Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.
|
|
- Susanne Johansson
- för 8 år sedan
- Visningar:
Transkript
1 Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall! Speciellt: Väelverkan mellan elektroner och atomkärnor = Kemi! ^ H = E 1
2 Historia 1800-t: Klassisk mekanik ansågs komplett, men en del fenomen kunde inte förklaras: A Spektrallinjer: Eciterad gas: B Svartkroppsstrålning: Strålning från varmt föremål vid viss temperatur Klassiskt: då 0 Ultravioletta katastrofen Ma Planck 1900: Elektromagnetiska fältets energi är kvantiserad: E heltal konstanten = h = Js = frekvens = c/ Perfekt överensstämmelse med eperiment, men den teoretiska motiveringen oklar
3 C Värmekapacitet för kristaller: Klassiskt idealt: Cv,m = 3 R Observerat: Cv,m 0 då T 0 K Einstein 1905: Vibrationsenergin kvantiserad: E heltal Prop. konstanten = h Cv,m 0 då T 0 K D Fotoelektriska effekten: Emission av elektroner från en metallyta när den bestrålas med UV-strålning: Samma som ovan! Klassiskt: Observerat: { { antal e ljusets I och ljusets I och Ekin antal e ljusets I enbart ljusets enbart Ekin Dessutom måste vara större än ett visst minimum-värde för att emittering ska ske Einstein 1905: Ett ljuskvantum med energin E = h kolliderar med, och avger sin energi till, en elektron bunden med energin m e v h 3
4 h = Plancks konstant! Energin hos ljuset: E = h ljuskvantum eller foton Det elektromagnetiska fältet har partikelegenskaper E Diffraktion av elektronstråle: Interferensmönster på samma sätt som för ljus som passerar genom ett gitter Davisson & Germer 195, Thomson 195 De Broglie 194: Fria partiklar med rörelsemängd p kan associeras med en våglängd : h p m v p Materien partiklar har vågegenskaper D + E Våg-Partikeldualiteten Eftersom partiklar uppför sig som vågor, så behöver vi en vågekvation för att beskriva deras dynamik Schrödinger 196 4
5 5 7B.1-3, 7C.4 Schrödingerekvationen Schrödingerekvationen: 1 partikel, 1 dim. E V d d m där V = Potentiella energin E = Totala energin = Vågfunktionen för partikeln 3 dimensioner:,,,,,, z y E z y z y V z y m eller kortare: E V m där z y Postulat! h Laplaceoperatorn
6 Vad är? Postulat: Vågfunktionen för ett system t.e. en partikel beskriver fullständigt tillståndet för systemet En tolkning/aspekt av Borns tolkning: Sannolikheten att finna en partikel inom volymen d = d V = d dy dz kring punkten,y,z är lika med:, y, z d Dvs. r är sannolikhetsfördelningen att finna partikeln i punkten r =,y,z. Dessutom måste gälla att sannolikheten att finna partikeln någonstans överhuvudtaget måste vara lika med 1 hela, rummet y, z d Normering av 1 6
7 7C.1 Tillbaka till vågekvationen: d 1 dim.: V m d E Jämför klassiskt: K + V = E E kin + E pot = E m v V Vi skriver Schrödingerekvationen analogt: Kˆ Vˆ E eller Hˆ E där Hˆ Kˆ Vˆ Ĥ Matematik: En operator är en process som verkar på en d df funktion e: derivering f och ger som d resultat en annan funktion e: Beteckning operator:  e: d d E Hamiltonoperatorn d d  d 7
8 I kvantmekaniken gäller nedan 1 dim.: Vˆ V Kˆ m d d Postulat: Varje mätbar storhet observabel motsvaras av en operator i kvantmekaniken E: Jämför klassiskt: Om kvantmekaniskt analogt: Enligt ovan: Kˆ Kˆ K pˆ m m v m d d m v m p m d pˆ i d operatorn för rörelsemängd Matematik: MB3.1 Komplea tal: z = a + b i a,b : reella tal. a : realdelen, b : imaginärdelen i är en lösning till ekvationen: = 1 d.v.s. ii = 1. i kallas för imaginärenheten. Komplekonjugatet: z* = a b i z = z*z = a + b ia b i = a b i = a + b 8
9 Betrakta ev 3-dim. Schrödingerekvationen: ˆ H r E r, r, y, z där ˆ H V r m Schrödingerekv. är en slags differentialekvation. Matematik: Om  f = a f, där a är ett tal, så är f en egenfunktion till  och a är dess egenvärde. Ekvationen kallas för en egenekvation. är en egenfunktion till Ĥ, och E är motsvarande egenvärde. Schrödingerekv. är en egenekvation. 9
10 7C. Relationen till eperiment Mätning av storheter. Antag att observabeln A motsvaras av operatorn Â. Postulat: Om systemet befinner sig i tillstånd som är en egenfunktion till  med egenvärde a d.v.s.  = a, så ger en enskild mätning av A resultatet a. Antag nu att är en godtycklig vågfunktion, som inte nödvändigtvis är en egenfunktion till Â. Definiera Förväntningsvärdet av A: hela  d rymden Postulat : Medelvärdet av A från en serie mätningar av A = förväntningsvärdet. A hela  d rymden 10
11 7C.3 Heisenbergs osäkerhetsrelation Heisenberg 197: p p = osäkerhet i rörelsemängd längs -aeln = osäkerhet i läge längs -aeln Omöjligt att känna p och noggrannare än så samtidigt. Man säger att p och är komplementära observabler. Detta är en konsekvens av vågkaraktären hos materien. Anm: Man kan under vissa antaganden skriva om osäkerhetsrelationen som: E t 11
12 7C. Schrödingers katt Överkurs! Ett system kan beskrivas av en vågfunktion som inte är en egenfunktion till en observabels operator En sådan vågfunktion kan alltid skrivas som en linjärkombination av egenfktionerna till operatorn 1,,... är egenfunktionerna till operatorn  med egenvärdena a1, a,...,, d.v.s. Âi= aii, i=1,,...: c 1 1 c där c 1, c,... är koefficienter, d.v.s. tal. Detta kallas för en superposition av tillstånd. Men en enskild mätning av ger fortfarande som resultat precis ett av egenvärdena a 1, a,... Dessutom är sannolikheten för att man ska få resultatet a j lika med c j. Man säger att systemet kollapsar till tillståndet j med vågfunktionen j vid mätningen. E: Schrödingers katt 1
Kvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Vågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Milstolpar i tidig kvantmekanik
Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik
Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?
Inte mycket verkar säkert här...? Våg-partikeldualitet Ett system kan ha både vågoch partikelegenskaper i samma experiment. Vågfunktionen har en sannolikhetstolkning. Heisenbergs osäkerhetsrelation begränsar
Kapitel 4. Materievågor
Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett
Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!
KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel
c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning
Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska
Fysik TFYA86. Föreläsning 10/11
Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!
Fysik TFYA68. Föreläsning 11/14
Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik
Andra föreläsningen kapitel 7. Patrik Lundström
Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den
Välkomna till Kvantfysikens principer!
Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum
Information om kursen
Information om kursen Föreläsningar: Magnus Axelsson och Emma Wikberg Räkneövningar: Thomas Kvorning Kurshemsida: www.fysik.su.se/~emma/kvantprinciperna Kontaktinformation Schema Skannade föreläsningsanteckningar
1.5 Våg partikeldualism
1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens
F2: Kvantmekanikens ursprung
F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som
Kvantmekanik - Gillis Carlsson
Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,
Atom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:
Dugga i FUF040 Kvantfysik för F3/Kf3
Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!
If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.
If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed
F3: Schrödingers ekvationer
F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Fysikaliska krumsprång i spexet eller Kemister och matematik!
Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik
Atom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 6 Gillis Carlsson gillis.carlsson@matfys.lth.se 10 Oktober, 2013 Föreläsningarna i kvantmekanik LP1 V1 : Repetition av kvant-nano kursen. Sid 5-84 V2
Kapitel 7. Atomstruktur och periodicitet
Kapitel 7 Atomstruktur och periodicitet Avsnitt 7.1 Elektromagnetisk strålning Fyrverkeri i olika färger Copyright Cengage Learning. All rights reserved 2 Avsnitt 7.2 Materians karaktär Illuminerad saltgurka
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
1. Elektromagnetisk strålning
1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst
Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet
Avsnitt 7.1 Elektromagnetisk strålning Kapitel 7 Fyrverkeri i olika färger Atomstruktur och periodicitet Copyright Cengage Learning. All rights reserved 2 Illuminerad saltgurka Kapitel 7 Innehåll Kvantmekanik
7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?
Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera
TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
I Einsteins fotspår. Kvantfysik och Statistisk fysik. Lars Johansson, Karlstads universitet. I Einsteins fotspår
Kvantfysik och Statistisk fysik Lars Johansson, Karlstads universitet 1 Inledande anmärkningar Runt förra sekelskiftet: övergångsperiod mellan klassisk och modern fysik Perifera anomalier sökte sin lösning:
1.7. Tolkning av våg partikeldualiteten
1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.11] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
Kosmologi - läran om det allra största:
Kosmologi - läran om det allra största: Dikter om kosmos kunna endast vara viskningar. Det är icke nödvändigt att bedja, man blickar på stjärnorna och har känslan av att vilja sjunka till marken i ordlös
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Föredrag om relativitetsteorin AFI Håkan Sjögren
Föredrag om relativitetsteorin AFI 013-01- Håkan Sjögren 1800-talets slut Newton, mekanik Maxwell, elektricitet, magnetism Fysiken färdig Absoluta rummet förblir alltid, på grund av sin natur och utan
Instuderingsfrågor, Griffiths kapitel 4 7
Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor
Föreläsning 3 Heisenbergs osäkerhetsprincip
Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education
Kvantmekanik II (FK5012), 7,5 hp
Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet
Kapitel 7 Innehåll Kapitel 7 Atomstruktur och periodicitet Kvantmekanik Aufbau Periodiska systemet Copyright Cengage Learning. All rights reserved 2 Kapitel 7 Innehåll 7.1 Elektromagnetisk strålning 7.2
4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella
KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.
FAFA Föreläsning 7, läsvecka 3 13 november 2017
FAFA55 2017 Föreläsning 7, läsvecka 3 13 november 2017 Schrödingers ekvation kan tolkas som en ekvation som har sin utgångspunkt i A) konservering av rörelsemängd B) energikonservering C) Newtons andra
KVANTMEKANIKENS HISTORIA. Solvay Konferensen 1927
KVANTMEKANIKENS HISTORIA Solvay Konferensen 1927 If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet Niels Bohr The more success quantum theory has, the sillier it looks.
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
1.7. Tolkning av våg partikeldualiteten
1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.12] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera
Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2
Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om
Räkneövning 5 hösten 2014
Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund 1.12.214 1 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen.
Fysik TFYA86. Föreläsning 11/11
Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt
KVANTMEKANIKENS HISTORIA. Solvay Conference 1927
KVANTMEKANIKENS HISTORIA Solvay Conference 197 Kvantmekanik, what's the fuss about? If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet Niels Bohr Quantum computing is...
Fotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Exempel på statistisk fysik Svagt växelverkande partiklar
Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.
Hur påvisas våg-partikeldualiteten
GYMNASISKOLAN KNUT HAHN NV09NV Hur påvisas våg-partikeldualiteten Vilka fenomen kräver vad och finns det någon praktisk användning för dessa? Kevin Pearson 2012-03-18 Denna rapport innefattar olika fenomen
Kursplanen är fastställd av Naturvetenskapliga fakultetens utbildningsnämnd att gälla från och med , vårterminen 2016.
Humanistiska och teologiska fakulteterna ÄFYB23, Fysik: Grundläggande kvantmekanik, statistisk mekanik och kvantstatistik för lärare, 15 högskolepoäng Physics: Basic Quantum Mechanics, statistical mechanics
Preliminärt lösningsförslag till Tentamen i Modern Fysik,
Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början
8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss
Upplägg och planering för NanoIntro 15; Lars Samuelson (lars.samuelson@ftf.lth.se): Måndag 31/8: Presentationer av deltagarna 8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Väteatomen. Matti Hotokka
Väteatomen Matti Hotokka Väteatomen Atom nummer 1 i det periodiska systemet Därför har den En proton En elektron Isotoper är möjliga Protium har en proton i atomkärnan Deuterium har en proton och en neutron
TILLÄMPAD ATOMFYSIK Övningstenta 1
TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Fysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.
Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur
s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
Kvantmekanik II - Föreläsning 7
Kvantmekanik II - Föreläsning 7 Identiska partiklar Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 7 Joakim Edsjö 1/44 Innehåll 1 Generalisering av Schrödingerekvationen till fler partiklar
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Mer om E = mc 2. Version 0.4
1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om
Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR
Re(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
Kvantfysik - introduktion
Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består
BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).
LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell
1.13. Den tidsoberoende Schrödinger ekvationen
1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation
Kurs PM, Modern Fysik, SH1011
Kurs PM, Modern Fysik, SH1011 Allmänt Kurshemsida finns på http://www.mi.physics.kth.se/web/teaching_modern_physics_sh1011.htm dock hänvisas till BILDA för fortlöpande information och uppdateringar. Föreläsningar
2.16. Den enkla harmoniska oscillatorn
2.16. Den enkla harmoniska oscillatorn [Understanding Physics: 13.16-13.17] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten)
Strålningsfält och fotoner. Kapitel 25: Vågor och partiklar
Strålningsfält och fotoner Kapitel 25: Vågor och partiklar Ljus: vågor eller partiklar? Modellen av ljus som partiklar, fotoner, gör det möjligt att förklara fenomen som absorption och emission av ljus
Torsdag 30 oktober. Brownsk rörelse, svartkroppsstrålning (Arne, Janusz)
Torsdag 30 oktober Brownsk rörelse, svartkroppsstrålning (Arne, Janusz) De kommande föreläsningarna kommer att ägnas åt det vi till vardags kallar "modern fysik", dvs. de nya principer man blev nödgad
2.4. Bohrs modell för väteatomen
2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan
KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från
KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet
Kvantfysik SI1151 för F3 Tisdag kl
TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks
Kursplanen är fastställd av Naturvetenskapliga fakultetens utbildningsnämnd att gälla från och med , vårterminen 2018.
Humanistiska och teologiska fakulteterna ÄFYD03, Fysik 3: Grundläggande kvantmekanik, statistisk mekanik och kvantstatistik för lärare, 15 högskolepoäng Physics 3: Basic Quantum Mechanics, Statistical
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
KOSMOS VÅR KVANTVÄRLD KVANTMEKANISKA PARADOXER BENGT E Y SVENSSON SÄRTRYCK UR: SVENSKA FYSIKERSAMFUNDETS ÅRSBOK 2017
SÄRTRYCK UR: KOSMOS VÅR KVANTVÄRLD SVENSKA FYSIKERSAMFUNDETS ÅRSBOK 2017 KVANTMEKANISKA PARADOXER BENGT E Y SVENSSON Artikeln publiceras under Creative Commons-licensen CC BY-NC-SA 4.0 För bildmaterial
TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!
TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson
Lite kosmologi Med hjälp bl.a. av Lee Smolins Tre vägar till kvantgravitation
Lite kosmologi Med hjälp bl.a. av Lee Smolins Tre vägar till kvantgravitation Relativitet: Relativitetsteorin innebär inte en rad möjligheter att se rum-tid utan ett gitter av dynamiskt utvecklade punkter/slingor
Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden?
Upp gifter 1. Räkna om till elektronvolt. a. 3,65 10 J 1 J. Räkna om till joule. a.,8 ev 4,5 ev 3. Vilket är den längsta ljusvåglängd som kan slå loss elektroner från en a. natriumyta? kiselyta? 4. Kan
1.15. Andra potentialbrunnar och barriärer
1.15. Andra potentialbrunnar och barriärer [Understanding Physics: 13.15-13.17; 19.1-19.3] Vi skall nu ge en översikt över ytterligare några potentialbrunnar och barriärer, nämligen potentialfallet (fig.
Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37
Kvantmekanik II - Föreläsning 2 Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5
Rydbergs formel. Bohrs teori för väteliknande system
Chalmers Tekniska Högskola och Göteborgs Universitet Sektionen för Fysik och Teknisk Fysik Arne Rosén, Halina Roth Uppdaterad av Erik Reimhult, januari A4 Enelektronspektrum Namn... Utförd den... Godkänd
Experimentell fysik. Janne Wallenius. Reaktorfysik KTH
Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas
Formelsamling, Kvantmekanik
Formesaming Kvantmekanik Matematik Linjär operator: Â är injär om Â[aψ (x+bψ (x] = aâψ (x+bâψ (x för aa kompexa ta a b och aa kompexvärda tiståndsfunktioner ψ (x ψ (x Kommutator: [Â ˆB] = Â ˆB ˆBÂ där
KVANTTANKAR. En inledning till kvantfysik med fokus på tankeexperiment. Sören Holst
KVANTTANKAR En inledning till kvantfysik med fokus på tankeexperiment Sören Holst Material till kursen Tankeexperiment i fysiken, sommaren 2014 Kapitel 1 Krusningar i tillvaron Efter två framgångsrika
Program: DATA, ELEKTRO
Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)
Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos
KVANTKEMI KEM B09 FÖRELÄSARE AV ANDREAS EHNBOM PROFESSOR ULF RYDE
KVANTKEMI KEM B9 AV ANDREAS EHNBOM FÖRELÄSARE PROFESSOR ULF RYDE V() x kx K INTRODUKTION Kinetisk energi där m är massa och v är hastighet: E kinetisk mv Den harmoniska oscillatorn Andragradsekvationen
Kvantmekanik II - Föreläsning 10
Kvantmekanik II - Föreläsning 10 Degenererad störningsteori (tidsoberoende) Joakim Edsjö edsjo@fysik.su.se Kvantmekanik II Föreläsning 10 Joakim Edsjö 1/26 Degenererad störningsteori Innehåll 1 Allmänt
Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi
Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten