Tentamen i Termodynamik CBGB3A, CKGB3A
|
|
- Ola Magnusson
- för 6 år sedan
- Visningar:
Transkript
1 Tid: , kl. 08:15 13:15 Tentamen i Termodynamik CBGB3A, CKGB3A Tillåtna hjälpmedel: Physics handbook, miniräknare, en handskrien A4 (en sida) eller Formelsamling i Industriell Energiteknik (Curt Hjärthag) Lärare: Jens Fjelstad, tel Tentamen omfattar 6 frågor om 5p ardera, sammanlagt 30p. För betyg 3 kräs 12p (40% a maxpoäng), för betyg 4 kräs 18p (60%), och för betyg 5 kräs 24p (80%). Införda beteckningar ska förklaras, eentuella antaganden redoisas, och enheter ska tydligt anges. Lycka till! 1) (a) Ge en formulering a termodynamikens andra huudsats (b) Begränsas alla sätt att producera arbete a den andra huudsatsen? Om inte, ge exempel på en mekanism/maskin som inte har en sådan begränsning. (c) Du blir isad en ärmemaskin som hädas arbeta mellan temperaturreseroirerna atmosfären (med T H = 20 C) och älen (med T L = 14 C) med ärmetransporterna in i respektie ut ur maskinen Q H = 11 kj/min resp. Q L = 10 kj/min. Är denna ärmemaskin förenlig med andra huudsatsen? (motiera) Verifiera slutsatsen genom att beräkna den totala entropiförändringen per tidsenhet hos arbetsmediet + reseroirerna för en maskinen. (a): se kursboken (b): nej, t.ex. gäller Kelin Planck formuleringen endast maskiner som arbetar på en cykel mellan tå temperaturreseroirer. Ett attenkrafterks effektiitet begränsas med andra ord inte a den andra huudsatsen. (c): Vi bestämmer den termiska erkningsgraden η th = 1 Q L / Q H = 1 10/11 0,09. Verkningsgraden för en reersibel cykel arbetande mellan samma reseroirer är η th,re = 1 T L /T H = 1 287/293 0,02 < η th. Maskinen strider därför mot andra huudsatsen och är ej möjlig. Entropiförändringarna: S syst = 0 för en cykel, ds Ṡsyst = 0, och då omginingen är reseroirer har i: Ṡ omg = Q H /T H + Q L /T L 2,7 J/K min,
2 och alltså Ṡtot < 0 ilket strider mot andra huudsatsen. 2) Betrakta ett isolerat system bestående a 3 kg atten innselutet a en fritt rörlig kol i en cylinder med tärsnittsarean 0,05 m 2. På kolen är fäst en fjäder med fjäderkonstanten k = 25 kn/m ars andra ände är fix enligt figur. Inuti cylindern finns en propeller ars axel passerar genom cylinderäggen och slutar i en e som kan dras runt för hand. I ursprungstillståndet har attnet temperaturen 25 C och trycket 100 kpa, och fjädern är ospänd. Du får uppgiften att höja kolen 10 cm genom att ea runt propellern för hand. Giet att det kräs arbetet 5 J att dra runt propellern ett ar, och att det är fysiskt möjligt att ea 30 ar/min, hur lång tid måste du ea för att höja kolen 10 cm? (Fjäderkraften är till belopp kx där k är fjäderkonstanten och x är hoptryckningen a fjädern.) Propellereffekten är Ẇprop = 5 J/ar 30 ar/min = 150 J/min, så under tidsinterallet t uträttas arbetet W prop = Ẇprop t på systemet. Då kolen höjs sträckan l uträttar dessutom systemet arbetet W kol = m 2 1 P d = m l (P 0 atm + kx/ma)adx = kl 2 /2 (där k är fjäderkonstanten, A är kolens tärsnittsarea och m är systemets massa). Vi har u 1 u f@25 C = 104,83 kj/kg, 1 f@t =25 C = 0, m 3 /kg. Trycket i sluttillståndet är P 2 = P 1 + k 25 l = ,1 = 150 kpa, och den specifika olymen A 0,05 2 = 1 +(A/m)l = 0, m 3 /kg. Med denna information bestämmer i ånghalten i sluttillståndet till x = ( 2 f@p2 )/ fg@p2 = 0, ,0014 m 3 /kg och därmed u 2 = 469,843 J/kg. Energibalans för systemet ger Ẇprop t kl 2 /2 = m u, eller t = m u+kl2 /2 Ẇ prop... = 7301 min = 121,7 h = 5 dagar 1,7 h. 3) Vattenånga id 15 MPa, 500 C passerar med massflödeshastigheten 25 kg/s in i en turbin. Vid utgången är tillståndet 1 MPa, 200 C. Antag turbinen är adiabatisk och bestäm (a) effekten ut ur turbinen (b) turbinens isentropa erkningsgrad a): P 1 = 15 MPa, T 1 = 500 C ger öerhettad ånga och tabellärdet h 1 = 3310,8 kj/kg. På samma sätt ger P 2 = 1 MPa, T 2 = 200 C öerhettad ånga, och tabellärdet h 2 = 2828,3 kj/kg. Om i antar stationärt flöde och att i kan försumma förändringar i kinetisk och potentiell energi ger energiba- (3p)
3 lans: Ẇ = ṁ(h 1 h 2 ) = 25 (3310,8 2828,3)kW = 12062,5kW 12,1MW b): isentrop erkningsgrad η T = Ẇ /Ẇs = (h 1 h 2 )/(h 1 h 2s ) där h 2s är entalpin id utgången a en isentrop turbin med samma tillstånd id ingången och samma tryck id utgången. Enligt tabell s 1 = 6,3480 kj/kgk = s 2s, och jämförelse med trycktabeller ger att detta är en mättad blandning id trycket P 2 = 1 MPa med ånghalten x 0,95, så h 2s = h f@1mp a + xh fg@1mp a 2669,7 kj/kg ilket ger den isentropa erkningsgraden η T 0,75. 4) En luftstandard cykel är uppbyggd a följande delprocesser: 1 2: isokor ärmetransport in från 100 kpa och 15 C till 400 kpa 2 3: isentrop expansion till 100 kpa 3 1: isobar ärmetransport ut till tillstånd 1 Antag konstanta ärmekapaciteter id rumstemperatur och atmosfärstryck. (a) skissa cykeln i P samt T s diagram (b) beräkna nettoarbetet per massenhet som uträttas per cykel (c) bestäm den termiska erkningsgraden b): nettoarbetet (per massenhet) är den inneslutna arean i P diagrammet, ds w net = 3 2 P d P d = 3 2 P d P 1 ( 3 1 ) 2 3 isentrop polytrop P k = konst., så P () = P 2 2 k 1 = P k 2 1 k 1, k och dessutom 3 = (P 2 /P 3 ) 1/k 2 = (P 2 /P 1 ) 1/k 1. Sammantaget ger dessa relationer: w net = P k ( (P2 ) ( (1 k)/k (P2 ) 1/k 1) P 1 1 1) P 1 För luft har i dessutom k = 1,4 och insättning i formeln ger w net = 130,49 kj/kg c): ärmet in ges a q in c (T 2 T 1 ) = c (P 2 2 /R P 1 1 /R) = c (P 2 1 /R P 1 1 /R) 620,35 kj/kg där c = 0,718 kj/kgk. Verkningsgraden blir då: η th = w net q in = 130,49 620,35 0,21 P 1
4 5) Visa utgående från Gibbs ekationer ( T ds relationerna ) och Helmholtz fria energi a = u T s: ( ) (a) s = ( ) ( ) s P (b) = T (c) lutningen på en isobar (ds kura motsarande konstant tryck) i det mättade området i ett h s diagram är konstant a): Definitionen a a ger da = du T ds sdt, och insättning i du = T ds P d ger da = sdt P d. Om i ser s som funktion a T och har i dessutom differentialen a a: da = ( ) dt + ( ) d, och jämförelse T mellan de tå uttrycken ger s = ( ). b): samma tå uttryck för differentialen da = sdt P d = ( ) ( dt + ) d ger från illkoret 2 a = 2 a : T ( ) ( ) s P = T c): Gibbs 2:a relation: dh = T ds + dp ger för en isobar: dh = T ds. I det mättade området är T och P inte oberoende egenskaper utan i har T sat = T sat (P sat ), så om P är konstant är också T konstant, ds inuti det mättade området kan i integrera Gibbs 2:a relation för en isobar och i fårh = T s + konst.. Med andra ord, en isobar är en rät linje med positi lutning gien a den absoluta temperaturen T. 6) Vi kyler 5 g järn från rumstemperatur 23 C till 30 C genom att placera det i en älisolerad behållare med 10g kylmedel 134a i mättad ätskefas id temperaturen 30 C. Antag att trycket är konstant under hela kylprocessen. Visa att kylprocessen är möjlig genom att bestämma entropiförändringen hos järnbiten, kylmedlet samt hela systemet (järn + kylmedel). Vi ser järn som ett inkompressibelt ämne med konstant ärmekapacitet, tabellärdet är c F e = 0,45 kj/kgk. Detta innebär Q F e = m F e c F e (T 2 T 1 ) = 0,11925kJ S F e = m F e c F e ln T 2 /T 1 = 0, kJ/K
5 För kylmedlet har i från tabell S 134,1 m 134 s f@ 30 C = 0, kj/k För att ta reda på kylmedlets entropi i sluttillståndet måste i först ta reda på ånghalten där. Eftersom trycket antas ara konstant under kylprocessen et i att ärmet som upptas a kylmedlet ges a massan hos det förångade kylmedlet gånger förångningsentalpin Q 134 = m anga h fg@ 30 C, ds m anga = Q 134 /h fg = 0, kg, ilket i sin tur ger ånghalten x = m anga /10g 0,054. Vi beräknar sedan entropin i sluttillståndet för kylmedlet enligt S 134,2 = m 134 (s f +xs fg ) = 0,010(0, ,054 0,90278) 0,00102 kj/k. Alltså S 134 = 0,000488kJ/K. Den totala entropiförändringen blir således S tot = S F e + S 134 0,000044kJ/K = 0,044J/K Vi har alltså isat att S tot huudsatsen. > 0, och kylprocessen är tillåten från andra
Tentamen i teknisk termodynamik (1FA527)
Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare
T1. Behållare med varmt vatten placerat i ett rum. = m T T
Behållare med armt atten placerat i ett rum Giet: m 45 kg,, 95 C ; placeras i ett tätslutande, älisolerat rum med stela äggar, olym rum 90 m,, C ; ärmeutbyte ger till slut termisk jämikt; P 0 kpa Behållarens
Termodynamik Föreläsning 5
Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion
Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Onsdag /0 008, kl. 08.30-.30 i V-huset. Examinator: Mats
Processens entropigenerering är här lika med systemets entropiändring ty omgivningens entropi är konstant (isolerat system), S ( S)
T-1 Isolerad cylinder, tå separerade gaser Giet: Isolerad cylinder uppdelad i tå slutna utryen ha en lättrörlig kol Vänstra delen innehåller 10 kägas ( id 500 kpa och 80 C Högra delen innehåller 10 heliu
Tentamen i teknisk termodynamik (1FA527) för F3,
Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,
Termodynamik Föreläsning 7 Entropi
ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9
Applicera 1:a H.S. på det kombinerade systemet:
(Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R
Lite kinetisk gasteori
Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl
Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.
Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats
Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.
Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200
Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen
Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme
Arbete är ingen tillståndsstorhet!
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Teknisk termodynamik repetition
Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet
Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi
Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens
Kap 4 energianalys av slutna system
Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =
Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),
Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2
Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:
2-52: Blodtrycket är övertryck (gage pressure).
Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck
Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.
Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Omtentamen i teknisk termodynamik (1FA527) för F3,
Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:
Fuktiga området, överhettad ånga,gas MTF 090
Fuktiga området, öerhettad ånga,gas MF 090 ntar luft är en ideal gas Behållare ges index respektie IG: P m 0,870 kj / kg, K enligt tab. P 00 m 0, 87 98 50,8708 500, m 5,846 kg + +,, m tot m m + m 5,846
Termodynamik FL7 ENTROPI. Inequalities
Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?
Arbetet beror på vägen
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?
Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att
FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)
FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:
Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)
ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:
PTG 2015 övning 3. Problem 1
PTG 2015 övning 1 Problem 1 Vid vilket tryck (i kpa) kokar vatten ifall T = 170? Tillvägagångssätt : Använd tabellerna för mättad vattenånga 2 1 Åbo Akademi University - TkF Heat Engineering - 20500 Turku
TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL
UMEÅ UNIVERSITET Tillämpad Fysik och Elektronik Robert Eklund Umeå den 20/1 2005 TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL Tid: TORSDAGEN DEN 20/1-2005 kl 9-15 Hjälpmedel: 1. Kurslitteratur Pärm: Thermal
Energi- och processtekniker EPP14
Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:
Termodynamik Föreläsning 8 Termodynamiska Potentialer och Relationer
ermodynamik Föreläsning 8 ermodynamiska otentialer och Relationer Jens Fjelstad 2010 09 29 1 / 19 Innehåll D 6:e upplagan (Çengel & Boles) Kapitel 12 2 / 19 Förra föreläsningen För en liten process med
MITTHÖGSKOLAN, Härnösand
MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water
Föreläsning i termodynamik 28 september 2011 Lars Nilsson
Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant
Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)
ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndag 24 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:
Övningstentamen i KFK080 för B
Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt
Samtliga Härledningar och Bevis inom Termodynamik för T2. Tony Burden Institutionen för mekanik, KTH, Stockholm
Samtliga Härledningar och Beis inom ermodynamik för 2 ony Burden Institutionen för mekanik, KH, Stockholm Version 3.0 mars 2006 Förord Denna lunta innehåller samtliga härledningar och beis som skulle kunna
Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Teknisk termodynamik repetition
Teknisk termodynamik repetition Repetitionsgenomgång Slutna och öppna system Isentrop verkningsgrad Värmemotor och värmepump; Carnot Kretsprocesser med ånga (Rankine och kylcykel) Ångtabeller Kretsprocesser
Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00
TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V
CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:
Termodynamik Föreläsning 3
Termodynamik Föreläsning 3 Rena Ämnens Egenskaper Jens Fjelstad 2010 09 07 1 / 26 Innehåll Rena ämnens egenskaper: faser, fasövergångar, tillståndsdiagram, tillståndstabeller TFS 2:a upplagan (Çengel &
Kapitel III. Klassisk Termodynamik in action
Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare
Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats
Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel
Tentamen i KFK080 Termodynamik kl 08-13
Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För
Personnummer:
ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl. 14.00 18.00. P1. En sluten cylinder med lättrörlig kolv innehåller 0.30 kg vattenånga, initiellt vid 1.0 MPa (1000 kpa) och
Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002
UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook
------------------------------------------------------------------------------------------------------- Personnummer:
ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------
Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,
Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.
Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå
Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 2018-01-12 Skrivtid: 15.00 20.00 Totala antalet uppgifter: 5 Jourhavande lärare: Magnus Gustafsson, 0920-491983
Hur förändras den ideala gasens inre energi? Beräkna också q. (3p)
entamen i kemisk termodynamik den 4 juni 2013 kl. 14.00 till 19.00 Hjälpmedel: Räknedosa, BEA och Formelsamling för kurserna i kemi vid KH. Endast en uppgift per blad! Skriv namn och personnummer på varje
Termodynamik Föreläsning 4
Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner
Lösningsförslag Tentamen i Turbomaskiner 7,5 hp
UMEÅ UNIVERSIE 4-10-8 illämpad fysik och elektronik Lars äckström nders Strömberg Lösningsförslag entamen i urbomaskiner 7,5 hp id: 4-10-8 9:00 15:00 Hjälpmedel: Valfri formelsamling, (exempelvis hysics
a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt
Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,
TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl
CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-08-21 kl.
Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:
Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som
7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod:
ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndagen 23 oktober 2017 Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:
Bestäm det slutliga lufttrycket i behållarna. SVAR: kpa
Fuktiga området, överhettad ånga, gas Wylén, 4:e upplaga; Kapitel (hänvisningar till bok; kursivt anger 5:e upplaga) Wylén, 5:e upplaga; Kapitel A) En m tank innehåller luft med temperaturen +5 C och 500
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
b) Beräkna den totala entropiförändringen i systemet. (5p) 2. I en kretsprocess genomgår 1 mol kvävgas följande fyra steg:
Chalmers Tekniska Högskola och Göteborg Universitet Sektionen för Fysik och Teknisk Fysik Aleksandar Matic/Mats Granath Tentamen i Termodynamik och statistisk fysik för F (FTF140) Tid och plats: Torsdagen
Termodynamik (repetition mm)
0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö
MITTHÖGSKOLAN, Härnösand
MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104
EGENSKAPER FÖR ENHETLIGA ÄMNEN
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
ARBETSGIVANDE GASCYKLER
ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad
Tentamen - Termodynamik 4p
Tentamen - Termodynamik 4p Tid: 9.00-15.00, Torsdag 5 juni 003. Hjälpmedel: Physics Handbook, räknare 1. Betrakta en ideal gas. a) Använd kinetisk gasteori för att härleda ett samband mellan tryck, volym
Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin
Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer
ÅNGCYKEL CARNOT. Modifieras lämpligen så att all ånga får kondensera till vätska. Kompressionen kan då utföras med en enkel matarvattenpump.
ÅNGCYKEL CARNOT Arbetsmedium: H 2 O, vanligt vatten. Isobarer och isotermer sammanfaller i det fuktiga området. Låt därför vattnet avge värme under kondensation vid ett lågt tryck (temperaturt L ) ochuppta
PTG 2015 Övning 4. Problem 1
PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser
Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:
Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad
Tentamen i teknisk termodynamik (1FA527),
Tentamen i teknik termodynamik (1FA527), 2013-12-18 VERSION A, krivtid 3 timmar Uppgift 1 En apparat betår av en värmepump kopplat till en värmemotor. Värmemotorn (VM) tar upp värmemängen Q H1 från en
Kap 10 ångcykler: processer i 2-fasområdet
Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande
TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00
CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00
Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta
TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset
CHALMERS 2012-05-21 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset Tentamen omfattar: Avdelning A: Avdelning B:
Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson
Ångkraftsprocessen (Rankinecykeln) Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessens roll i svensk elproduktion Ångtabellen: mättad vätska och mättad ånga efter tryck Ångtabellen:
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats
Tentamen i Termodynamik för K och B kl 8-13
Tentamen i Termodynamik för K och B 081025 kl 8-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas.
ENERGIPROCESSER, 15 Hp
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,
TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30
CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl.
MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter
TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)
Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan
Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten
Kap 5 mass- och energianalys av kontrollvolymer
Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)
Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Tentamen KFKA05 Molekylära drivkrafter 1: Termodynamik,
Tentamen KFKA05 Molekylära drivkrafter 1: Termodynamik, 2018-10-29 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling samt SI Chemical Data och TEFYMA eller
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag
CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna
PTG 2015 övning 1. Problem 1
PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt
SG1216. Termodynamik för T2
SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl
Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.
Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):