Kap 6 termodynamikens 2:a lag

Storlek: px
Starta visningen från sidan:

Download "Kap 6 termodynamikens 2:a lag"

Transkript

1 Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare omgivning. Uppvärmning av ett elektriskt motstånd kan inte skapa en elektrisk nettoström. Varm gas eller vätska kan inte skapa en mekanisk makrorörelse.

2 Termodynamikens andra lag: Anger riktning för processer; de kan bara ske spontant i ena riktningen! Introducerar ett kvalitetsbegrepp för energi; vissa energislag har högre kvalitet (jmfr el och värme). I en spontan process minskar kvaliteten medan kvantiteten bevaras (:a lagen). Anger en teoretisk gräns för hur effektiva olika processer och t.ex. tekniska tillämpningar kan bli. En process måste uppfylla både :a och 2:a lagen för att ske spontant! 2

3 Termiska energireservoarer En stor massa som kan absorbera eller avge värme utan att påverkas (ändra sin temperatur). I praktiken modelleras ofta t.ex. hav, flod, atmosfär mm som termisk energireservoar. En källa (source) avger värme En sänka (sink) absorberar värme. 3

4 Viktiga processer (att lära sig skilja på!): Värmemotorn heat engine överför värme från varm reservoar till kall. En del av värmen kan användas för arbete. Dvs ger arbete ut! Båda typerna av processer är cykliska och innehåller olika konstantflödesmaskiner! Kylmaskin/värmepump refrigirator/heat pump överför värme från låg temperatur till hög temperatur. Dvs kräver arbete in! 4

5 Värmemotor: värme blir arbete! Ex: ångkraftverk Källa med hög temperatur (T ). En ångpanna kokar vatten t.ex. via förbränning av olja eller via kärnreaktioner. En del av värmen omvandlas till arbete (W net,ut ) via en ångcykel. Den värme som inte kan användas till att producera arbete avges till en lågtemperaturkälla (T ) t.ex. används kylvatten från havet för att kondensera ånga till vatten i svenska kärnkraftverk. Vattnet pumpas till ångpannan igen: cykel! 5

6 Ett slags värmemotor! Värme blir arbete! Elektriskt arbete ut T : kokaren: värme tillförs (kärnreaktioner) T : kondensorn värme borförs (kylvatten = havsvatten) 6

7 Värmemotor ångkraftverk in = den värme som tillförs mediet i kokaren. ut = den värme som bortförs ångan i kondensorn och tillförs lågtemperatursänkan. W ut = det arbete som levereras ut från turbinen då ångan expanderar. W in = det arbete som behöver tillföras för att pumpa vattnet in i kokaren (dvs mot koktryck). 7

8 Vilket eller vilka påståenden stämmer för kondensorn i en ångcykel? A. Kondensorn arbetar vid ett lågt tryck. B. Kondensorn sitter efter turbinen. C. Tryck och temperatur sjunker i kondensorn. D. A och B är rätt. E. B och C är rätt. F. A, B och C är rätt. 0% 0% 0% 0% 0% 0% A. B. C. D. E. F. 8

9 Arbetets storlek Kap 6 termodynamikens 2:a lag När vi kan försumma e k och e p gäller: w = vdp = w är det arbete som utvinns ur eller tillförs till en konstantflödesmaskin. Dvs: w > 0 för en maskin som genererar arbete; t.ex. en turbin. w < 0 för en maskin som kostar arbete, t.ex. en pump. 2 2 vdp Eftersom volymiteten ingår i integralen kan man dra slutsatsen att stor volymitet betyder stort arbete! Därför vill vi att de maskiner som genererar arbete ska ha stor volymitet men de som kostar arbete ska ha liten volymitet. Ångcykel: turbinen hanterar ånga (stor volymitet, stort genererat arbete), pumpen hanterar vatten (liten volymitet, litet kostat arbete) w tot = w turbin - w pump > 0 vilket är själva poängen! 9

10 Värmemotor effektivitet/verkninggrad Definition av termisk verkningsgrad (performance): η th = in η th W net, ut in ut ut = = = = in in in = ut Verkningsgrader skiljer sig mellan olika värmemotorer. Även de bästa har aldrig mer än 50-60%! Bensinmotor 30% Dieselmotor 40% Kolkraftverk 30-40% (elproduktion) Kärnkraftverk 30-35% (elproduktion) 0

11 Kan vi inte bara ta bort kondensorn och göra om all in -> W net, ut? Svaret är förstås NEJ eftersom vi i så fall inte kan fullborda cykeln! Även ideala cykler har en energiförlust till låg-temperatur-reservoaren! Kelvin-Planck: Ingen värmemotor kan omvandla all värme till arbete. En cyklisk värmemotor kan inte ta emot värme från en källa och producera arbete utan att avge värme till en sänka.

12 Ångprocessen i ett Pv-diagram Kap 6 termodynamikens 2:a lag Kondensorn och pumpen behövs för att sluta cykeln! 2

13 Kylmaskin och värmepump Flyttar värme från låg temperatur till hög: kräver arbete! Arbetsmedium: kylmedel i gamla kylskåp/frysar: freon idag ofta något annat kolväte, t.ex. R-34a Vanligaste kylcykeln: förångning-kompressionscykel (vapour-compression refrigeration cycle). 3

14 Kylmaskin (värmepump/kylskåp/ac). Kompressorn komprimerar gasen innan den kondenseras. Det är kompressorn som låter! 2. I kondensorn (ofta på baksidan av kylen) kondenseras kylmedlet igen och avger då värme till luften. Det blir varmt på baksidan! 3. Strypventilen sänker tryck och temperatur under delvis förångning. 4. Kylmedlet absorberar värme från det kalla utrymmet och förångas

15 Värmepump är en kylmaskin samma sak som kylmaskin men det är höjd temperatur i T vi eftersträvar Bostadshus! Kylskåp! Värmepumpen: målet är värma vid T Kylmaskinen: målet är kyla vid T 5

16 Vilket eller vilka påståenden är korrekt för en värmepump? A. En värmepump är ett annat ord för värmemotor. B. En värmepump är i princip samma som ett kylskåp. C. Värmepumpen genererar arbete. D. Värmepumpen flyttar värme från ett varmt utrymme till ett kallt. E. A och C är rätt. F. B och C är rätt. 0% 0% 0% 0% 0% 0% A. B. C. D. E. F. 6

17 Vad visar bilden? A. En värmepump B. En värmemotor C. Ett kylskåp D. Vet ej 0% 0% 0% 0% A. B. C. D. 7

18 Värmepump Används ofta för att värma hus. Finns t.ex. luftvärmepump och bergvärmepump. uftkontitionering/ac Vad är det egentligen? Samma sak som kylmaskin! Det finns vändbara AC-anläggningar som funkar som luftkonditionering på sommaren och värmepump på vintern! 8

19 Coefficient of Performance: COP (värmefaktor/kylfaktor) Istället för verkningsgrad hos kylmaskiner och värmepumpar! Definition: COP = önskad output/nödvändig input Kylfaktor: W net, in COP R = = = Värmefaktor: W net, in COP P = = = En kylmaskin eller värmepump har alltid både COP R och COP P COP P = COPR + 9

20 Mer om COP Definitionen av COP innebär att: COP R kan vara >, vilket innebär att mer värme flyttas från det kalla området än den mängd arbete som sätts in. ur kan det vara så? COP R = W net, in COP P är alltid >. De flesta värmepumpar har COP mellan 2 och 5. Är det mycket kallt ute närmar sig COP P. I det läget slutar värmepumpen att fungera som värmepump och blir istället resistansvärmare. COP P = COPR + Man använder COP istället för η eftersom ett η> känns missvisande! 20

21 Kylprocessen i ett Pv-diagram Kap 6 termodynamikens 2:a lag 2

22 Kelvis-Planck handlade om värmemotorn. Motsvarande sats för kylmaskinen är Clausius sats Det är omöjligt att konstruera en cyklisk apparat som flyttar värme från en lägre temperatur till en högre utan att andra effekter uppstår. För en kylmaskin innebär det att kompressorn behöver ett tillskott av arbete för att komprimera gasen så att cykeln kan slutas! Kelvin-Panks och Calusius satser är ekvivalenta formuleringar av termodynamikens andra huvudsats Funkar inte! 22

23 Evighetsmaskiner perpetuum mobile Många har försökt bygga evighetsmaskiner men utan framgång. En sådan kan förstås inte existera! Föreslagna evighetsmaskiner bryter antingen mot :a huvudsatsen (energins bevarande) eller 2:a huvudsatsen (energins riktning). Bild: M.C. Escher 23

24 Reversibla och irreversibla processer En reversibel ( vändbar ) process kan vändas utan att lämna några spår! Modell (idealisering) för verkliga processer. Reversibla processer kan t.ex. omsätta en energiform i en annan helt utan förluster. Det finns inga helt reversibla processer i naturen. 24

25 Reversibla och irreversibla processer En irreversibel ( icke vändbar ) process. Orsaker till irreversibiliteter: Friktion Inelastisk stöt, deformation Resistans Värmeöverföring över finita temperaturskillnader Att återställa originaltillståndet kräver energi! 25

26 Irreversibel värmeöverföring lämnar spår! Burken värms upp från 5-20 C Vi kan kyla burken till samma temperatur men det kräver arbete. När burken är kyld igen är den i exakt samma tillstånd som innan men det är inte omgivningen Omgivningens värme har ökat eftersom arbetet som kyler burken behöver en högtemperaturreservoar. omgivningen burken 26

27 Därför skiljer man på internt och totalt reversibla processer Internt reversibel process: inga irreverisbiliteter innanför systemgränserna. Systemet går igenom ett antal kvasi-jämviktstillstånd och processen kan vändas och gå genom exakt samma tillstånd (läskburken). Totalt reversibel process: reversibel både innanför och utanför systemgränserna (kan ej ske i praktiken) En totalt reversibel process innebär: ingen värmeöverföring mellan källor av olika temperaturer inga icke-jämviktstillstånd ingen friktion 27

28 Carnotcykeln Carnotcykeln är en reversibel cykel och den ideala process som representerar största möjliga omvandlingen av termisk energi till mekanisk. Den används som ett mått för vad som är teoretiskt möjligt. Ingen verkligen cykel kan vara bättre än Carnot-cykeln. Värmemotor och kylmaskin/värmepump kan idealt beskrivas som Carnotcykler men går åt olika håll! Stackars Carnot! an dog i kolera bara 36 år gammal! Nicolas éonard Sadi Carnot ( ) 28

29 Exempel: Carnotcykeln tillämpad på ett kolv-cylinder system (gas) 4 reversibla processer: För vämemotor: -2: Reversibel isoterm expansion (T konstant genom tillförsel av värme ) 2-3: Reversibel adiabatisk expansion ( = 0, T ->T ) 3-4: Reversibel isoterm kompression (T konstant genom bortförsel av värme ) 4-: Reversibel adiabatisk kompression ( =0, T -> T ) 29

30 Carnotcykeln för värmemotor Vilken process -2, 2-3 osv är vilken? Reversibel adiabatisk expansion ( = 0, T ->T ) Reversibel isoterm expansion (T konstant genom tillförsel av ) Reversibel adiabatisk kompression ( =0, T -> T ) Reversibel isoterm kompression (T konstant genom bortförsel av ) 30

31 Carnotcykeln för värmemotor -2: Reversibel isoterm expansion (T konstant genom tillförsel av värme ) 2-3: Reversibel adiabatisk expansion ( = 0, T - >T ) 3-4: Reversibel isoterm kompression (T konstant genom bortförsel av värme ) 4-: Reversibel adiabatisk kompression ( =0, T -> T ) 3

32 Carnotcykeln för värmemotor Carnotcykeln för kylmaskin/värmepump Om alla delprocesser i Carnotcykeln för en värmemotor vänds blir det istället Carnotcykeln för en kylmaskin/värmepump. Och Carnotcykeln är ju vändbar (reversibel)! 32

33 Carnots principer. Verkningsgraden hos en irreversibel värmemotor är alltid mindre än verkningsgraden hos en reversibel värmemotor. 2. Verkningsgraden hos alla reversibla värmemotorer som arbetar mellan samma temperaturer är samma (dvs. max). Av detta följer att verkningsgraden hos reversibla cykler enbart beror av reservoarernas temperaturer: η =η rev rev ( T, T ) Dessa principer är empiriska men brott mot dem bryter samtidigt mot termodynamikens huvudsatser! 33

34 Verkningsgraden hos Carnots värmemotor = eller η th = g( T, T ) = f ( T, T ) Dvs = f ( T ), T Figuren till höger ger: η th 3 = = => f ( T3, T ) = f ( T2, T ) f ( T3, T2 ) Men båda leden måste bero bara på T och T 3! f ( T 3, θ ( T2 ) θ ( T T ) = θ ( T ) θ ( T ) θ ( T3 ) = ) θ ( T ) En lösning föreslagen av ord Kelvin: 3 2 T3 f ( T => η th, rev = 3, T ) = T T Detta definierar den termodynamiska temperaturskalan T T 34 T

35 Verkningsgraden hos Carnots värmemotor Enligt tidigare gäller för alla värmemotorer (reversibla och irreversibla): η th W net, ut in ut ut = = = = in in in För reversibel Carnot-motor gäller: η th, rev = = T T Dvs maximala verkningsgraden beror bara på reservoarernas temperaturer: T = eller T T T = 35

36 Vad blir största möjliga teoretiska verkningsgraden för en värmemotor som arbetar mellan T = 25 C och T = 750 C? A. 00 % B. 96,7 % C. 70,9 % D. 29. % 0% 0% 0% 0% 00 % 96,7 % 70,9 % 29. % 36

37 Verkningsgrader för värmemotorer Det teoretiskt möjliga inte är 00% utan Carnot-verkningsgraden! Carnotcykeln representerar största möjliga omvandlingen av termisk energi till mekanisk vid givna temperaturer. För att Carnot-verkningsgraden ska bli 00% behöver man ha en T vid absoluta nollpunkten eller oändligt hög! Bensinmotor 30% Dieselmotor 40% Kolkraftverk 30-40% (elproduktion) Kärnkraftverk 30-35% (elproduktion) η th, rev = = T T För T = 000 K och T =300 K blir 300 = 000 η th, rev = 0.7 Carnotverkningsgraden 37

38 Verkningsgrader för värmemotorer Kap 6 termodynamikens 2:a lag Man anger ofta verkningsgrader för verkliga motorer i % av Carnotverkningsgraden: Ex: en motor arbetar mellan T = T = och har 0.5 av Carnotverkningsgraden: η th 0.5* η T = 0.5* T = rev ur påverkas verkningsgraden hos den verkliga motorn av temperaturerna i hög-och lågtemperaturreservoarerna? 38

39 Verkningsgrader för värmemotorer Kap 6 termodynamikens 2:a lag Man anger ofta verkningsgrader för verkliga motorer i % av Carnotverkningsgraden: Ex: en motor arbetar mellan T = T = och har 0.5 av Carnotverkningsgraden: η th 0.5* η T = 0.5* T = rev Om T minskas eller T ökas så ökar verkningsgraden! 39

40 COP för Carnots kylmaskin/värmepump Enligt tidigare för alla kylmaskiner: För Carnots kylmaskin: Och på samma sätt för alla värmepumpar: Och för Carnots värmepump: = = R COP, = = rev R T T COP P COP = = rev P T T COP = =, 40

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

Kap 9 kretsprocesser med gas som medium

Kap 9 kretsprocesser med gas som medium Termodynamiska cykler Kan klassificera på många olika sätt! Kraftgenererande cykler (värmemotorer) och kylcykler (kylmaskiner/värmepumpar). Exempel på värmemotor är ångkraftverk, bilmotorer. Exempel på

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

ÅNGCYKEL CARNOT. Modifieras lämpligen så att all ånga får kondensera till vätska. Kompressionen kan då utföras med en enkel matarvattenpump.

ÅNGCYKEL CARNOT. Modifieras lämpligen så att all ånga får kondensera till vätska. Kompressionen kan då utföras med en enkel matarvattenpump. ÅNGCYKEL CARNOT Arbetsmedium: H 2 O, vanligt vatten. Isobarer och isotermer sammanfaller i det fuktiga området. Låt därför vattnet avge värme under kondensation vid ett lågt tryck (temperaturt L ) ochuppta

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

Entropi. Det är omöjligt att överföra värme från ett kallare till ett varmare system utan att samtidigt utföra arbete. Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå

Läs mer

Kap 9 kretsprocesser med gas som medium

Kap 9 kretsprocesser med gas som medium Ottocykeln den ideala cykeln för tändstifts /bensinmotorer (= vanliga bilar!) Består av fyra internt reversibla processer: 1 2: Isentrop kompression 2 3: Värmetillförsel vid konstant volym 3 4: Isentrop

Läs mer

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Miljöfysik Föreläsning 3 Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Värmekraftverk Växthuseffekten https://phet.colorado.edu/en/simulations/category/physics Simuleringsprogram

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Teknisk termodynamik repetition Repetitionsgenomgång Slutna och öppna system Isentrop verkningsgrad Värmemotor och värmepump; Carnot Kretsprocesser med ånga (Rankine och kylcykel) Ångtabeller Kretsprocesser

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

SG1216. Termodynamik för T2

SG1216. Termodynamik för T2 SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

Tentamen i teknisk termodynamik (1FA527),

Tentamen i teknisk termodynamik (1FA527), Tentamen i teknik termodynamik (1FA527), 2013-12-18 VERSION A, krivtid 3 timmar Uppgift 1 En apparat betår av en värmepump kopplat till en värmemotor. Värmemotorn (VM) tar upp värmemängen Q H1 från en

Läs mer

Föreläsning i termodynamik 28 september 2011 Lars Nilsson

Föreläsning i termodynamik 28 september 2011 Lars Nilsson Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna

Läs mer

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

PTG 2015 övning 3. Problem 1

PTG 2015 övning 3. Problem 1 PTG 2015 övning 1 Problem 1 Vid vilket tryck (i kpa) kokar vatten ifall T = 170? Tillvägagångssätt : Använd tabellerna för mättad vattenånga 2 1 Åbo Akademi University - TkF Heat Engineering - 20500 Turku

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme

Läs mer

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod:

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod: ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndagen 23 oktober 2017 Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Entropi, energikvalitet och termodynamikens huvudsatser

Entropi, energikvalitet och termodynamikens huvudsatser Entropi, energikvalitet och termodynamikens huvudsatser Christian Karlsson Uppdaterad: 150330 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

MMVF01 Termodynamik och strömningslära

MMVF01 Termodynamik och strömningslära MMVF01 Termodynamik och strömningslära Repetitionsfrågor termodynamik (23 augusti 2018) CH. 1 TERMODYNAMIKENS GRUNDER 1.1 Definiera eller förklara kortfattat (a) termodynamiskt system (slutet system) (b)

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Energi, el, värmepumpar, kylanläggningar och värmeåtervinning. Emelie Karlsson

Energi, el, värmepumpar, kylanläggningar och värmeåtervinning. Emelie Karlsson Energi, el, värmepumpar, kylanläggningar och värmeåtervinning Emelie Karlsson Innehåll Grundläggande energikunskap Grundläggande ellära Elmotorer Värmepumpar och kylteknik Värmeåtervinning Energikunskap

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Laborations-PM Termodynamik (KVM091) lp /2015. Omfattning: Fyra obligatoriska laborationer ingår i kursen:

Laborations-PM Termodynamik (KVM091) lp /2015. Omfattning: Fyra obligatoriska laborationer ingår i kursen: Chalmers, Kemi- och bioteknik & Energi och miljö 1 Laborations-PM Termodynamik (KVM091) lp 1 2014/2015 Omfattning: Fyra obligatoriska laborationer ingår i kursen: TD1: Jämvikt mellan ånga och vätska hos

Läs mer

Stirlingmotorn. Värmepumpen. Förberedelser. Verkningsgrad, s 222. Termodynamikens andra huvudsats, s 217. Stirlingprocessen, s 235.

Stirlingmotorn. Värmepumpen. Förberedelser. Verkningsgrad, s 222. Termodynamikens andra huvudsats, s 217. Stirlingprocessen, s 235. ... Kretsprocesser Stirlingmotorn och värmepumpen Avsikten med laborationen är att Du ska få en djupare teoretisk och praktisk förståelse för begreppen energiomvandling, arbete, värme och verkningsgrad.

Läs mer

Man har mycket kläder på sig inomhus för att hålla värmen. Kläderna har man oftast tillverkat själv av ylle, linne & skinn (naturmaterial).

Man har mycket kläder på sig inomhus för att hålla värmen. Kläderna har man oftast tillverkat själv av ylle, linne & skinn (naturmaterial). ENERGI Bondefamiljen för ca 200 år sedan (före industrialismen) i februari månad, vid kvällsmålet : Det är kallt & mörkt inne i timmerhuset. Fönstren är täckta av iskristaller. Det brinner i vedspisen

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

Mer om kretsprocesser

Mer om kretsprocesser Mer om kretsprocesser Energiteknik Anders Bengtsson 18 mars 2010 Sammanfattning Dessa anteckningar är ett komplement till avsnittet om kretsprocesser i häftet Värmetekniska formler med kommentarer. 1 1

Läs mer

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),

Läs mer

Bioenergi för värme och elproduktion i kombination 2012-03-21

Bioenergi för värme och elproduktion i kombination 2012-03-21 Bioenergi för värme och elproduktion i kombination 2012-03-21 Johan.Hellqvist@entrans.se CEO El, värme eller kyla av lågvärdig värme Kan man göra el av varmt vatten? Min bilmotor värmer mycket vatten,för

Läs mer

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessen (Rankinecykeln) Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessens roll i svensk elproduktion Ångtabellen: mättad vätska och mättad ånga efter tryck Ångtabellen:

Läs mer

Värmepumpens verkningsgrad

Värmepumpens verkningsgrad 2012-01-14 Värmepumpens verkningsgrad Rickard Berg 1 2 Innehåll 1. Inledning... 3 2. Coefficient of Performance, COP... 3 3. Primary Energi Ratio, PER... 4 4. Energy Efficiency Ratio, EER... 4 5. Heating

Läs mer

Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2)

Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2) Chalmers, Kemi och kemiteknik & Energi och milj 1 Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2) Omfattning: Fyra obligatoriska laborationer

Läs mer

Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet om värmemaskiner. Läs detta ordentligt!

Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet om värmemaskiner. Läs detta ordentligt! Kretsprocesser Inledning I denna laboration får Du experimentera med en Stirlingmotor och studera en värmepump. Litteraturhänsvisning Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

MMVA01 Termodynamik med strömningslära

MMVA01 Termodynamik med strömningslära MMVA0 Termodynamik med strömningslära Repetitionsfrågor termodynamik (inkl. svar i kursiv stil, utan figurer) Sidhänvisningar: Çengel, Turner & Cimbala (3rd Edition in SI Units, 2008). 24 augusti 20 CH.

Läs mer

Repetition Energi & Värme Heureka Fysik 1: kap version 2013

Repetition Energi & Värme Heureka Fysik 1: kap version 2013 Repetition Energi & Värme Heureka Fysik 1: kap. 5 + 9 version 2013 Mekanisk energi Arbete Arbete är den energi som omsätts när en kropp förflyttas. Arbete ges av W = F s, där kraften F måste vara parallell

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndag 24 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

UMEÅ UNIVERSITET 2012-03-13 Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING

UMEÅ UNIVERSITET 2012-03-13 Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING UMEÅ UNIVERSITET 2012-03-13 Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING VARMLUFTSMASKIN TYP STIRLING INLEDNING: 1 Stirlingmotorn är en värmemotor som kan ha utvändig förbränning. Motorn

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt Spontanitet, Entropi, och Fri Energi 17.1 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 17.5 17.6 och kemiska reaktioner 17.7 och inverkan av tryck 17.8

Läs mer

Termodynamik, lp 2, lå 2003/04

Termodynamik, lp 2, lå 2003/04 5C1201 Strömningslära med Termodynamik för T Termodynamik, lp 2, lå 2003/04 Syfte; kursdelen introducerar de grundläggande begreppen inom klassisk termodynamik och ger en grund för vidare studier inom

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi

Kapitel 17. Spontanitet, Entropi, och Fri Energi Kapitel 17 Spontanitet, Entropi, och Fri Energi Kapitel 17 Innehåll 17.1 Spontana processer och entropi 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 Fri

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

ENERGIPROCESSER, 15 Hp

ENERGIPROCESSER, 15 Hp UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Rapport av projektarbete Kylskåp

Rapport av projektarbete Kylskåp Rapport av projektarbete Kylskåp Klass: Mi1a Gruppnummer: Mi1a 6 Datum för laboration: 1/10 4/10 2014 Datum för rapportinlämning: 2014 10 12 Labbhandledare: Joakim Wren Namn Personnumer E postadress Taulant

Läs mer

Projektarbete Kylska p

Projektarbete Kylska p Projektarbete Kylska p Kursnamn Termodynamik, TMMI44 Grupptillhörighet MI 1A grupp 2 Inlämningsdatum Namn Personummer E-postadress Ebba Andrén 950816 ebban462@student.liu.se Kajsa-Stina Hedback 940816

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

Teknisk termodynamik 5 hp

Teknisk termodynamik 5 hp Teknisk termodynamik 5 hp Välkomna till teknisk termodynamik! Period 3, VT-2016 Cecilia Gustavsson Ralph Scheicher Federico Binda/Jacob Eriksson Sebastian Geroge/Sotirios Droulias examinator och kursansvarig

Läs mer

MMVA01 Termodynamik med strömningslära

MMVA01 Termodynamik med strömningslära MMVA0 Termodynamik med strömningslära Repetitionsfrågor termodynamik (inkl. svar i kursiv stil, utan figurer) Sidhänvisningar: Çengel, Cimbala & Turner (5th Edition in SI Units, 207). 3 oktober 207 CH.

Läs mer

Ångdrift av värmepump på Sysavs avfallsförbränningsanläggning

Ångdrift av värmepump på Sysavs avfallsförbränningsanläggning Ångdrift av värmepump på Sysavs avfallsförbränningsanläggning Sysav ansvarar för den regionala återvinningen och avfallshanteringen i södra Skåne. Som en del av återvinningen produceras el och värme genom

Läs mer

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system) Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Jordvärme, Bergvärme & värmepumpsprincipen. Maja Andersson EE1B El & Energiprogrammet Kaplanskolan Skellefteå

Jordvärme, Bergvärme & värmepumpsprincipen. Maja Andersson EE1B El & Energiprogrammet Kaplanskolan Skellefteå Jordvärme, Bergvärme & värmepumpsprincipen Maja Andersson EE1B El & Energiprogrammet Kaplanskolan Skellefteå Kort historik På hemsidan Wikipedia kan man läsa att bergvärme och jordvärme är en uppvärmningsenergi

Läs mer

Bergvärme & Jordvärme. Isac Lidman, EE1b Kaplanskolan, Skellefteå

Bergvärme & Jordvärme. Isac Lidman, EE1b Kaplanskolan, Skellefteå Bergvärme & Jordvärme Isac Lidman, EE1b Kaplanskolan, Skellefteå Innehållsförteckning Sid 2-3 - Historia Sid 4-5 - utvinna energi - Bergvärme Sid 6-7 - utvinna energi - Jordvärme Sid 8-9 - värmepumpsprincipen

Läs mer

CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET Sektionen för Fysik och Teknisk Fysik Oktober 2000

CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET Sektionen för Fysik och Teknisk Fysik Oktober 2000 CHALMERS TEKNISKA HÖGSKOLA 18 sidor GÖTEBORGS UNIVERSITET Sektionen för Fysik och Teknisk Fysik Oktober 2000 PM utarbetat av Johan Åman, Jonas Enger, Ernest Karawacki, Alf Sjölander och Göran Wahnström.

Läs mer

Värmepumpar av. Joakim Isaksson, Tomas Svensson. Beta-verision, det kommer att se betydligt trevligare ut på hemsidan...

Värmepumpar av. Joakim Isaksson, Tomas Svensson. Beta-verision, det kommer att se betydligt trevligare ut på hemsidan... Värmepumpar av Joakim Isaksson, Tomas Svensson Beta-verision, det kommer att se betydligt trevligare ut på hemsidan... I denna avhandling om värmepumpar har vi tänkt att besvara följande frågor: Hur fungerar

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Så fungerar en värmepump,

Så fungerar en värmepump, Så fungerar en värmepump, och så kan vi göra dem bättre Björn Palm, Avd. Tillämpad termodynamik och kylteknik, Inst Energiteknik, KTH Så fungerar en värmepump, Principen för ett värmepumpande system Värmesänka

Läs mer