Räkneövning 5 hösten 2014
|
|
- Karolina Axelsson
- för 8 år sedan
- Visningar:
Transkript
1 Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund
2 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen. Ge två exempel var. (Blundell 29.1) Bose-Einstein distributionen Partiklar som följer Bose-Einstein distributionen kallas bosoner och har heltaligt spinn. Flera bosoner kan anta samma kvanttillstånd i Bose-Einstein distributionen. Exempel: fotoner, leptoner Fermi-Dirac distributionen Partiklar osm följer Fermi-Dirac distributionen kalls för fermioner och har halvtaligt spinn ( 1 2n, där n är udda). Endast en fermion i samma system kan ha ett givet kvanttillstånd. Exempel: elektroner, protoner 2
3 2. För en perfekt ideal gas av bosoner (massan m) vid en temperatur T under den kritiska kondenseringtemperaturen T c fås den molära värmekapaciteten enligt ( ) T 3/2 C v = 1.93 R, T < T c (1) T c Bestäm för denna gas vid temperatur T < T c : (i) Den inre energin per mol, (ii) entropin per mol, (iii) trycket. (Statistical Physics, F. Mandl, uppg. 11.4) Ekvationen för T c hittas på sidan 2 i anteckningarna för Bose-Einstein arbetet på hemsidan n är i det här fallet partikel densiteten N V och inte det vanliga molantalet n = N N A, där N är antalet och N A är avogadros konstant. T c n 2/3 ( N ) 2/3 = V i) Inre energin per mol: E = E ii) Entropin per mol de = Q dq = Q = T C V T dt C V dt = T ( = 1.93 k B N A m 3/2 k 3/2 B T 1.93 R ( N V ) 2/ ) 3/2 V N 3/2 T dt T 3/2 dt = m3/2 V /2 3 n k5/2 B T 5/2 =.128 (k BT ) 5/2 m 3/2 3 V n S = S ds = = Q T 1 T T dq = C V T dt R ( N V ) 2/3 = 1.93 k B N A m 3/2 k 3/2 B = m3/ /2 3 = m3/ /2 3 ( 3/2 T 1/2 dt ) 1 3/2 V T T 1/2 dt N V n k5/2 B T 3/2 V n k5/2 B T 5/2 T = 5 E 3 T 3
4 iii) Trycket F = U ST = E ST ( ) F = p T (E ST ) = (E 53 ) E df = SdT pdv p = = 2 3 (.128 (k BT ) 5/2 m 3/2 3 V n =.85 (k BT ) 5/2 m 3/2 3 n ) = ( ) 2 3 E = (k BT ) 5/2 m 3/2 3 n 4
5 3. Varför fungerar inte den klassiska beskrivningen av svartkroppsstrålningen? Visa att de =, och skriv ett par meningar om innebörden. Visa även att intde < ifall strålningen beskrivs av Plancks lag. Lagen beskriver uppmätta resultat väldigt bra. Appendix C i Blundell kan vara till nytta. Enligt klassiska resonemang finns det ingen minsta våglängd (största frekvens) för elektromagnetisk strålning (den ultravioletta katastrofen). I det här fallet gäller E(ν) = konstant ν, då ν. En fotongas kan i så fall ta emot oändligt med energi. I exemplet med en kavitet innuti en låda, kunde lådan i praktiken avge all sin energi i form av strålning. Enligt påståendena ovan gäller speciellt de =, om strålningen beter sig enlgit Rayleigh-Jenns lag. Enligt Plancks lag beskrivs svartkroppsstrålningen av de(ν) = 8πh ν dν, där ν är frekvensen. ν 3 c 3 e kt h de = de = 8πh c 3 ν 3 e hβν 1 dν t = hβν K = 8πh c 3 ( ) 1 4 t 3 de = K hβ e t 1 dt = konstant I B (3), där I B är Bose-integralen som beskrivs i Appendix C.4 i Blundell. Man kan beräkna integralens exakta värde, men det ärcker att konstatera att de = konstant I B (3) <. Således är också summan av energierna som en fotongas kan ha även ändlig. E i < i de < 5
6 4. En sfärisk satellit kretsar kring jorden på nära avstånd och är i termisk balans med strålningen från solen. Sedan flyttar sig satelliten i jordens skugga. Hur förändras dess temperatur genast efter att den hamnat i skuggan? Anväd Stefan-Boltzmann-lagen: I = P/A = σt 4, där P är effekten med vilken en svartkropp strålar. Du kan anta att jordens strålning är försumbar, och att satelliten är en svartkropp. Dess specifika värmekapacitet är c = 1 kj kgk, samt r = 1m och m = 1 ton. Tips: Vad är satellitens temperatur vid denna tidpunkt? Ur likheten I = P A = σt 4 fås att solens strålningseffekt (luminositet) är P S = A S σt 4 S, där A S är solens area och T S solens yttemperatur. Den sprids över en yta 4πd 2 (en sfär runt solen, där d är avståndet mellan satelliten och solen) och träffar satellitens yta πr 2 (en projektion på satelliten = 2D cirkel, där r är radien på skuggan) vinkelrätt. För satelliten gäller då: πr 2 P in = P S 4πd 2 = 4πR2 SσTS 4 πr 2 4πd 2 = σt Sπ 4 R2 S r2 d 2 Satellitens strålningseffekt är enligt antagandet P ut = 4πr 2 σt 4 sat, där T sat är satellitens temperatur. Eftersom satellitens temperatur hålls (till att börja med) konstant, gäller P in = P ut dvs. om man följer tipset och löser ut temperaturen för satelliten: σts 4 RS 2 r2 d 2 = 4πr 2 σt 4 sat T 4 sat = T 4 S R 2 S 4d 2 T sat = 4 T 4 S R 2 S 4d 2 28 K d är ungefär samma som jordens avstånd till solen. Inget arbet görs och all energi som satelliten förlorar när den hamnar i skuggan är ur dess egna värmeenergi, och kan beräknas P ut = dq dt = mcdt sat dt dt sat dt = 4πr 2 σt 4 sat = 4πr2 mc σt sat 4 = πσt S 4 mc R 2 S r2 d 2 = K s 4.3 mk s 6
NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.
