbin: 71 Problem 8 a) Värmeöverföringen mellan ångpanna och turbin: Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 261,8 kj/ 4 14 kpa 45 C 188,4 kj/, 00,9 kj kj kj 02,5 19,6 72 6

37 Problem 8 b) Effekten från turbinen: 7 Problem 8 b) Effekten från turbinen: Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 261,8 kj/ 4 14 kpa 45 C 188,4 kj/ 261,8 kj kj kj 00,9 642,1 74 7

38 Problem 8 c) Värmeöverföringen från kondensorn: 75 Problem 8 c) Värmeöverföringen från kondensorn: Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 261,8 kj/ 4 14 kpa 45 C 188,4 kj/ 188,4 kj kj kj 261,8 217,4 76 8

39 Problem 8 d) Värmeöverföringen till ångpannan: 77 Problem 8 d) Värmeöverföringen till ångpannan: Location / punkt Pressure / tryck Temperature / temperatur Steam quality / ångkvalitet Enthalpy / entalpi 1 2,0 MPa 00 C 02,5 kj/ 2 1,9 MPa 290 C 00,9 kj/ 15 kpa 90 % 261,8 kj/ 4 14 kpa 45 C 188,4 kj/ 02,5 kj kj 188,4 4kJ 281,1 kj 78 9

40 Problem 8 e) Den termiska verkningsgraden för anläggningen: 642,1 kj 281,1 kj 0, ,7 % 79 40

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

PTG 2015 övning 1. Problem 1

PTG 2015 övning 1. Problem 1 PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser (pure substances) Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja blandat med

Läs mer

2-52: Blodtrycket är övertryck (gage pressure).

2-52: Blodtrycket är övertryck (gage pressure). Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck

Läs mer

Termodynamik Föreläsning 5

Termodynamik Föreläsning 5 Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessen (Rankinecykeln) Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessens roll i svensk elproduktion Ångtabellen: mättad vätska och mättad ånga efter tryck Ångtabellen:

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

ÅNGCYKEL CARNOT. Modifieras lämpligen så att all ånga får kondensera till vätska. Kompressionen kan då utföras med en enkel matarvattenpump.

ÅNGCYKEL CARNOT. Modifieras lämpligen så att all ånga får kondensera till vätska. Kompressionen kan då utföras med en enkel matarvattenpump. ÅNGCYKEL CARNOT Arbetsmedium: H 2 O, vanligt vatten. Isobarer och isotermer sammanfaller i det fuktiga området. Låt därför vattnet avge värme under kondensation vid ett lågt tryck (temperaturt L ) ochuppta

Läs mer

Termodynamik Föreläsning 3

Termodynamik Föreläsning 3 Termodynamik Föreläsning 3 Rena Ämnens Egenskaper Jens Fjelstad 2010 09 07 1 / 26 Innehåll Rena ämnens egenskaper: faser, fasövergångar, tillståndsdiagram, tillståndstabeller TFS 2:a upplagan (Çengel &

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet. Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

a) Sketch a p-v diagram of the process; be sure to include b) What is the initial temperature of the steam in the tank ( C)?

a) Sketch a p-v diagram of the process; be sure to include b) What is the initial temperature of the steam in the tank ( C)? PG 00 öning Proble 5 of stea at a pressre of bar are contained in a rigid iidsealed ldtank whose ole is.97. he stea begins to cool off as heat is transferred to the atosphere. When the internal pressre

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

Lösningsförslag Tentamen i Turbomaskiner 7,5 hp

Lösningsförslag Tentamen i Turbomaskiner 7,5 hp UMEÅ UNIVERSIE 4-10-8 illämpad fysik och elektronik Lars äckström nders Strömberg Lösningsförslag entamen i urbomaskiner 7,5 hp id: 4-10-8 9:00 15:00 Hjälpmedel: Valfri formelsamling, (exempelvis hysics

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

ENERGIPROCESSER, 15 Hp

ENERGIPROCESSER, 15 Hp UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m)) Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa

Läs mer

Tentamen i Termodynamik CBGB3A, CKGB3A

Tentamen i Termodynamik CBGB3A, CKGB3A Tid: 2010-10-19, kl. 08:15 13:15 Tentamen i Termodynamik CBGB3A, CKGB3A Tillåtna hjälpmedel: Physics handbook, miniräknare, en handskrien A4 (en sida) eller Formelsamling i Industriell Energiteknik (Curt

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl. 08.30-12.30 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termoynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl.

Läs mer

TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL

TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL UMEÅ UNIVERSITET Tillämpad Fysik och Elektronik Robert Eklund Umeå den 20/1 2005 TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL Tid: TORSDAGEN DEN 20/1-2005 kl 9-15 Hjälpmedel: 1. Kurslitteratur Pärm: Thermal

Läs mer

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation: Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad

Läs mer

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl.

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Grundläggande kylprocess, teori och praktik

Grundläggande kylprocess, teori och praktik Kyl & Värmepumptekniker Höstterminen 201 8 Grundläggande kylprocess, teori och praktik HÄFTE 2 Köldmediediagrammet Lärare: Lars Hjort Lars Hjort 2018-08-10 Övning på köldmediediagrammet Läs sidan 55-57

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde:

Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde: Termodynamik FL5 MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM Konserveringslag för materie Massabalans (materiebalans): Massa är konserverad och kan varken skapas eller förstöras under en process. Slutna

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Tentamen i teknisk termodynamik (1FA527),

Tentamen i teknisk termodynamik (1FA527), Tentamen i teknik termodynamik (1FA527), 2013-12-18 VERSION A, krivtid 3 timmar Uppgift 1 En apparat betår av en värmepump kopplat till en värmemotor. Värmemotorn (VM) tar upp värmemängen Q H1 från en

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1 Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan. Termodynamik FL1 Grundläggande begrepp Energi Energi Energi kan lagras Energi kan omvandlas från en form till en annan. Energiprincipen (1:a huvudsatsen). Enheter för energi: J, ev, kwh 1 J = 1 N m 1 cal

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Föreläsning i termodynamik 28 september 2011 Lars Nilsson

Föreläsning i termodynamik 28 september 2011 Lars Nilsson Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant

Läs mer

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors Tentamen i KE1160 Termodynamik den 13 januari 2015 kl 08.00 14.00 Lösningsförslag Ulf Gedde - Magnus Bergström - Per Alvfors 1. (a) Joule- expansion ( fri expansion ) innebär att gas som är innesluten

Läs mer

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt.

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N11C TGENE13h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2016-03-16 Tid: 9:00-13:00 Hjälpmedel: Alvarez. Formler och

Läs mer

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Miljöfysik Föreläsning 3 Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Värmekraftverk Växthuseffekten https://phet.colorado.edu/en/simulations/category/physics Simuleringsprogram

Läs mer

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod:

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod: ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndagen 23 oktober 2017 Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Mer om kretsprocesser

Mer om kretsprocesser Mer om kretsprocesser Energiteknik Anders Bengtsson 18 mars 2010 Sammanfattning Dessa anteckningar är ett komplement till avsnittet om kretsprocesser i häftet Värmetekniska formler med kommentarer. 1 1

Läs mer

Lycka till med dina förstudier!

Lycka till med dina förstudier! Testa dina förkunskaper genom att försöka lösa följande uppgifter. Ju mer förberedd du är inför kurs och examinering desto mer givande blir kursen och dina förutsättningar att klara examineringen ökar.

Läs mer

Tentamen i Termodynamik för K och B kl 8-13

Tentamen i Termodynamik för K och B kl 8-13 Tentamen i Termodynamik för K och B 081025 kl 8-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas.

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Kap 9 kretsprocesser med gas som medium

Kap 9 kretsprocesser med gas som medium Ottocykeln den ideala cykeln för tändstifts /bensinmotorer (= vanliga bilar!) Består av fyra internt reversibla processer: 1 2: Isentrop kompression 2 3: Värmetillförsel vid konstant volym 3 4: Isentrop

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

Räkneövning/Exempel på tentafrågor

Räkneövning/Exempel på tentafrågor Räkneövning/Exempel på tentafrågor Att lösa problem Ni får en formelsamling Huvudsaken är inte att ni kan komma ihåg en viss den utan att ni kan använda den. Det finns vissa frågor som inte kräver att

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer

Isentropisk verkningsgrad hos turbiner, pumpar, kompressorer och dysor

Isentropisk verkningsgrad hos turbiner, pumpar, kompressorer och dysor Isentropis verningsgrad hos turbiner, pumpar, ompressorer och dysor Verningsgraden försämras vid närvaro av irreversibiliteter. En reversibel modell används för att utreda utrustningens ideala prestanda.

Läs mer

Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h. Tentamensdatum: Tid: 09:00 13:00

Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h. Tentamensdatum: Tid: 09:00 13:00 Grundläggande kemiteknik Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h 7,5 högskolepoäng Tentamensdatum: 2018-05-29 Tid: 09:00 13:00 Hjälpmedel: Tillåtna hjälpmedel är miniräknare, Alvarez

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Tryckmätningar på standardkylskåpet ER8893C

Tryckmätningar på standardkylskåpet ER8893C Tryckmätningar på standardkylskåpet ER8893C Mätningar utförda på kylalabbet, klimatrum 3, Energiteknik, KTH, Brinellvägen 60 av Johan Nordenberg och Erik Björk hösten 2000. Sammanfattning Absolut- och

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

HYDRAULIK Grundläggande ekvationer III

HYDRAULIK Grundläggande ekvationer III HYDRAULIK Grundläggande ekvationer III Rolf Larsson, Tekn Vattenresurslära För VVR145, 3 mars, 2014 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 21 feb 2014

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

Bergvärme & Jordvärme. Isac Lidman, EE1b Kaplanskolan, Skellefteå

Bergvärme & Jordvärme. Isac Lidman, EE1b Kaplanskolan, Skellefteå Bergvärme & Jordvärme Isac Lidman, EE1b Kaplanskolan, Skellefteå Innehållsförteckning Sid 2-3 - Historia Sid 4-5 - utvinna energi - Bergvärme Sid 6-7 - utvinna energi - Jordvärme Sid 8-9 - värmepumpsprincipen

Läs mer

Introduktionsuppgifter till kurserna. Hydraulik och Pneumatik & Fluidmekanisk Systemteknik

Introduktionsuppgifter till kurserna. Hydraulik och Pneumatik & Fluidmekanisk Systemteknik Introduktionsuppgifter till kurserna Hydraulik och Pneumatik & Fluidmekanisk Systemteknik Liselott Ericson 2014-01-14 Uppgift 0.1 Figurerna nedan visar en skarpkantad hålstrypning med arean A. Flödeskoefficient

Läs mer