F2: Kvantmekanikens ursprung
|
|
- Lena Persson
- för 8 år sedan
- Visningar:
Transkript
1 F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som vågor
2 I slutet av 1800-talet trodde fysikerna att dom hade fått kläm på hur allt fungerade. Galileo Galilei Isaac Newton James Clerk Maxwell Den klassiska fysiken var färdig utredd.
3 Energins Kvantisering Tre experiment kastade en skugga på den klassiska fysiken och vår förståelse av hur vår omgivning är uppbyggd och fungerar, speciellt på hur energin lagras ett elektromagnetiskt fält, i ett molekylärt system eller I en atom. Dessa experiment var: Ljusprofilen från ett objekt och dess relation till objektets temperatur svartkroppsstålning. Hur energi (värme) lagras en fast substans värmekapacitet hos monoatomära kristaller. Spektroskopin
4 Experiment 1: Svartkroppsstrålning Varför studerar vi det? Astronomerna undrade om man på ett enkelt sätt kunde bestämma temperaturen hos en stjärna från färgen på det ljus som den sänder ut.
5 Exempel från vår omgivning Ju vitare objektet är dess varmare är det.
6 Låt oss designa ett experiment!
7 Experimentella observationer
8 Empiriska samband: Wien's displacement law
9 Dags att konstruera en modell! Vi vill veta hur intensiteten i strålningen beror av våglängden hos ljuset, λ, och temperaturen, T. Vi kallar denna egenskap för tillstånds-densiteten (eng. density of states), som betecknas ρ(λ,t ) den beskriver hur mycket energi som finns vid våglängden λ och temperaturen T.
10 Vad har vi som bär på energin? Jo, stående vågor.
11 Ståendevågor. Gränsvärden :sin(ϕ( x ))=0 sin( ϕ(x =0))=0 och sin (ϕ (x=l))=0 ϕ=n π ger 2 x /λ=n, n=0,1,2,3,...
12 Polarization av ljuset! Ljuset kan oscillera i två oberoende rikningar. Detta ger en faktor av 2 som vi inte får glömma.
13 Hur beräknar vi tillståndsdensiteten? N (λ) E ( λ, T ) ρ(λ,t )= volymen där N ( λ): antal tillstånd E : genomsnittsenergin
14 Antal tillstånd, N, i 1D Totala antalet tillstånd, M, som har en λ kortare än λmax är 2 2 L M= λ N (λ)d λ =M (λ d λ) M ( λ) 4L N (λ)= 2 λ
15 Antal tillstånd, N, i 2D 2 2 π 2 L M (λ)= ( ) λ 4 4πL N (λ)= 3 λ 2
16 Antal tillstånd, N, i 3D π 2 L M (λ)= ( ) 8 3 λ 8π L N (λ)= 4 λ 3
17 Låt oss ta en paus! 8π ρ(λ,t )= 4 E ( λ,t ) λ nu behöver bara finna E (λ, T ): genomsnittsenergin
18 Klassiska Oscillatorn (Pendeln) För små θmax är frekvensen konstant! E T = Ekinetisk + E potential vi räknar lätt ut ET som ET (θ max )=mg L sin (θmax ) Genom att öka θmax ökar ET.
19 Ekvitationsteoremet, klassisk kinetisk teori I ett system med oscillatorer som är i termisk jämvikt är medelkinetiska energin fördelat lika på all oscillatorer. Denna beräknas från Bolzmanns distributionen enligt E / kt P( E)= e kt, där k är Boltzmanns konstant detta ger 0 E P(E)dE E = =kt 0 P ( E) de
20 Rayleigh-Jeans ekvation 8π ρ(λ,t )= 4 kt λ
21 Plancks bidrag Planck sa (1901): Antag att energin inte kan överföras i godtyckligt små steg utan att det måste ske i inkrement av energi kvanta. I klassisk mekanik så ökade vi bara amplituden på all oscillatorer när vi tillförde mera energi. Enligt den nya modellen måste vi göra detta i steg av energi kvanta. nhc E=nh ν= λ
22 Låt oss använda Planks antagande och räkna ut medelenergin för oscillatorer med vågländen λ, där vi summerar över att 0, 1, 2, 3... sådana oscillatorer finns samtidigt. nhc λ kt e P( E)= kt detta ger n =0 E P( E)dE hc E = = hc/ λ kt n=0 P (E) de λ (e 1)
23 Plancks distribution 8 π hc ρ(λ,t )= 5 hc / λ kt λ (e 1) Observera hur distribution går mot noll både för korta och långa våglängder! Den totala energin är nu begränsad. Teori och experiment stämmer överens. Det elektromagnetiska fältet är kvantiserat.
24 Experiment 2: Värmekapacitet Varför studerar vi det I början av 1800-talet studerade P.-L. Dulong och A.-T. Petit värmekapaciteten hos monoatomära kristaller för att förstå deras inre struktur. Man antog att atomerna sitter i ett jämviktsläge och oscillerar som klassiska oscillatorer. Detta ger en inre molär energi på U m =3 N A kt =3 RT, enligt ekvipartitionsteoremet och Um C V,m =( ) =3 R T V
25 Dulong-Petits ekvation Lagen säger att värmekapaciteten är den samma för alla atomer den endast är en funktion av antalet atomer. Genom att mäta värmekapaciteten och massan för en fix volym av en mono-atomär kristall kan man bestämma atomvikten för atomerna. Allt var frid och fröjd tills kyltekniken utvecklades och det visade sig att värmekapaciteten inte var konstant utan går mot 0 när T går mot 0 K.
26 Einsteins bidrag Inspirerad av Planks arbete med svartkroppsstrålning Einstein föreslog 1905 att atomvibrationerna var kvantiserade med en frekvens 2 θ / 2T ν. θ e E C v,m (T )=3 R( ) ( θ / T ) T e 1 E E där θ E =h ν /k
27 Einsteins formel
28 Debyes förbättring Anta att där finns ett antal oscillatorer med frekvenser från 0 upp till ett max värde, νd. 3 T CV,m =9 R ( ) θd θ D /T 0 4 x x e dx x 2 (e 1) Atomvibrationer är kvantiserade.
29 Experiment 3: Spektroskopi Indirekta bevis för att väteatomens tillstånd är kvantiserade.
30 Spektroskopi
31 Våg-partikel dualiteten Vi har nu etablerat att elektromagnetisk strålning och oscillerade atomer är kvantiserade. Vi skall nu studera experimentella bevis som bryter ner vår uppfattning om att elektromagnetisk strålning är vågor och att elektroner är partiklar.
32 Fotoelektriska Effekten Genom att belysa en metallyta med ljus försöker vi visa att ljus uppträdder som partiklar, fotoner, med en energi motsvarande, E=hν.
33 FEE, Obervationer Inga elektroner skjuts ut förrän frekvensen hos ljuset är över ett visst gränsvärde, att öka intensiteten för ljuset hjälper inte. Den kinetiska energin hos enskilda utskjutna elektroner ökar linjärt med frekvensen, intensiteten spelar ingen roll. Elektroner skjuts ut även vid låga intensiteter om frekvensen är över gränsvärdet. Gränsvärdet beror på materialet vi skjuter på.
34 Fotoelektriska Effekten
35 Fotoelektriska Effekten Resultaten indikerar att ljuset måste innehålla tillräckligt med energi för att bryta loss elektronen från materialet, arbetsfunktionen, Φ. (jonisationspotential). Resterande energi omvandlas till kinetisk energi enligt, 1 2 E k = m e v =h ν Φ 2
36 Bevis för fotonens excistens Fotoejektion sker endast om strålningen har en frekvens större än gränsvärdet strålningen är i form a fotoner med en bestämd energi Elektronens kinetiska energi öka med frekvensen i en klassik bild ökar den med intensiteten. När strålningen kolliderar med elektronen försvinner den - fotonen levererar hela sin energi och försvinner, i en klassik modell minskar intensiteten. Ljus, vågor, beter sig som partiklar med en fix energi.
37 Elektrondiffraktion Davisson-Germer experimentet (1925) En nickel yta besköts med en elektronstråle vid olika infallsvinklar, θ, och intensiteten hos den reflekterade stålen undersöktes. Davisson och Germer
38 Elektrondiffraktion Davisson-Germer experimentet (1925) En nickel yta besköts med en elektronstråle vid olika infallsvinklar, θ. Om elektronerna är partiklar så är intensiteten på de utgående elektronerna konstant för all θ! Observerad strålnings intensitet som funktion av θ.
39 Elektrondiffraktion Men vad händer om vi istället antar att elektronen är en våg? de Broglie föreslog 1924 att partiklar som rör sig med ett rörelsemoment p=mv är associerad med en våg med våglängden h h λ= = p mv
40 Elektrondiffraktion Destruktiv interferens Konstruktiv interferens
41 När ser vi det? h h λ= = p mv Partiklar med högt rörelsemoment har kort våglängd. Stora, tunga, objekt har kort våglängd. Kort våglängder gör det svårt att upptäcka några interferensmönster. C60 har i experiment uppvisat interferens. Elektroner och molekyler beter sig som vågor!
42 Sammafattning Vi har sett tre experiment som visar att elektromagnetisk strålning, molekyläravibrationer, och atomära tillstånd är kvantiserade. Vi har sett två experiment som visar: att elektromagnetisk strålning kan bete sig som partiklar och att elektroner och molekyler beter sig som vågor. Vi kallar detta våg-partikel dualiteten. Dessa obervationer kräver att vi överger den klassiska mekaniken, om vi vill beskriva elektroner, atomer och molekyler.
Vågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Milstolpar i tidig kvantmekanik
Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik
1. Elektromagnetisk strålning
1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början
If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.
If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed
F3: Schrödingers ekvationer
F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så
Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.
Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!
Kvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
Välkomna till Kvantfysikens principer!
Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum
Kapitel 4. Materievågor
Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett
Fotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
Information om kursen
Information om kursen Föreläsningar: Magnus Axelsson och Emma Wikberg Räkneövningar: Thomas Kvorning Kurshemsida: www.fysik.su.se/~emma/kvantprinciperna Kontaktinformation Schema Skannade föreläsningsanteckningar
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Fysik TFYA68. Föreläsning 11/14
Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik
Re(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Räkneövning 5 hösten 2014
Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund 1.12.214 1 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen.
Fysik TFYA86. Föreläsning 10/11
Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!
7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
Kvantfysik - introduktion
Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Strålningsfält och fotoner. Kapitel 25: Vågor och partiklar
Strålningsfält och fotoner Kapitel 25: Vågor och partiklar Ljus: vågor eller partiklar? Modellen av ljus som partiklar, fotoner, gör det möjligt att förklara fenomen som absorption och emission av ljus
Strömning och varmetransport/ varmeoverføring
Lektion 10: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värmestrålning är en av de kritiska komponent vid värmeöverföring i en rad olika förbränningsprocesser. Ragnhild
Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
Kapitel 1. Kvantmekanik
Kapitel 1. Kvantmekanik [Understanding Physics: 13.1-13.6] I början av 1900 talet upptäcktes fenomen, som inte kunde förklaras med hjälp av den klassiska fysikens lagar. Däremot kunde de förklaras, om
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 8 Vågrörelselära & Kvantfysik, FK2002 9 januari 2012 Problem 40.1 Vad är våglängden för emissionsmaximum λ max, hos en svartkropps-strålare med temperatur a) T 3 K (typ kosmiska mikrovågsbakgrunden)
c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning
Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska
1.5 Våg partikeldualism
1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens
The nature and propagation of light
Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
@
Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Exempel på statistisk fysik Svagt växelverkande partiklar
Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,
Kvantmekanik - Gillis Carlsson
Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,
Torsdag 30 oktober. Brownsk rörelse, svartkroppsstrålning (Arne, Janusz)
Torsdag 30 oktober Brownsk rörelse, svartkroppsstrålning (Arne, Janusz) De kommande föreläsningarna kommer att ägnas åt det vi till vardags kallar "modern fysik", dvs. de nya principer man blev nödgad
Vågfysik. Superpositionsprincipen
Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor
BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/
Dopplereffekt och lite historia
Dopplereffekt och lite historia Outline 1 Lite om relativitetsteorins historia 2 Dopplereffekt och satelliter 3 Dopplereffekt och tidsdilatation L. H. Kristinsdóttir (LU/LTH) Dopplereffekt och lite historia
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Hur påvisas våg-partikeldualiteten
GYMNASISKOLAN KNUT HAHN NV09NV Hur påvisas våg-partikeldualiteten Vilka fenomen kräver vad och finns det någon praktisk användning för dessa? Kevin Pearson 2012-03-18 Denna rapport innefattar olika fenomen
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016
Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två
Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2
Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om
Lösningar Heureka 2 Kapitel 14 Atomen
Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla
Kvantfysikens grunder. Mikael Ehn Period III, 2017
Kvantfysikens grunder Mikael Ehn Period III, 2017 1 Kvantfysikens grunder, 2017 1. Introduktion Kapitel 1. Introduktion 2 Kvantfysikens grunder, 2017 1. Introduktion Överblick Överblick av kursinnehållet
Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.
Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Svar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
Elektromagnetisk strålning. Lektion 5
Elektromagnetisk strålning Lektion 5 Bestämning av ljusets hastighet Galilei lyckades inte bestämma ljusets hastighet trots flitiga försök Ljuset färdas med en hastighet av 300000 km/s genom tomma rymden
Kvantfysikens principer, FK2003 Extramaterial 2: Stern-Gerlach med fotoner, v1.1
Marcus Berg, 008-06-04 Kvantfysikens principer, FK003 Extramaterial : Stern-Gerlach med fotoner, v. Det står inget om S-G med fotoner i Feynman, så det här extrabladet utgör kurslitteratur för den här
TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve. Laboration i Kvantfysik för F
TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve Laboration i Kvantfysik för F Syfte Laborationen syftar till att demonstrera två fysikaliska system, väteatomen och elektroner som strömmar genom
Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
1.7. Superposition av två vågor med något olika frekvens
1.7. Superposition av två vågor med något olika frekvens [Understanding physics: 12.19-12.20] Betrakta två gående vågor som har samma amplitud A och begynnelsefas φ, men något olika frekvens, och således
Fysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
Kapitel 35, interferens
Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson
Mer om E = mc 2. Version 0.4
1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om
Strömning och varmetransport/ varmeoverføring
Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Preliminärt lösningsförslag till Tentamen i Modern Fysik,
Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Andra föreläsningen kapitel 7. Patrik Lundström
Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den
Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).
LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell
Rydbergs formel. Bohrs teori för väteliknande system
Chalmers Tekniska Högskola och Göteborgs Universitet Sektionen för Fysik och Teknisk Fysik Arne Rosén, Halina Roth Uppdaterad av Erik Reimhult, januari A4 Enelektronspektrum Namn... Utförd den... Godkänd
TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M
TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M 2012-01-13 Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv
Det står inget om S-G med fotoner i Feynman, så de här extrasidorna utgör kurslitteratur
Kvantfysikens principer, FK003 Extramaterial : Stern-Gerlach med fotoner Marcus Berg, 008--0 Det står inget om S-G med fotoner i Feynman, så de här extrasidorna utgör kurslitteratur för den här biten av
Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR
1 Den Speciella Relativitetsteorin
1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från
6. Kvantfysik Ljusets dubbelnatur
6. Kvantfysik Ljusets dubbelnatur Ljusets dubbelnatur Det som normalt bestämmer vilken färg vi upplever att ett visst föremål har är hur bra föremålet absorberar eller reflekterar de olika våglängderna
2.6.2 Diskret spektrum (=linjespektrum)
2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.
Föreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Fysik (TFYA14) Fö 5 1. Fö 5
Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen
3.7 γ strålning. Absorptionslagen
3.7 γ strålning γ strålningen är elektromagnetisk strålning. Liksom α partiklarnas energier är strålningen kvantiserad; strålningen kan ha endast bestämda energier. Detta beror på att γ strålningen utsänds
Svar och anvisningar
15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är
Edwin Hubbles stora upptäckt 1929
Edwin Hubbles stora upptäckt 1929 Edwin Hubble Edwin Hubbles observationer av avlägsna galaxer från 1929. Moderna observationer av avlägsna galaxer. Bild: Riess, Press and Kirshner (1996) Galaxerna rör
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Kosmologi - läran om det allra största:
Kosmologi - läran om det allra största: Dikter om kosmos kunna endast vara viskningar. Det är icke nödvändigt att bedja, man blickar på stjärnorna och har känslan av att vilja sjunka till marken i ordlös
Alla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
2.16. Den enkla harmoniska oscillatorn
2.16. Den enkla harmoniska oscillatorn [Understanding Physics: 13.16-13.17] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten)
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats
Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse
Vad är strålning Två typer av strålning Partikelstrålning Elektromagnetisk strålning Föreläsning, 27/1 Marica Ericson Två typer av strålning James Clerk Maxwell Partikelstrålning Radioaktiva kärnpartiklar
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s
140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger
16. Spridning av elektromagnetisk strålning
16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består
12 Elektromagnetisk strålning
LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i
ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se. Elektromagnetisk strålning
ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se Elektromagnetisk strålning Innehållsförteckning ELEKTROMAGNETISK STRÅLNING... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 SPEKTRET... 3 Gammastrålning...
KVANTMEKANIKENS HISTORIA. Solvay Konferensen 1927
KVANTMEKANIKENS HISTORIA Solvay Konferensen 1927 If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet Niels Bohr The more success quantum theory has, the sillier it looks.
Strömning och varmetransport/ varmeoverføring
Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens
LÖSNING TILL TENTAMEN I STJÄRNORNA OCH VINTERGATAN, ASF010
Teoretisk fysik och mekanik Institutionen för Fysik och teknisk fysik Chalmers &Göteborgs Universitet LÖSNING TILL TENTAMEN I STJÄRNORNA OCH VINTERGATAN, ASF010 Tid: 25 augusti 2010, kl 8 30 13 30 Plats:
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,
Dugga i FUF040 Kvantfysik för F3/Kf3
Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!
Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1
Föreläsning 6 Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan Fk3002 Kvantfysikens grunder 1 Betrakta ett experiment med opolariserade elektroner dvs 50% är spinn-upp och 50%