1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså
Studieanvisningar i statistisk fysik (SI1161) för F3
Studieanvisningar i statistisk fysik (SI1161) för F3 Olle Edholm September 15, 2010 1 Introduktion Denna studieanvisning är avsedd att användas tillsammans med boken och exempelsamlingen. Den är avsedd
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början
Räkneövning 2 hösten 2014
Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
X. Repetitia mater studiorum
X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system
X. Repetitia mater studiorum. Termofysik, Kai Nordlund
X. Repetitia mater studiorum Termofysik, Kai Nordlund 2006 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system
Milstolpar i tidig kvantmekanik
Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik
X. Repetitia mater studiorum
X. Repetitia mater studiorum X.2. Olika processer En reversibel process är en makroskopisk process som sker så långsamt i jämförelse med systemets interna relaxationstider τ att systemet i varje skede
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två
Tentamen Fysikaliska principer
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2014 14:00
F2: Kvantmekanikens ursprung
F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som
Fysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.
Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell
Tentamen Fysikaliska principer
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 23 april 2014 8:00 12:00
1. Elektromagnetisk strålning
1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst
David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Entropi 1.1 Inledning Entropi införs med relationen: S = k ln(ω (1 Entropi har enheten J/K, samma som k som är Boltzmanns konstant. Ω är antalet
Solens energi alstras genom fusionsreaktioner
Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen
Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation
Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
ANDREAS REJBRAND Statistisk fysik Wiens förskjutningslag: hur snäll är solen?
ANDREAS REJBRAND 28-4-2 Statistisk fysik http://www.rejbrand.se Wiens förskjutningslag: hur snäll är solen? Plancks strålningslag och Stefan Boltzmanns lag Med hjälp av statistisk fysik och kvantmekanik
Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.
Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!
PTG 2015 övning 1. Problem 1
PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt
Prov Fysik B Lösningsförslag
Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består
10. Kinetisk gasteori
10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som
Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar
elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Re(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
Strömning och varmetransport/ varmeoverføring
Lektion 10: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värmestrålning är en av de kritiska komponent vid värmeöverföring i en rad olika förbränningsprocesser. Ragnhild
Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00
EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:
Fysik TFYA86. Föreläsning 11/11
Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Tentamen Fysikaliska principer
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 8 april 2015 8:00 12:00
Termodynamik och inledande statistisk fysik
Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats
s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)
18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.
If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed
Exempel på statistisk fysik Svagt växelverkande partiklar
Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.
Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
Tentamen i KFK080 Termodynamik kl 08-13
Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00
FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du
Miniräknare, formelsamling
Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik B Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-29 Tid: 9.00-15.00 Kod:... Grupp:... Poäng:... Betyg U G VG... Tentamen i Fysik
Tentamen, Kvantfysikens principer FK2003, 7,5 hp
Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
LÖSNING TILL TENTAMEN I STJÄRNORNA OCH VINTERGATAN, ASF010
Teoretisk fysik och mekanik Institutionen för Fysik och teknisk fysik Chalmers &Göteborgs Universitet LÖSNING TILL TENTAMEN I STJÄRNORNA OCH VINTERGATAN, ASF010 Tid: 25 augusti 2010, kl 8 30 13 30 Plats:
Miljöfysik. Föreläsning 2. Växthuseffekten Ozonhålet Värmekraftverk Verkningsgrad
Miljöfysik Föreläsning 2 Växthuseffekten Ozonhålet Värmekraftverk Verkningsgrad Två viktiga ekvationer Wiens strålningslag : λ max max = 2.90 10 4 3 [ ] σ = Stefan-Boltzmanns konstant = 5.67 10 mk = våglängdens
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,
Torsdag 30 oktober. Brownsk rörelse, svartkroppsstrålning (Arne, Janusz)
Torsdag 30 oktober Brownsk rörelse, svartkroppsstrålning (Arne, Janusz) De kommande föreläsningarna kommer att ägnas åt det vi till vardags kallar "modern fysik", dvs. de nya principer man blev nödgad
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda
Övningstentamen i KFK080 för B
Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,
Information om kursen
Information om kursen Föreläsningar: Magnus Axelsson och Emma Wikberg Räkneövningar: Thomas Kvorning Kurshemsida: www.fysik.su.se/~emma/kvantprinciperna Kontaktinformation Schema Skannade föreläsningsanteckningar
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,
Föreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Välkomna till Kvantfysikens principer!
Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum
Hertzsprung-Russell-diagrammet Ulf Torkelsson
1 Stjärnors temperatur Föreläsning 26/2 Hertzsprung-Russell-diagrammet Ulf Torkelsson Om vi antar att en stjärna strålar som en svartkropp så kan vi bestämma dess temperatur genom att studera dess spektrum.
Astrofysikaliska räkneövningar
Astrofysikaliska räkneövningar Stefan Bergström, Ylva Pihlström Ulf Torkelsson 23 november 2004 Uppgifter 1. Dubbelstjärnesystemet VV Cephei har en period P = 20.3 år. Stjärnorna har massorna M 1 M 2 20
II. Fotonen. II.1. Svartkroppsstrålning. En så kallad svartkropp absorberar all strålning som faller på den, utan att reflektera något.
II. Fotonen Vi kommer i detta kapitel att behandla den allra tidigaste bakgrunden till kvantfysiken, nämligen svartkroppsstrålning och energins kvantisering. Materiens Struktur I, 213 1 II.1. Svartkroppsstrålning
Lösningsförslag Inlämningsuppgift 1 elstatikens grunder
Inst. för fysik och astronomi 017-11-08 1 Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 017 (1.1) Laddningen q 1 7,0 10 6 C placeras
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Kapitel IV. Partikeltalet som termodynamisk variabel & faser
Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är
Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005
Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
Termodynamik Föreläsning 4
Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner
Miljöfysik. Föreläsning 1. Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget
Miljöfysik Föreläsning 1 Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget Miljöfysik FKU200 7.5 hp Kursbok : Miljöfysik : Energi för hållbar utveckling (M. Areskoug
Termodynamiska potentialer Hösten Assistent: Frans Graeffe
Räkneövning 3 Termodynamiska potentialer Hösten 206 Assistent: Frans Graeffe (03-) Concepts in Thermal Physics 2.6 (6 poäng) Visa att enpartielpartitionsfunktionen Z för en gas av väteatomer är approximativt
Vågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:
Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten
4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella
KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats
Räkneövning 5 hösten 2014
ermofysikens Grunder Räkneövning 5 hösten 2014 Assistent: Christoffer Fridlund 13.10.2014 1 1. Entalin och Maxwell-relation. Entalin H definieras som H U +. isa genom att anvnäda entalins defintion samt
Kvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan
Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Tentamen i teknisk termodynamik (1FA527)
Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare
KEMISK TERMODYNAMIK. Lab 1, Datorlaboration APRIL 10, 2016
KEMISK TERMODYNAMIK Lab 1, Datorlaboration APRIL 10, 2016 ALEXANDER TIVED 9405108813 Q2 ALEXANDER.TIVED@GMAIL.COM WILLIAM SJÖSTRÖM Q2 DKW.SJOSTROM@GMAIL.COM Innehållsförteckning Inledning... 2 Teori, bakgrund
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
1 Termisk rörelse - Statistisk fysik
1 Termisk rörelse - Statistisk fysik Denna stencil syftar till att ge en kort introduktion i hur temperatur påverkar gaser, vätskor och fasta ämnen på en mikroskopisk nivå. Man brukar kalla detta statistisk
Kap 12 termodynamiska tillståndsrelationer
Vissa storheter kan man enkelt mäta (T, P, m, V). Kap 12 termodynamiska tillståndsrelationer Andra storheter kan man få fram genom enkla relationer (ρ, v =spec. volym). Vissa storheter kan man varken mäta
Rörelsemängd och energi
Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )
Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.
Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha
Introduktion. Stjärnor bildas, producerar energi, upphör producera energi = stjärnor föds, lever och dör.
Stjärnors födelse Introduktion Stjärnor består av gas i jämvikt: Balans mellan gravitation och tryck (skapat av mikroskopisk rörelse). Olika källor till tryck i olika utvecklingsskeden. Stjärnor bildas,
ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04
Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten
Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi
Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens
Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2
Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om
Instuderingsfrågor, Griffiths kapitel 4 7
Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor