Räkneövning 2 hösten 2014
|
|
- Rickard Åström
- för 8 år sedan
- Visningar:
Transkript
1 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund
2 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor baserar sig på en processerad kiselbit av storleken 20 mm x 20 mm x 1 mm, och använder under operation en effekt på 100 W. Praktiskt taget allt av denna effekt övergår i värme. Processorerna brinner sönder vid en temperatur kring 120 C. Hur länge skulle det ta för en processor att brinna sönder om man startar den från viloläge vid 20 C och den inte kyls ner överhuvudtaget? Du kan anta att processorn består helt av kisel och har en specifik värmekapacitet (ta reda på vad som menas med specifik värmekapacitet!) på 0.7 kj kgk oh densiteten 2.33 g cm 3. Specifik värmekapacitet är ett materials värmekapacitet per massenhet och betecknas c. Ett föremål med massan m har värmekapaciteten C = c m. Den specifika värmekapaciteten (värmekapacitiviteten) beskriver hur mycket energi som måste föras till massan för att höja massans temperatur med en grad (K/C). V = 20 mm 20 mm 1 mm = 400 mm 3 = 0.4 cm 3 (1) ρ = 2.33 g kg = cm3 cm 3 (2) kj c = 0.7 kg K = 700 J kg K (3) Uppgiftens kriterier: T 0 = 20 C T 1 = 120 C P = 100 W Förändringen i värmeenergin är direkt proportionell till förändringen i temperaturen enligt följande: Q = C T Q = cm(t 1 T 0 ) P t = cρv (T 1 T 0 ) t = cρv (T 1 T 0 ) P t = 700 J kg kg K cm K cm W t = s 0.7 s Det tar ca 0.7 s innan processorn överhettas. 2
3 2. Cyklisk process. En mol av en ideal gas utför en cyklisk process bestående av följande serie av reversibla processer: (i) från tillstånd (P 1, ) vid konstant tryck till tillstånd (P 1, V 2 ), (ii) vid konstant volym till tillstånd (P 2, V 2 ), (iii) vid konstant tryck till (P 2, ), (iv) vid konstant volym tillbaka till det ursprungliga tillståndet (P 1, ). Beräkna arbetet som görs på gasen samt värmen som absorberas av den i cykeln. OBS! V 2 > och P 1 > P 2 behöver naturligtvis inte gälla. Det beror helt på i vilken ordning du definerat dem. Arbetet som görs på gasen: dw = P dv (4) Eftersom förändringen i arbetet defineras som förändringen i volym multiplicerat med trycket, så sker ingen förändring i arbetet under steg ii och steg iv. Förändringen i arbetet under stegen: V2 i. dw = P dv = P 1 ( V 2 ) (5) ii. iii. iv. dw = dw = dw = V2 V 2 P dv = P (V 2 V 2 ) = 0 (6) V1 V 2 P dv = P 2 (V 2 ) (7) V1 P dv = P ( ) = 0 (8) Genom att addera ihop alla delarbeten så får vi det slutliga totala arbetet: W tot = W i + W ii + W iii + W iv W tot = P 1 ( V 2 ) P 2 (V 2 ) + 0 W tot = P 1 ( V 2 ) + P 2 (V 2 ) W tot = (P 2 P 1 )(V 2 ) Systemet återvänder till sitt ursprungsläge under processen vilket betyder att ingen energi har försvunnit från systemet, U = 0. Då kan man modifiera om termodynamikens första grundlag för att erhålla Q. U = Q + W Q = W Q = (P 1 P 2 )(V 2 ) 3
4 3. Expanderande luftbubbla. En dykare släpper ut en luftbubbla på ett djup av 30 m. Bubblan har formen av en sfär med radien 1.0 cm. Temperaturen i sfären och det omgivande vattnet är 10 C. Beräkna bubblans radie då den stigit till ytan i följande fall: i bubblan har hela tiden samma temperatur (bubblan stiger långsamt p.g.a. en djungel av sjögräs). ii inget värmeutbyte sker med omgivningen (bubblan stiger snabbt). i Isotermisk process (konstant temperatur, energi förs till eller från systemet för att hålla temperaturen konstant). P 1 = P 2 V 2 (9) r = V = h 0 = h 1 = 1.0 cm 4 3 r3 30 m 0 m g = 9.81 m s 2 ρ = 1000 kg P 0 = P = T = m P a P 0 + ρ g h 10 C r 1 =? V 2 = P 1 P πr3 1 = P 0 + ρ g h 0 4 P 0 + ρ g h 1 3 πr3 0 r 3 1 = P 0 + ρ g h 0 P 0 r 3 0 P0 + ρ g h r 1 = 3 0 r0 3 P 0 r 1 = P a kg 9.81 m 30 m m 3 s cm P a 3 r 1 = cm Svar: r 1 = 1.6 cm 4
5 ii Adiabatisk process (inget värmeutbyte sker med omgivningen): P 0 V γ 0 = P 1V γ 1, (10) γ är förhållandet mellan värmekapaciteterna C P C V γ för luft är 1.4. ( 4 3 πr3 1 V γ 1 = P 0 V γ 0 P ) 1 γ = P 0 P 1 ( 4 3 πr3 0 (r 3 1) γ = P 0 P 1 (r 3 0) γ ) γ r γ 1 = P0 + ρ g h 3 0 (r0 3 P )γ 0 r γ 1 = P a kg 9.81 m 30 m m 3 s 2 (1.0 cm P a 3 ) γ = cmγ r γ 1 r 1 = γ cm γ r 1 = cm 1.4 r 1 = cm 1.4 cm 5
6 4. Adiabatisk expansion. Inre energin för en (monoatomär) gas som föjer van der Waals tillståndsekvation ges av U = 3 2 Nk BT a N 2 V (11) där a är en konstant. I början ockuperar gasen en volym och har temperaturen T 1. Låt sedan gasen expandera adiabatiskt i vakuum så att den ockuperar en total volym V 2. Vad är gasens slutliga temperatur? Vad är svaret om gasen skulle vara en ideal gas? Van der Waals tillståndsekvation: E = 3 2 Nk BT an 2 V (12) När en gas expanderar adiabatiskt så är energiutbytet = 0 ( E = 0). E = E 2 E 1 = 0 E 2 = E 1 E = 3 2 Nk BT 2 an 2 = 3 V 2 2 Nk BT 1 an Nk BT 2 = 3 2 Nk BT 1 an 2 + an 2 V 2 T 2 = T ( 1 an 2 1 ) 3Nk B V 2 T 2 = T 1 + 2aN ( 1 1 ) 3k B V 2 Ideal gas U 1 = U 2 : U = P V = nrt = Nk B T U 1 = P = Nk B T 1 U 2 = P V 2 = Nk B T 2 Nk B T 1 = Nk B T 2 T 1 = T 2 6
7 5. Boltzmannfördelningen. Tänk dig ett tvådimensionellt 50 x 50 gitter av partiklar (alltså totalt innehåller systemet 2500 partiklar). Energin för varje partikel kan anta heltalsvärden från 0 uppåt. Låt totala energin för systemet vara 2500 energienheter så, att varje partikel har en energienhet. Låt därefter energierna omdistribueras genom att (minst ggr) ta ett energikvanta från en slumpmässig partikel (om den har ett, partiklarna kan inte ha negativ energi!) och flytta den till en annan slumpmässig partikel. Efter alla omdistribueringar, upprita ett histogram av energifördelningen hos partiklarna (dvs hur många har energin 0, hur många 1, osv). Upprepa därefter processen med ett system med 5000 energienheter, dvs alla partiklar startar med 2 energienheter. Se ex5_matlab.m för ett kodexempel på hur man kan utföra det här med MATLAB. Om det finns frågor angående MATLAB-koden, så tveka inte att fråga! Figur 1: 2500 Energienheter på en 50 x 50 grid, iterationer. Figur 2: 5000 Energienheter på en 50 x 50 grid, iterationer. Det som skiljer mest mellan de två olika histogrammen, är att när det finns mera energikvantan att tillgå från början, så kommer det finnas lite flera partiklar med högre energier, men det viktigaste är ändå att formen på histogrammet hålls konstant. Flest partiklar med noll eller ett energikvantan. 7
Räkneövning 5 hösten 2014
Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund 1.12.214 1 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen.
Läs merKapitel I. Introduktion och första grundlagen
Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen
Läs merIdealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.
Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell
Läs merTentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:
Läs merTentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002
UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook
Läs merTill alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!
Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna
Läs mer10. Kinetisk gasteori
10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för
Läs merLösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
Läs merArbetet beror på vägen
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Läs merTentamen i Kemisk Termodynamik 2011-01-19 kl 13-18
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Läs merPTG 2015 övning 1. Problem 1
PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt
Läs merRepetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien
Läs merTermodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft
Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1
Läs merLösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.
Läs mer18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)
18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två
Läs merKapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014
Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal
Läs merKap 4 energianalys av slutna system
Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =
Läs merTentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Läs merÖvningstentamen i KFK080 för B
Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt
Läs merTentamen i KFK080 Termodynamik kl 08-13
Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För
Läs merWilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta
TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Läs merArbete är ingen tillståndsstorhet!
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Läs merLösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,
Läs merDavid Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Entropi 1.1 Inledning Entropi införs med relationen: S = k ln(ω (1 Entropi har enheten J/K, samma som k som är Boltzmanns konstant. Ω är antalet
Läs merEGENSKAPER FÖR ENHETLIGA ÄMNEN
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Läs merKapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning.
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 5. 5.3 Den ideala gaslagen 5.4 5.5 Daltons lag för partialtryck 5.6 5.7 Effusion och Diffusion 5.8 5.9 Egenskaper hos några verkliga gaser 5.10 Atmosfärens kemi Copyright
Läs merTemperatur T 1K (Kelvin)
Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt
Läs mer7. Inre energi, termodynamikens huvudsatser
7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör
Läs merGaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Läs merOm trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Läs merTvå system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan
Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten
Läs merTentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,
Läs merTentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,
Läs merTermodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM
Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete
Läs merGodkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10
Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser
Läs merÖvningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.
Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200
Läs merTentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,
Läs mer6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)
6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt
Läs merRäkneövning 5 hösten 2014
ermofysikens Grunder Räkneövning 5 hösten 2014 Assistent: Christoffer Fridlund 13.10.2014 1 1. Entalin och Maxwell-relation. Entalin H definieras som H U +. isa genom att anvnäda entalins defintion samt
Läs merMotorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning
Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com
Läs merRelativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar
elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda
Läs merKinetisk Gasteori. Daniel Johansson January 17, 2016
Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion
Läs merGaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Läs merGaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Läs merLite kinetisk gasteori
Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl
Läs merTentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
Läs merP1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare
Läs merTentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Läs merKap 3 egenskaper hos rena ämnen
Rena ämnen/substanser (pure substances) Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja blandat med
Läs merRepetition. Termodynamik handlar om energiomvandlingar
Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens
Läs merRepetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande
Läs merKEMISK TERMODYNAMIK. Lab 1, Datorlaboration APRIL 10, 2016
KEMISK TERMODYNAMIK Lab 1, Datorlaboration APRIL 10, 2016 ALEXANDER TIVED 9405108813 Q2 ALEXANDER.TIVED@GMAIL.COM WILLIAM SJÖSTRÖM Q2 DKW.SJOSTROM@GMAIL.COM Innehållsförteckning Inledning... 2 Teori, bakgrund
Läs merLösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00
EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:
Läs merTermodynamik och inledande statistisk fysik
Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från
Läs merFöreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.
Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik
Läs merTermodynamik Föreläsning 4
Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner
Läs merKretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.
Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde
Läs merYTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt
YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt Under föreläsningarna 8 och 9 kommer vi att gå igenom ett antal koncept som är viktiga i ytkemi och försöka göra en termodynamisk beskrivning
Läs merTentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,
Läs merX. Repetitia mater studiorum
X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system
Läs merTentamen, Termodynamik och ytkemi, KFKA01,
Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså
Läs merX. Repetitia mater studiorum. Termofysik, Kai Nordlund
X. Repetitia mater studiorum Termofysik, Kai Nordlund 2006 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system
Läs merTrycket är beroende av kraft och area
Tryck Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte uppleva
Läs merLinköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.
Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.
Läs merSammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
Läs merViktiga målsättningar med detta delkapitel
Viktiga målsättningar med detta delkapitel Känna till begreppen ytenergi och ytspänning Förstå den stora rollen av ytor för nanomaterials egenskap Känna till storleksberoendet av nanopartiklars smältpunkt
Läs merGodkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.
Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):
Läs merKapitel III. Klassisk Termodynamik in action
Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)
Läs merKap 6: Termokemi. Energi:
Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.
Läs merVätskors volymökning
Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda
Läs merr 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).
1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas
Läs merTentamen i Kemisk termodynamik kl 8-13
Institutionen för kemi entamen i Kemisk termodynamik 22-1-19 kl 8-13 Hjälmedel: Räknedosa BE och Formelsamling för kurserna i kemi vid KH. Endast en ugift er blad! kriv namn och ersonnummer å varje blad!
Läs merApplicera 1:a H.S. på det kombinerade systemet:
(Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R
Läs merLösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors
Tentamen i KE1160 Termodynamik den 13 januari 2015 kl 08.00 14.00 Lösningsförslag Ulf Gedde - Magnus Bergström - Per Alvfors 1. (a) Joule- expansion ( fri expansion ) innebär att gas som är innesluten
Läs merLinköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Läs merFUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)
FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:
Läs merX. Repetitia mater studiorum
X. Repetitia mater studiorum X.2. Olika processer En reversibel process är en makroskopisk process som sker så långsamt i jämförelse med systemets interna relaxationstider τ att systemet i varje skede
Läs merTermodynamik (repetition mm)
0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö
Läs merBetygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),
Läs merKapitel IV. Partikeltalet som termodynamisk variabel & faser
Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är
Läs merU = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)
Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,
Läs merEnergitekniska formler med kommentarer
Energitekniska formler med kommentarer Energiteknik del 2 Anders Bengtsson 19 januari 2011 Sammanfattning Det finns egentligen inga formler som alltid kan användas. Med en formel tänker man sig ofta en
Läs merRepetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum
Läs merTentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats
Läs merjämvikt (där båda faserna samexisterar)? Härled Clapeyrons ekvation utgående från sambandet
Tentamen i kemisk termodynamik den 14 december 01 kl. 8.00 till 13.00 (Salarna E31, E3, E33, E34, E35, E36, E51, E5 och E53) Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast
Läs merMateriens Struktur. Lösningar
Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som
Läs merOmtentamen i teknisk termodynamik (1FA527) för F3,
Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:
Läs merLinköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2
Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
Läs merTentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00
Läs merFysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
Läs merSG1216. Termodynamik för T2
SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl
Läs merPHYS-A5120 Termodynamik period II ho sten Vecka 45
PHYS-A5120 Termodynamik period II ho sten 2016 Vecka 45 1. Bera kna vid vilken ho jd i atmosfa ren som det hydrostatiska trycket a r 2/3 av trycket vid jordytan p0. Temperaturen i atmosfa ren anses vara
Läs merVärmelära. Fysik åk 8
Värmelära Fysik åk 8 Fundera på det här! Varför kan man hålla i en grillpinne av trä men inte av järn? Varför spolar man syltburkar under varmvatten om de inte går att få upp? Varför hänger elledningar
Läs merEntropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.
Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå
Läs merWALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden
Läs merKapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki
Kapitel V Praktiska exempel: Historien om en droppe Baserat på material (Pisaran tarina) av Hanna Vehkamäki Kapitel V - Praktiska exempel: Historien om en droppe Partiklar i atmosfa ren Atmosfa rens sammansa
Läs merTeknisk termodynamik repetition
Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet
Läs merInnehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation
Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar
Läs merPTG 2015 övning 3. Problem 1
PTG 2015 övning 1 Problem 1 Vid vilket tryck (i kpa) kokar vatten ifall T = 170? Tillvägagångssätt : Använd tabellerna för mättad vattenånga 2 1 Åbo Akademi University - TkF Heat Engineering - 20500 Turku
Läs merBestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin
Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer
Läs mer