2.16. Den enkla harmoniska oscillatorn

Storlek: px
Starta visningen från sidan:

Download "2.16. Den enkla harmoniska oscillatorn"

Transkript

1 2.16. Den enkla harmoniska oscillatorn [Understanding Physics: ] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten) k är H(p, x) = p2 2m kx2, och den tidsoberoende Schrödinger ekvationen för systemet kan därför skrivas Liksom förut skall vi lösa ekvationen med en ansats: 2 d 2 ψ 2m dx kx2 ψ = Eψ. ψ = Ae βx2, som har derivatorna dψ dx = 2βxAeβx2 och d2 ψ dx 2 = 4β2 x 2 Ae βx2 +2βAe βx2 = 2β(1+2βx 2 )Ae βx2. Den moderna fysikens grunder, Tom Sundius

2 Substitution i Schrödinger ekvationen leder då till 2 2m 2β(1 + 2βx2 ) kx2 = E, efter division med Ae βx2. Denna ekvation kan också skrivas i formen! E + 2 β m β 2 m 1 2 k! x 2 = 0. Eftersom ekvationen måste gälla för alla värden av x, så måste parentesuttrycken var för sig försvinna. Av villkoret 2 2 β 2 m 1 2 k = 0 följer då, att β2 = mk 4 2, dvs β = ± mk 2. Eftersom egenfunktionerna bör vara ändliga överallt, så måste den positiva roten förkastas, och härav följer att en lösning till Schrödinger ekvationen är ψ = Ae mk 2 x2. Den moderna fysikens grunder, Tom Sundius

3 Energivillkoret E + 2 β m = 0 leder då till följande uttryck för den motsvarande energin E = E 0 = 2 β m = 2 m mk 2!, eller alltså E 0 = 1 2 r k m = 1 2 ω, där ω = p k/m är oscillatorns klassiska vinkelfrekvens. Det visar sig inte vara möjligt att finna en sådan lösning till den harmoniska oscillatorns Schrödinger ekvation, som skulle ha en lägre energi än E 0. Den lösning som vi har funnit, representerar därför systemets grundtillstånd, och E 0 är den motsvarande energin. Värdet av konstanten A kan beräknas ur normeringsvillkoret Z ψ (x)ψ(x)dx = 1 Den moderna fysikens grunder, Tom Sundius

4 med substitutionen u = mk 2 1/4 x: 1 = A 2 Z! e mk x 2 dx = A 2 2 1/4 Z e u2 du = 1. mk 1/4. Den normerade grundtillståndsfunk- Integralen R e u2 du har värdet π, varför A = tionen är alltså mk π ψ 0 = mk π! 1/4 e mk 2 x2. Vi skall använda oss av detta resultat för att beräkna väntevärdet av x 2 i harmoniska oscillatorns grundtillstånd: Den moderna fysikens grunder, Tom Sundius

5 x 2 = Z ψ x 2 ψdx = mk π! 1/2 Z x 2 e mk x 2 dx = där vi gjort substitutionen u =! 1/2! 3/2 Z mk mk u 2 e u2 du, π 1/2 x. Integralen blir 1 2 π, och vi får således x 2 = 1 2 mk q mk. Väntevärdet för den potentiella energin är således U = 1 2 kx2 = 1 k 4 m = 1 4 ω = 1 2 E 0, och väntevärdet för den kinetiska energin är alltså också 1 2 E 0. Den totala energin fördelas alltså alltså lika mellan kinetisk och potentiell energi, vilket stämmer med den klassiska mekaniken. De högre energitillstånden skall vi inte studera här. Den moderna fysikens grunder, Tom Sundius

6 2.17. Om kvantmekanikens tolkning Som vi tidigare sett, begränsar osäkerhetsprincipen våra möjligheter att bestämma samtidigt en partikels position och rörelsemängd. Enligt Bohr var detta en naturlag. Som en förklaring till vågpartikeldualiteten framlade han 1927 sin komplementaritetsprincip, enligt vilken våg- och partikelegenskaperna är komplementära, dvs varandra uteslutande. Enligt Bohr var det experimentets natur som bestämde om t.ex. en elektron betedde sig som en partikel eller en våg. Om rörelsemängden för en partikel kunde mätas exakt, så måste dess position vara osäker. I Köpenhamnstolkningen, som denna beskrivning började kallas, var alltså en partikels position och rörelsemängd komplementära storheter. Men det fanns dock de som frågade sig, om inte en partikel ändå kunde ha en bestämd position och rörelsemängd, fast de inte samtidigt kan mätas. Einstein ville inte godta kvantmekanikens sannolikhetstolkning. Han sade upprepade gånger att han var övertygad om att Gud inte spelade tärning. Tillsammans med Podolsky och Rosen konstruerade han 1935 följande tankeexperiment (EPR, A. Einstein, B. Podolsky, N. Rosen: Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, ) för att belysa sin syn på kvantmekaniken. Antag, att två partiklar A och B växelverkar med varandra under en viss tid, och sedan rör sig åt olika Den moderna fysikens grunder, Tom Sundius

7 håll utan att längre påverka varandra. Populärt kan EPR-experimentet förklaras på följande sätt. Enligt osäkerhetsprincipen kan vi mäta partiklarnas kombinerade rörelsemängd exakt då de kolliderar, och senare rörelsemängden för A och positionen för B. Rörelsemängden för B skulle man sedan kunna bestämma på grund av att den totala rörelsemängden bevaras, och sålunda skulle man känna både positionen och rörelsemängden för B exakt. Den kvantmekaniska osäkerheten skulle då kunna bevaras endast om A skulle störas genom mätningen av B:s position, vilket skulle leda till att B:s rörelsemängd inte skulle kunna bestämmas exakt. Frågan är hur denna störning i såfall skulle överföras från B till A? (sådana tillstånd som A och B befinner sig i har senare kallats sammanflätade tillstånd). Vi kan tänka oss två möjligheter för detta: a) Partikeln B kan påverka partikeln A omedelbart på avstånd, vilket förutsätter kommunikation med en hastighet som överskrider ljusets (detta kallades av Einstein för spöklik fjärrverkan (spukhafte Fernwirkungen). b) Informationen kanske överförs på ett sätt som kvantmekaniken inte ger besked om. Einstein föredrog den senare mekanismen. Han ansåg därför kvantmekaniken vara en ofullständig teori. Kanske finns det dolda variabler, som vi inte känner till? Bohr ansåg däremot i sitt svar att man inte kan studera en del av ett system, utan att man måste betrakta det sammanflätade systemet som en helhet, fastän avståndet mellan de enskilda partiklarna kan vara stort. Schrödinger skrev också samma år en artikel ( Die gegenwärtige Situation in der Quantenmechanik, die Naturwissenschaften 23, , , ), där han redogjorde för sin syn på den kvantmekaniska mätteorin. Den moderna fysikens grunder, Tom Sundius

8 1964 beskrev John Bell matematiskt hur sådana variabler skulle kunna användas för att göra teorin fullständigare, och utvecklade en olikhetsprincip, med vars hjälp man skulle kunna undersöka deras existens. Enligt Bell borde det vara experimentellt möjligt att skilja mellan den kvantmekaniska sammanflätningsteorin och teorier som innehåller dolda variabler. På 1980 talet gjordes experiment av Aspect och andra som baserade sig på Bell s idéer för att utforska, hur kvantmekaniken fungerar. De moderna experimenten har visat, att mekanismen a) är sannolikast. Man brukar också numera säga, att kvantmekaniken är en icke-lokal teori (syftar på att påverkan sker omedelbart). Detta innebär, att alla partiklar i själva verket tillhör samma system, eftersom de kan påverka varandra på avstånd, och det verkar sålunda inte att existera dolda variabler. Experiment som gjorts under de senaste åren visar att sammanflätning av fotoner i optiska fibrer kan observeras på över 10 km avstånd. De sammanflätade kvanttillstånden kan också tänkas få praktiska tillämpningar t.ex. vid kommunikation på långa avstånd, och vid beräkningar (kvantkryptografi och kvantdatorer). T.o.m. teleportering av partikeltillstånd kan tänkas vara möjlig. Den moderna fysikens grunder, Tom Sundius

9 Kapitel 3. Atomfysiken [Understanding Physics: ] Vi skall nu övergå till att studera atomerna, och visa hur kunskapen om atomernas struktur gradvis ökats genom användning av kvantmekanik. Den moderna fysikens grunder, Tom Sundius

10 3.1. Atommodeller Då en elektrisk ström passerar genom en gas, kommer atomerna där att joniseras. De elektriskt neutrala atomerna delar upp sig på negativt laddade elektroner och positivt laddade joner. Det är därför lätt att föreställa sig, att atomerna innehåller elektroner. Vi vet också att elektronens massa är betydligt mindre än atomens. Därför är det sannolikt, att atomens positiva laddning står för största delen av massan. Detta visste man om atomen redan vid början av 1900 talet. Frågan var, hur massan och laddningen var fördelad i atomen. J.J. Thomson i Cambridge föreställde sig sålunda, att atomen bestod av en jämnt fördelad positiv laddning uppblandad med elektroner, som russin i en pudding. Problemet löstes genom genom experiment, som utfördes av Ernest Rutherford i Manchester år 1910 tillsammans med Hans Geiger och Ernest Marsden. De bombarderade tunna guld och silverfolier med α partiklar. De mätte sedan spridningsvinklarna, under vilka α partiklarna avlänkades på grund av Coulomb växelverkan med laddningarna i atomerna, och använde dem för att bestämma laddningsfördelningen i atomen. Om Thomsons plumpuddingmodell skulle stämma, så borde α partiklarna avlänkas endast obetydligt, då de passerade genom atomen. Rutherfords experiment visade emellertid, att fastän de flesta α partiklarna passerade igenom atomen utan att spridas, så var det några (ungefär 1 på 10000) som spreds mer än 90. Många av dem avlänkades t.o.m Sannolikheten för att detta skulle inträffa, om laddningarna var Den moderna fysikens grunder, Tom Sundius

11 jämnt fördelade, uppskattades till 1 på Rutherford uttryckte saken så, att det var som om du skulle ha avfyrat en kula mot en bit toalettpapper, och den skulle ha studsat tillbaka och träffat dig. Vad Rutherfords experiment visade, är att den positiva laddningen i atomen och nästan hela massan är koncentrerad i en mycket liten volym i centrum av atomen, och att största delen av atomen består av tomrum. Radien av denna kärna kunde beräknas på basen av de observerade spridningsvinklarna, och visade sig vara av storleksordningen m, mer än gånger mindre än atomens radie. Vi får alltså en bild av atomen, där en tung, positivt laddad kärna omges av en mycket större volym, som innehåller elektronerna. Frågan var nu, varför drar inte kärnan till sig alla elektronerna? Man resonerade, att detta inte skedde, därför att elektronerna rörde sig runt kärnan, såsom planeterna kring solen. Denna planetmodell tillämpad på den enklaste atomen, väteatomen, visar en elektron med laddningen e, som rör sig runt en kärna med laddningen +e (en proton) på avståndet r. Om vi för enkelhetens skull antar, att elektronen rör sig i en cirkelbana kring kärnan, så kan man sätta centripetalkraften lika med den e attraktiva Coulomb kraften och får då 2 4πɛ 0 r 2 = mv2 r, som kan skrivas som mv2 = e2 4πɛ 0 r. Elektronens totala energi är E = 1 2 mv2 andra fås E = e2 8πɛ 0 r e2 4πɛ 0 r e2 4πɛ 0 r, och om vi substituerar mv2 från den första ekvationen i den = e2 8πɛ 0 r. Alternativt kan vi också uttrycka E med hastigheten v : E = 1 2 mv2. Som man väntar sig för ett bundet system, är den totala energin negativ. Den moderna fysikens grunder, Tom Sundius

12 Även om planetmodellen verkar mycket tilltalande, så fungerar den inte, när man tar elektromagnetismen i beaktande. Som vi vet, alstrar en accelererande laddning elektromagnetisk strålning (sekt. 18.2). I planetmodellen utsätts elektronerna hela tiden för centripetalaccelerationen och förväntas därför förlora energi i form av elektromagnetisk strålning. Elektronens totala energi, som avbildas i fig. 19.4, visar att då elektronen förlorar energi, måste dess banradie minska, och leda till att den störtar in i kärnan. Mätningar av jonisationsenergin ger inte heller resultat som stämmer överens med planetmodellen. Jonisationsenergin är den energi, som krävs för att helt frigöra en elektron från en atom. Det är en positiv energi, som tar ut den negativa bindningsenergin, och således frigör elektronen. Samma grundämnes atomer har visat sig alltid ha lika stor jonisationsenergi. Detta resultat var oväntat, emedan energin som behövs för att frigöra en elektron från en atom kan anta vilket värde som helst, om r kan ha ett godtyckligt värde. Därav följer, att elektronerna i en atom endast kan röra sig i bestämda banor. Att elektronernas banradier och bindningsenergier har fixerade värden, påminner om kvantiseringen av energin i ett bundet system. Innan vi går över till att tillämpa kvantmekanik på detta system, skall vi visa hur den klassiska planetmodellen kan modifieras, så att man kringgår problemen med den. Den slutliga modellen, Bohrs atommodell, kallas semiklassisk, eftersom kvanthypotesen har kombinerats med den på ett något godtyckligt sätt, så att teorin ger de rätta svaren. På grund av att denna modell är så enkel att arbeta med, skall vi utnyttja den till att börja med. Den moderna fysikens grunder, Tom Sundius

13 3.2. Vätets spektrum, Rydbergs formel Då en elektrisk ström passerar genom en gas, så kommer atomerna att absorbera energi genom kollisioner med elektroner och joner, och sänder sedan ut energin som ljus, dvs elektromagnetisk strålning. Det utsända ljuset kan delas upp på komponenter med en gitterspektrometer eller en prismaspektrometer. Detta atomspektrum innehåller diskreta linjer, som är karaktäristiska för en särskild atom. Spektret kan också användas för att identifiera de undersökta atomerna (spektroskopi). Denna teknik är speciellt lämplig då man inte kan komma över prov på det undersökta ämnet, såsom t.ex. i astrofysikaliska studier. Väteatomens spektrum är speciellt enkelt (fig. 19.6, se nedan). Märk att endast de tre, eller möjligen fyra, linjerna som har den längsta våglängden, kan observeras med ögat. Därför används oftast en annan detektionsmetod, såsom fotografisk film. Den moderna fysikens grunder, Tom Sundius

14 Spektrets linjer uppvisar tydliga regelbundenheter. Linjerna bildar serier, där avståndet mellan på varandra följande linjer avtar med avtagande våglängd, tills en punkt nås (seriegränsen), där ljusemissionen blir kontinuerlig. En empirisk formel för de synliga linjerna upptäcktes av Johann Balmer år 1885, och serien kallas Balmer serien efter honom. Rydbergs formel (uppkallad efter den svenska fysikern Johannes Rydberg ( )), som är allmännare, upptäcktes 20 år före planetmodellen. Tillämpad på Balmer-serien ser den ut så här: 1 λ = f c = R H n 2. Här är R H är en konstant, som kallas Rydbergs konstant för väte. Dess värde är noggrant bestämt: ±1.2 m 1. Heltalet n i formeln antar värdet 3, 4,... för Balmer-serien. Om t.ex. n = 3, så får vi λ = nm, som är våglängden för den röda linjen i Balmerserien. Värdet n = 4 ger Den moderna fysikens grunder, Tom Sundius

15 λ = nm, som är den blågröna linjen i Balmerserien, osv. Seriegränsen svarar mot n =, dess värde är λ = nm (ligger i ultraviolett). Observera, att formeln ger linjerna mätta i vakuum. För att konvertera en vakuumvåglängd λ vak till en våglängd, mätt i luft λ luft, används formeln λ vak = nλ luft, där n är luftens brytningsindex ( ). Den moderna fysikens grunder, Tom Sundius

16 3.3. Bohrs postulat Den danska fysikern Niels Bohr ( ) försökte förklara Rydbergs formel genom att förbättra planetmodellen. Han visade att detta lyckas, om man utgår från följande postulat (Bohrs postulat, Phil. Mag. 26, 1 (1913)): Postulat 1: Istället för ett oändligt antal banor, som är klassiskt möjliga, antar vi att elektronen i en väteatom endast kan röra sig i banor, vilkas rörelsemängdsmoment L uppfyller villkoret där h betecknar Plancks konstant. L = mvr = nh 2π = n, n = 1, 2, 3,... Observera, att om vi skriver postulat 1 med hjälp av elektronens rörelsemängd p fås L = pr = nh 2π, och om vi substituerar p = h/λ (de Broglies hypotes) fås L = pr = h λ r = nh 2π, som kan förenklas till nλ = 2πr. Detta postulat kan därför tolkas så, att omkretsen av en tillåten Bohr bana måste svara mot ett heltaligt antal de Broglie våglängder. Detta innebär, att en elektronbana är endast tillåten om en stående de Broglie våg kan bildas på dess periferi. Den moderna fysikens grunder, Tom Sundius

17 Man kan också förklara varför elektronerna inte kan befinna sig i en bana som inte uppfyller detta postulat: om det inte ryms ett heltaligt antal vågor på omkretsen av banan, så blir intensiteten noll, eftersom det då inträffar destruktiv interferens. Postulat 2: Elektroner i tillåtna banor producerar ingen elektromagnetisk strålning. Postulat 3: Elektronerna kan hoppa från en tillåten bana till en annan tillåten bana. Då detta sker, utsänds elektromagnetisk strålning med en bestämd frekvens f, som uppfyller villkoret hf = E i E f, där E i och E f är elektronens energi i den ursprungliga, resp. den slutliga banan. Den moderna fysikens grunder, Tom Sundius

18 3.4. Bohrs modell för väteatomen Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan Bohrs första postulat skrivas v = n mr. Om vi substituerar detta uttryck i ekvationen ovan, fås vilket kan förenklas till n m = mr e2 8πɛ 0 r, där r = 4π 2 ɛ 0 me 2 n2 = a 0 n 2, a 0 = 4π 2 ɛ 0 me 2, som har värdet m, kallas Bohrs radie. Bohrs teori ger alltså en uppskattning för atomens storlek, som stämmer med observationerna. Radier, som inte överensstämmer med de kvantiserade värdena r = a 0 n 2, är inte tillåtna. Den moderna fysikens grunder, Tom Sundius

19 Om uttrycket för radien substitueras i uttrycket för elektronens energi, fås E = e2 8πɛ 0 r = e2 8πɛ 0 a 0 n = e2 me πɛ 0 4π 2 ɛ 0 n = me π 2 2 ɛ 2 0 n 2, som kan uttryckas E n = E 0 n 2, där E 0 = me4 32π 2 2 ɛ 2 0 = ev. Den moderna fysikens grunder, Tom Sundius

20 Sålunda leder Bohrs postulat också till kvantisering av energin. Det lägsta energitillståndet E 1 = E 0 svarar mot n = 1, och kallas för väteatomens grundtillstånd. Det följande tillståndet, vars energi är E 2 = E 0 /4, svarar mot n = 2 och kallas det första exciterade tillståndet (se fig. 19.9, se nedan). Väteatomens jonisationsenergi, dvs den energi som behövs för att frigöra en elektron från grundtillståndet (n = 1), är lika med E 1. Enligt Bohrs postulat är detta det enda möjliga värdet av väteatomens jonisationsenergi, och det förklarar varför jonisationspotentialen är densamma för alla väteatomer, dvs 13.6 V (uttryckt i volt). Enligt Bohrs andra postulat kan elektronen befinna sig i ett tillåtet energitillstånd utan att stråla ut energi. Den moderna fysikens grunder, Tom Sundius

21 Det tredje postulatet tilllämpas på övergångar mellan tillåtna tillstånd. Om energin för begynnelsetillståndet är E i, och energin för sluttillståndet är E f, så är frekvensen för den utsända strålningen f = E i E f h. Om vi substituerar uttrycken för energin E i = E 0 /n 2 i och E f = E 0 /n 2 f i denna ekvation, fås f = 1 h " E0 n 2 i E 0 n 2 f # = E 0 h 1 n 2 f 1 n 2 i!, varav följer där 1 λ = f c = E 0 hc R = E 0 hc = 1 n 2 f 1 n 2 i!! 1 = R 1, n 2 f n 2 i me4 64π 3 3 ɛ 2 0 c = m 1. Om vi jämför denna ekvation med Rydbergs formel, ser vi att de båda formlerna är identiska, om n f = 2 och n i = n, även om det finns en liten (men signifikant) skillnad mellan R H och R. Skillnaden beror på, att vi antagit att elektronen beskriver en cirkelrörelse kring kärnans medelpunkt vid härledningen av R. Den moderna fysikens grunder, Tom Sundius

22 I själva verket sker rörelsen kring systemets massmedelpunkt, som sammanfaller med kärnans medelpunkt endast om elektronens massa antas vara försvinnande liten i förhållande till protonens massa. I själva verket är kärnan 1836 gånger tyngre än elektronen, och elektronmassan borde därför ersättas med den reducerade massan µ = m em p = m e(m p /m e ) = m e m e + m p 1 + m p /m e 1837 Bohrs första postulat blir då L = µvr = n, och vi säger i detta fall. att systemets totala rörelsemängdsmoment är kvantiserat. Om vi substituerar den reducerade massan µ i uttrycket för energin E 0, så blir den teoretiska konstanten R utbytt mot konstanten R H = R. Det teoretiska värdet av R H stämmer mycket väl överens med det experimentella värdet. Observera, att den reducerade massan är olika för deuterium och tritium, eftersom kärnmassan då skiljer sig från protonens massa. För deuterium t.ex. är kärnmassan 3672m e, varför Rydbergs konstant för deuterium (R D ) är något större än för väte. Alla linjer i Balmer serien för deuterium är därför något förskjutna mot kortare våglängder jämfört med motsvarande linjer i vätets Balmer serie (isotopskift). Den moderna fysikens grunder, Tom Sundius

23 Vätets spektrum kan nu förklaras med hjälp av Bohrs nivådiagram för väte (fig samt figuren ovan). Som vi ser kan spektret delas upp på olika serier: a) Lyman serien består av övergångarna mellan de exciterade nivåerna n i = 2, 3,... till grundtillståndet n f = 1. Seriegränsen är 91.1 nm. b) Balmer serien innehåller övergångarna mellan de exciterade tillstånden n i = 3, 4,... till första exciterade tillståndet n f = 2. Seriegränsen är nm. c) Paschen serien består i sin tur av övergångar mellan de exciterade Den moderna fysikens grunder, Tom Sundius

24 nivåerna n i = 4, 5... och tillståndet n f = 3. Seriegränsen är 820 nm. d) Övergångar från högre tillstånd till tillståndet n f = 4 och n f = 5 ger upphov till Bracket, resp. Pfund serien. Våglängden för alla linjer i dessa serier kan beräknas ur den allmänna Rydberg formeln. Seriegränsen får man genom att sätta n i = i formeln. Om elektronen i en väteatom får en energi E c, som är större än jonisationsenergin för väte (E ), så kommer elektronen att fullständigt frigöras från atomen, och överskottsenergin E K = E c E överlåtes i form av kinetisk energi till elektronen. Energin för en sådan elektron är inte kvantiserad, varför elektronens energinivåer bildar ett kontinuum. Elektronens banhastighet i den lägsta Bohr banan kan uppskattas ur Bohrs modell. Eftersom den totala q 2E 0 m energin i grundtillståndet kan skrivas E 1 = E 0 = 1 2 mv2, så är v = = m/s. Denna hastighet är nästan 1 % av ljushastigheten. Om man vill beräkna hastigheten noggrannare, borde man därför göra en relativistisk beräkning. Som en följd av Heisenbergs osäkerhetsrelation, blir osäkerheten i position för en elektron som rör sig med hastigheten m/s att vara av storleksordningen m. Detta avstånd är av samma storleksordning som den första Bohr banan. Därför kan man inte betrakta elektronerna som punktformiga partiklar, som är lokaliserade i atomen. Den moderna fysikens grunder, Tom Sundius

25 Bohrs atommodell kan lätt utvidgas till att gälla också andra atomer med en elektron, t.ex. joner som He +, Li 2+, Be 3+, där endast en elektron kretsar kring en kärna med laddningen +Ze. Sådana joner, som kallas väteliknande joner, kan behandlas i Bohrs teori så, att man ersätter laddningen +e i uttrycket för Coulomb energin med +Ze, där Z = 2 för He, Z = 3 för Li, etc. Dessutom måste den reducerade massan modifieras. En följd av detta är att E 0 = Z 2 µe 4 /(32π 2 2 ɛ 2 0 ) och att Rydbergs formel sålunda kan skrivas 1 λ = 1 RZ2 1, n 2 f n 2 i där R = µe 4 /(64π 3 3 ɛ 2 0 c). Observera, att värdet av µ = m em/(m e + M) närmar sig m e, då kärnans massa M växer. Då Z växer, och jonen således blir tyngre, kommer värdet av R därför att närma sig R.! Den moderna fysikens grunder, Tom Sundius

1.15. Andra potentialbrunnar och barriärer

1.15. Andra potentialbrunnar och barriärer 1.15. Andra potentialbrunnar och barriärer [Understanding Physics: 13.15-13.17; 19.1-19.3] Vi skall nu ge en översikt över ytterligare några potentialbrunnar och barriärer, nämligen potentialfallet (fig.

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

19.4 Bohrs modell för väteatomen.

19.4 Bohrs modell för väteatomen. Den moerna fysikens gruner - Föreläsning 7 42 9.4 Bohrs moell för väteatomen. Som vi sett är en totala energin för elektronen i väteatomen E = 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor så

Läs mer

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Utveckling mot vågbeskrivning av elektroner. En orientering

Utveckling mot vågbeskrivning av elektroner. En orientering Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

Lösningar Heureka 2 Kapitel 14 Atomen

Lösningar Heureka 2 Kapitel 14 Atomen Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla

Läs mer

Fysik TFYA68. Föreläsning 11/14

Fysik TFYA68. Föreläsning 11/14 Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik

Läs mer

Milstolpar i tidig kvantmekanik

Milstolpar i tidig kvantmekanik Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik

Läs mer

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd? Inte mycket verkar säkert här...? Våg-partikeldualitet Ett system kan ha både vågoch partikelegenskaper i samma experiment. Vågfunktionen har en sannolikhetstolkning. Heisenbergs osäkerhetsrelation begränsar

Läs mer

Rydbergs formel. Bohrs teori för väteliknande system

Rydbergs formel. Bohrs teori för väteliknande system Chalmers Tekniska Högskola och Göteborgs Universitet Sektionen för Fysik och Teknisk Fysik Arne Rosén, Halina Roth Uppdaterad av Erik Reimhult, januari A4 Enelektronspektrum Namn... Utförd den... Godkänd

Läs mer

Fysik TFYA86. Föreläsning 10/11

Fysik TFYA86. Föreläsning 10/11 Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ): Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

Kapitel 4. Materievågor

Kapitel 4. Materievågor Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Kvantmekanik - Gillis Carlsson

Kvantmekanik - Gillis Carlsson Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

3.5. Schrödingerekvationen för atomer med en elektron

3.5. Schrödingerekvationen för atomer med en elektron 3.5. Schrödingerekvationen för atomer med en elektron [Understanding Physics: 19.5-19.8] Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna,

Läs mer

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 28/8 2014 kl. 14.00-18.00 i T1 och S25 Tentamen består av 2 A4-blad (inklusive

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 3

TILLÄMPAD ATOMFYSIK Övningstenta 3 TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2 Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om

Läs mer

Väteatomen. Matti Hotokka

Väteatomen. Matti Hotokka Väteatomen Matti Hotokka Väteatomen Atom nummer 1 i det periodiska systemet Därför har den En proton En elektron Isotoper är möjliga Protium har en proton i atomkärnan Deuterium har en proton och en neutron

Läs mer

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera

Läs mer

F2: Kvantmekanikens ursprung

F2: Kvantmekanikens ursprung F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007 TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock

Läs mer

Välkomna till Kvantfysikens principer!

Välkomna till Kvantfysikens principer! Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum

Läs mer

2.6.2 Diskret spektrum (=linjespektrum)

2.6.2 Diskret spektrum (=linjespektrum) 2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.

Läs mer

Information om kursen

Information om kursen Information om kursen Föreläsningar: Magnus Axelsson och Emma Wikberg Räkneövningar: Thomas Kvorning Kurshemsida: www.fysik.su.se/~emma/kvantprinciperna Kontaktinformation Schema Skannade föreläsningsanteckningar

Läs mer

1.13. Den rektangulära potentialbrunnen

1.13. Den rektangulära potentialbrunnen 1.13. Den rektangulära potentialbrunnen [Understanding Physics: 13.13-13.15(b)] Vi betraktar en partikel med massan m som är innesluten i en rektangulär potentialbrunn med oändligt höga sidor, dvs U =

Läs mer

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen. Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 1

TILLÄMPAD ATOMFYSIK Övningstenta 1 TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 17 mars 2017 8:00 12:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4

Läs mer

Bohrs atommodell. Uppdaterad: [1] Vätespektrum

Bohrs atommodell. Uppdaterad: [1] Vätespektrum Bohrs atommodell Uppdaterad: 171201 Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Vätespektrum [15] Superposition / [2] Bohrs atommodell

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

Kapitel 7. Atomstruktur och periodicitet

Kapitel 7. Atomstruktur och periodicitet Kapitel 7 Atomstruktur och periodicitet Avsnitt 7.1 Elektromagnetisk strålning Fyrverkeri i olika färger Copyright Cengage Learning. All rights reserved 2 Avsnitt 7.2 Materians karaktär Illuminerad saltgurka

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Avsnitt 7.1 Elektromagnetisk strålning Kapitel 7 Fyrverkeri i olika färger Atomstruktur och periodicitet Copyright Cengage Learning. All rights reserved 2 Illuminerad saltgurka Kapitel 7 Innehåll Kvantmekanik

Läs mer

2.7. Egenfunktionernas tolkning - fortsättning

2.7. Egenfunktionernas tolkning - fortsättning 2.7. Egenfunktionernas tolkning - fortsättning [Understanding Physics: 19.7-19.10] Förra gången såg vi, att sannolikhetstätheten består av tre delar, en radiell del och två vinkelberoende delar. Vi skall

Läs mer

1.13. Den tidsoberoende Schrödinger ekvationen

1.13. Den tidsoberoende Schrödinger ekvationen 1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation

Läs mer

Kvantbrunnar -Kvantiserade energier och tillstånd

Kvantbrunnar -Kvantiserade energier och tillstånd Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Svar och anvisningar

Svar och anvisningar 15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve. Laboration i Kvantfysik för F

TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve. Laboration i Kvantfysik för F TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve Laboration i Kvantfysik för F Syfte Laborationen syftar till att demonstrera två fysikaliska system, väteatomen och elektroner som strömmar genom

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

Kvantfysikens principer, FK2003 Extramaterial 2: Stern-Gerlach med fotoner, v1.1

Kvantfysikens principer, FK2003 Extramaterial 2: Stern-Gerlach med fotoner, v1.1 Marcus Berg, 008-06-04 Kvantfysikens principer, FK003 Extramaterial : Stern-Gerlach med fotoner, v. Det står inget om S-G med fotoner i Feynman, så det här extrabladet utgör kurslitteratur för den här

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer

Kärnfysik och radioaktivitet. Kapitel 41-42

Kärnfysik och radioaktivitet. Kapitel 41-42 Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,

Läs mer

Arbete A1 Atomens spektrum

Arbete A1 Atomens spektrum Arbete A1 Atomens spektrum 1. INLEDNING I arbetet presenteras de elektroniska energitillstånden och spektret för den enklaste atomen, väteatomen. Väteatomens emissionsspektrum mäts med en gitterspektrometer

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Lördagen den 9:e juni 2007, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

1.7. Tolkning av våg partikeldualiteten

1.7. Tolkning av våg partikeldualiteten 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.11] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera

Läs mer

Röntgenstrålning och Atomkärnans struktur

Röntgenstrålning och Atomkärnans struktur Röntgenstrålning och tomkärnans struktur Röntgenstrålning och dess spridning mot kristaller tomkärnans struktur - Egenskaper. Isotoper. - Bindningsenergi - Kärnmodeller - Radioaktivitet, radioaktiva sönderfall.

Läs mer

Fysik TFYA86. Föreläsning 11/11

Fysik TFYA86. Föreläsning 11/11 Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt

Läs mer

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1 Föreläsning 6 Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan Fk3002 Kvantfysikens grunder 1 Betrakta ett experiment med opolariserade elektroner dvs 50% är spinn-upp och 50%

Läs mer

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden?

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden? Upp gifter 1. Räkna om till elektronvolt. a. 3,65 10 J 1 J. Räkna om till joule. a.,8 ev 4,5 ev 3. Vilket är den längsta ljusvåglängd som kan slå loss elektroner från en a. natriumyta? kiselyta? 4. Kan

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Tentamen i Fysik för π,

Tentamen i Fysik för π, KURSLABORATORET FYSK, LTH Tentamen i Fysik för π, 386 SKRVTD: 8 3 HJÄLPMEDEL: UTDELAT FORMELBLAD, GODKÄND RÄKNARE. LÖSNNGAR: BÖRJA VARJE NY UPPGFT PÅ NYTT BLAD OCH SKRV BARA PÅ EN SDA. LÖSNNGARNA SKA VARA

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST! TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25. GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR

Läs mer

Alla svar till de extra uppgifterna

Alla svar till de extra uppgifterna Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0

Läs mer

Exempel på statistisk fysik Svagt växelverkande partiklar

Exempel på statistisk fysik Svagt växelverkande partiklar Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer