1.7. Tolkning av våg partikeldualiteten
|
|
- Rune Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: ] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera energins överföringshastighet med intensiteten I, som är den effekt som passerar genom en enhetsyta, som står vinkelrätt mot vågens eller partikelstrålens rörelseriktning. För en transversell våg på en sträng gäller att den effekt P som vågen för med sig, är proportionell mot va 2 (s. 313), där A är vågens amplitud och v dess hastighet. Om detta tillämpas på elektromagnetiska vågor fås I c amplituden 2, och för fotoner gäller då I = cn hf, där c är fotonernas hastighet, n fotontätheten (dvs antalet fotoner i en enhetsvolym), och hf är fotonernas energi. En ökning av intensiteten i vågmodellen, dvs en förstorad amplitud, motsvaras då av en ökning av fotontätheten i partikelmodellen. Kvadraten på amplituden är alltså ett mått på sannolikheten för att det finns en foton i en enhetsvolym. Vi skall nu studera hastigheten för en materievåg både enligt partikel och vågmodellen. Genom att differentiera den relativistiska energiformeln E 2 = m 2 c 4 + p 2 c 2 får vi 2EdE = 2pc 2 dp, varav följer att de dp = pc2 pc2 E. Detta är den relativistiska partikelhastigheten, eftersom u = E (s. 219). Den moderna fysikens grunder, Tom Sundius
2 Grupphastigheten för ett vågpaket definierades på s. 352 som v g = dω följer att grupphastigheten kan uttryckas som v g = de dp sålunda tolkas som partikelns relativistiska hastighet. dk = d( ω) d( k). Av de Broglies ekvationer = pc2 E. Grupphastigheten för en materievåg kan Av de Broglies ekvationer följer också, att fashastigheten v = fλ (s. 348) också kan skrivas v = fλ = ω k = ω k = E p. Som vi ser, är alltså v gv = c 2. För en masslös partikel (såsom fotonen) är E = pc, varav följer att v = v g = c. Om vilomassan är olika noll, så kan grupphastigheten uttryckas v g = pc2 E = pc p m2 c 4 + p 2 c 2c = 1 p 1 + (m2 c 2 /p 2 ) c. Vi ser alltså, att grupphastigheten, dvs den hastighet varmed energi överföres, för en massiv partikel inte kan överskrida ljushastigheten. Den moderna fysikens grunder, Tom Sundius
3 1.8. Heisenbergs osäkerhetsrelation Trafikpolisen: Har ni en aning om hur fort ni kör? Heisenberg: Nej, men jag vet exakt var jag är! Eftersom kvadraten på amplituden av en materievåg i en viss punkt kan tolkas som ett mått på sannolikheten för att en enhetsvolym i denna punkt innehåller en partikel, så kan vågpaketen i en materievåg tolkas som partikelsannolikhetspaket. Partikeln kan befinna sig var som helst i paketet, där amplituden är olika noll. Om man beskriver en partikel som en materievåg leder detta omedelbart till osäkerhet i partikelns läge. Osäkerheten i position bestäms av vågpaketets storlek. Ett vågpaket byggs upp genom superposition av sinusvågor med olika amplitud, eller frekvens (se s , samt fig , som visas nedan). de Broglies relation p = k visar, att om vågtalet k har en spridning k, så kommer detta att leda till motsvarande spridning i rörelsemängden, t.ex. p x = k. Genom att jämföra olika fall finner vi, att om k (och således även p x = k) växer, så minskar x (vågpaketets längd). Om vi känner k, och således även p x exakt, så kan partikeln befinna sig var som helst på x axeln, dvs den är inte lokaliserad. Om vi å andra sidan känner dess position mycket noga (dvs den är lokaliserad), så är vågtalet mycket osäkert, och likaså dess rörelsemängd. Den moderna fysikens grunder, Tom Sundius
4 Detta visar, att om vågtalet, och således också om rörelsemängden för en partikel blir osäkrare, så kommer dess position samtidigt att blir säkrare, och tvärtom. På sidan 349 härleddes formeln k x = 2π för två vågor som skiljer sig endast obetydligt i frekvens, och på sidan 352 härleddes formeln k x 1 2 för ett vågpaket. För materievågor kan formeln skrivas p x x 2. Denna ekvation kallas Heisenbergs osäkerhetsprincip efter Werner Heisenberg, som upptäckte den. W. Heisenberg: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z.f.Physik 43 (1927) Den moderna fysikens grunder, Tom Sundius
5 Den visar, att man inte samtidigt kan bestämma positionen och rörelsemängden för en partikel med samma noggrannhet (observera dock att detta inte har något att göra med experimentell osäkerhet). Heisenbergs osäkerhetsprincip följer av partiklarnas vågnatur, men eftersom Plancks konstant är så liten, kan följderna av den inte observeras för makroskopiska föremål. Betrakta t.ex. en person på 75 kg som rör sig längs x axeln med hastigheten 1.33 m/s. Av osäkerhetsrelationen följer då x px m, som är en helt försumbar osäkerhet (i jämförelse med den experimentella osäkerheten). För en elektron som rör sig med hastigheten m/s är osäkerheten i position x px m, vilket kan jämföras med storleken av en atom. Osäkerhetsprincipen kan också uttryckas med hjälp av energin och tiden. Betrakta två superponerade vågor med vågtalen k och k + k (fig , se nedan). Då vågpaketen passerar en given punkt, så kan osäkerheten i tid t uttryckas som T b /2 = 1/(2f b ). Den moderna fysikens grunder, Tom Sundius
6 Här betecknar T b svävningsperioden och f b svävningsfrekvensen (ω b = 2πf b ). Tidigare har visats (sid. 348) att ω b = ω/2, så att t = T b /2 = π/ω b = 2π/ ω. Genom att tillämpa de Broglies ekvation E = ω på denna ekvation, finner vi t = 2π / E, och således E t = 2π = h. Då man tillämpar detta resultat på ett kontinuerligt spektrum, måste en faktor 4π insättas, och ekvationen antar då formen E t 2. Liksom rörelsemängd och position, kan man inte heller bestämma energi och tid samtidigt med lika stor precision. Den moderna fysikens grunder, Tom Sundius
7 1.9. Vågfunktionen; väntevärden Vi har tidigare observerat (avsn. 1.7), att intensiteten för en elektromagnetisk våg, som är proportionell mot kvadraten på amplituden i vågmodellen, också är proportionell mot fotontätheten i partikelmodellen. Därför är det berättigat att uppfatta amplituden för en materievåg, som kallas för vågfunktionen Ψ(x, t), som en storhet, vars kvadrat (eg. kvadraten på absolutvärdet) är ett mått på sannolikheten att finna en partikel i en enhetsvolym. Vågfunktionen är något som inte kan mätas direkt, däremot kan man mäta dess kvadrat, som kallas för sannolikhetstätheten. Om vi begränsar oss till rörelse i en dimension, så är sannolikheten för att man skall finna en partikel mellan x och x + dx vid tidpunkten t P (x, t)dx = Ψ(x, t) 2 dx, där P (x, t) uttrycker sannolikhetstätheten i det endimensionella fallet. Den moderna fysikens grunder, Tom Sundius
8 Om vi bara har att göra med en partikel, så måste sannolikheten att finna den någonstans i rummet vara lika med 1, dvs villkoret bör gälla. Ψ(x, t) 2 dx = 1 Vanligen används komplexa funktioner för att beskriva vågfunktionerna, som t.ex. Ψ(x, t) = Ae i(kx ωt) (observera, att också amplituden A kan vara ett komplext tal). Därför kan sannolikhetstätheten uttryckas allmännare som P (x, t) = Ψ(x, t) 2 = Ψ (x, t)ψ(x, t), där Ψ (x, t) är den komplexa konjugaten av Ψ(x, t). En följd av denna sannolikhetsbeskrivning är att man endast kan bestämma medelvärden (eller väntevärden) av observerbara storheter. Väntevärden beräknas på följande sätt. Sannolikhetstätheten P (x, t) beskriver sannolikheten att finna en partikel inom intervallet (x, x + dx) vid tiden t. Medelvärdet av en (mätbar) storhet kan man bestämma genom att integrera produkten av storheten och sannolikhetstätheten över hela rymden. Väntevärdet för en partikels position kan därför beräknas på följande sätt: x = xp (x, t)dx, Den moderna fysikens grunder, Tom Sundius
9 där R + P (x, t)dx = 1 (normalisering). Med hjälp av definitionen för sannolikhetstätheten kan vi skriva väntevärdet i formen eller hellre x = x = x Ψ(x, t) 2 dx, Ψ (x, t)xψ(x, t)dx om vågfunktionen är komplex. Väntevärdet av en godtycklig storhet Q(x, t) definieras på motsvarande sätt: Q := Ψ (x, t)q(x, t)ψ(x, t)dx. Den moderna fysikens grunder, Tom Sundius
10 1.10. Schrödingers ekvation de Broglies hypotes visar att en partikel, vars rörelsemängd är p = k och energi E = ω kan beskrivas av en framåtskridande våg, som också kan representeras av en periodisk funktion av kx ωt. En fri partikel kan representeras av ett vågpaket, som är en superposition av framåtskridande vågor. Då systemets vågfunktion är en känd funktion av positionen och tiden, så kan man räkna ut vad som kommer att hända med partikeln i framtiden (givetvis med beaktande av osäkerhetsprincipen). Ett sätt att göra detta är att ställa upp Schrödingers ekvation för systemet. Dess lösning är vågfunktionen Ψ(x, y, z, t), som i allmänhet är en funktion av alla tre rumskoordinaterna (och tiden), även om vi här för enkelhetens skull endast behandlar endimensionella rörelser. Vi börjar med att skriva upp Hamiltons funktion för partikeln eller systemet (se s. 92): (E betecknar systemets totala energi). H(p, x) = p2 2m + U(x) = E Den moderna fysikens grunder, Tom Sundius
11 Sedan multiplicerar vi vartdera membrum av denna ekvation med vågfunktionen Ψ(x, t): p 2 Ψ(x, t) + U(x)Ψ(x, t) = EΨ(x, t) 2m och ersätter storheterna p och E med sina ekvivalenta operatorer: p op = i x E op = i t (i det endimensionella fallet; beteckningarna ˆp och Ê används även). Då en operator, såsom t.ex. i x, tillämpas på vågfunktionen Ψ(x, t) innebär detta, att funktionen först deriveras i avseende på x, och att resultatet därpå multipliceras med (konstanten) i. Då partikeln är en foton, är det lättare att förstå operatorekvationen, om vi jämför sambandet mellan den relativistiska energin och rörelsemängden för en foton, som kan skrivas p 2 = 1 c 2E2 med vågekvationen: 2 y x = 1 2 y 2 c 2 t, 2 Den moderna fysikens grunder, Tom Sundius
12 där y(x, t) är funktionen som beskriver vågrörelsen (jfr s. 344). Jämförelsen visar, att vi får vågekvationen om vi sätter in de ekvivalenta operatorerna p op och E op i ekvationen p 2 = 1 c 2E2, och tillämpar den på en godtycklig funktion y. Om p och E ersätts med motsvarande ekvivalenta operatorer i den allmänna ekvationen fås som kan skrivas i formen i 1 Ψ(x, t) = t 2m ( i x )( i )Ψ(x, t) + U(x)Ψ(x, t) x 2 2m 2 Ψ(x, t) Ψ(x, t) + U(x)Ψ(x, t) = i x 2 t Detta är den tidsberoende Schrödinger ekvationen. Då potentialenergifunktionen U(x) är känd, så kan Schrödinger ekvationen (i princip) lösas, och vågfunktionen Ψ(x, t) bestämmas. Vi skall se hur detta går till i några enklare specialfall. Den moderna fysikens grunder, Tom Sundius
13 1.11. Den fria partikeln En fri partikel utsätts inte för några yttre krafter. Därför är F = U x = 0, och U(x) är således konstant. Eftersom potentialenergins nollpunkt är godtycklig, kan vi sätta U = 0. Schrödinger-ekvationen för en fri partikel är därför 2 2 Ψ(x, t) Ψ(x, t) = i. 2m x 2 t Denna ekvation försöker vi först lösa med ansatsen Ψ(x, t) = A sin(kx ωt) (en framåtskridande våg, jfr s. 312). Genom att substituera den i Schrödinger ekvationen fås 2 2m [ k2 A sin(kx ωt)] = i ωa cos(kx ωt), eller alltså tan(kx ωt) = 2imω k 2. Den moderna fysikens grunder, Tom Sundius
14 Denna lösning kan emellertid inte vara ekvationens allmänna lösning, utan den gäller bara för ett speciellt värde av (kx ωt). En allmän lösning till denna differentialekvation av andra ordningen finner vi genom substitutionen Ψ(x, t) = A sin(kx ωt) + B cos(kx ωt). (jfr avsn i boken, s. 311). Om A = ia och B = A så kan ansatsen uttryckas enklare (med Eulers formel): Ψ(x, t) = A cos(kx ωt) + ia sin(kx ωt) Ae i(kx ωt). Då funktionen substitueras i Schrödinger ekvationen fås 2 2m [ k2 Ae i(kx ωt) ] = ωae i(kx ωt), varav följer 2 k 2 2m = ω. Om denna ekvation gäller, är Ψ(x, t) = Aei(kx ωt) en allmän lösning till den fria partikelns Schrödinger ekvation. Att så är fallet är en direkt följd av de Broglies hypotes. Genom att att substituera de Broglies ekvationer i uttrycket för den kinetiska energin: E = p2 2m ser vi nämligen omedelbart, att ekvationen gäller. Observera, att i detta fall k, och således även E = ( k) 2 /2m, kan anta vilket värde som helst. Vågfunktionen Ψ(x, t) = Ae i(kx ωt) representerar en våg, som fortskrider med konstant amplitud A som inte beror av x (plan våg). Partikeln kan därför befinna sig var som helst på x axeln, den är inte alls lokaliserad. För att beskriva en lokaliserad partikel behöver vi ett vågpaket, vars amplitud skiljer sig från noll endast inom ett litet område av x. Den moderna fysikens grunder, Tom Sundius
15 Ett vågpaket kan konstrueras genom att man adderar framåtskridande vågor med olika värden av amplitud och vågtal (t.ex. med hjälp av Fourier analys). Ett sådant vågpaket kommer också att vara en lösning till Schrödinger ekvationen för den fria partikeln. Enklast är det dock att använda den icke lokaliserade lösningen (den plana vågen). Observerbara storheter är alltid reella fastän Ψ(x, t) har en imaginär komponent, ty de innehåller vågfunktionens kvadratiska modul: Ψ 2 = Ψ (x, t)ψ(x, t) = A e i(kx ωt) Ae i(kx ωt) = A A = A 2 0. Om vi önskar beräkna väntevärdet av rörelsemängden, så måste vi använda den ekvivalenta operatorn i x : p = Ψ (x, t)p op Ψ(x, t)dx = Ψ (x, t) i Ψ(x, t)dx. x Om denna operator tillämpas på den fria partikelns vågfunktion, finner vi till en början att i Ψ(x, t) = i x x [Aei(kx ωt) ] = k[ae i(kx ωt) ] = kψ(x, t), som visar, att operatorn i x för den fria partikeln har samma effekt som multiplikation med p. Den moderna fysikens grunder, Tom Sundius
16 Väntevärdet av p op blir alltså p = = = k Ψ (x, t) i Ψ(x, t)dx x A e i(kx ωt) kae i(kx ωt) dx A Adx = k, eftersom sannolikheten att finna partikeln var som helst på x axeln bör vara 1. Det är dock inte möjligt att normalisera Ψ(x, t) genom att beräkna A ur ekvationen R + A Adx = 1, om R partikeln inte är lokaliserad, och sålunda har konstant amplitud överallt på x axeln. I detta fall är + A Adx = A R 2 + dx, denna integral är oändlig. Vågfunktionen kan inte normaliseras över hela x axeln, men det går om man väljer stora, men ändliga integrationsgränser. Detta problem uppträder inte för en lokaliserad partikel (vågpaket), där vågfunktionens amplitud skiljer sig från noll endast inom ett begränsat intervall. T. ex. 1 = R +L L A 2 dx = 2L A 2, dvs A = (2L) 1 2 (lådnormalisering). Normaliseringen kan också göras med Diracs δ-funktion, se t.ex. Merzbacher, kap. 6, 3. Den moderna fysikens grunder, Tom Sundius
17 Som vi ser, stämmer väntevärdet för rörelsemängden av en fri partikel överens med de Broglies hypotes, men vi har inte visat, att p endast kan ha detta värde. Om vi däremot beräknar p 2, dvs medelvärdet av p 2, och kan visa, att p 2 = p 2, så kan p inte fluktuera (fluktuationen bestäms nämligen av variansen (p p ) 2 = p 2 p 2 ), och p kan då bara ha värdet k. Vi beräknar därför p 2 = = = Ψ (x, t)p 2 opψ(x, t)dx A e i(kx ωt) i x A e i(kx ωt) i x = 2 k 2 A Adx = 2 k 2. Vi finner alltså, att p 2 = p 2, vilket skulle bevisas. i x Ae i(kx ωt) h kae i(kx ωt)i dx dx Den moderna fysikens grunder, Tom Sundius
18 På samma sätt kan vi också visa, att om energioperatorn i / t tillämpas på vågfunktionen Ψ(x, t) = Ae i(kx ωt), så innebär det multiplikation med ω = E: i Ψ(x, t) = ωψ(x, t) = EΨ(x, t). t Således stämmer väntevärdet av energin för en fri partikel E = ω överens med de Broglies ekvation. Likaså kan man också visa, att E 2 = E 2, och detta är således det enda värde som E kan anta. Den moderna fysikens grunder, Tom Sundius
19 1.12. Den tidsoberoende Schrödinger ekvationen Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation i två variabler, x och t. En sådan ekvation löses i allmänhet genom separation av variablerna. Lösningsansatsen, en funktion av två variabler, skrivs därvid som en produkt av två funktioner, som vardera är en funktion av en enda variabel. I vårt fall söker vi alltså en lösning av formen Ψ(x, t) = ψ(x)f(t). Genom att substituera denna ansats i den tidsberoende Schrödinger ekvationen fås 2 ψ(x) 2m f(t)d2 dx 2 + U(x)ψ(x)f(t) = i ψ(x) df(t) dt. Genom att dividera varje term i denna ekvation med ψ(x)f(t) så kan variablerna separeras: " # 2 1 d 2 ψ(x) 1 df(t) + U(x) = i. 2m ψ(x) dx 2 f(t) dt Den moderna fysikens grunder, Tom Sundius
20 Denna ekvation gäller för alla x, t endast om vartdera membrum är lika med samma konstant G (separationskonstanten). Ekvationen kan då skrivas som två ordinära differentialekvationer 2 1 2m ψ(x) d 2 ψ(x) + U(x) = G dx 2 1 df(t) i = G. f(t) dt Den tidsberoende ekvationen, som kan skrivas df(t) dt lätt inses genom substitution. = ig f(t) har lösningen f(t) = e igt/, vilket Genom att tillämpa operatorn E op = i t på Ψ(x, t) = ψ(x)f(t) får vi därpå E op Ψ(x, t) = E op ψ(x)f(t) = i [ψ(x)f(t)] = i ψ(x)df(t) t dt. Om vi sedan utnyttjar ekvationen df(t) dt i ψ(x) df(t) dt = i ψ(x) = ig f(t), så får vi igf(t) = Gψ(x)f(t) = GΨ(x, t). Den moderna fysikens grunder, Tom Sundius
21 Genom att jämföra denna ekvation med den vi fick genom att tilllämpa energioperatorn på den fria partikelns vågfunktion (se sid. 18), så ser vi att separationskonstanten G = E, och den första av de två separerade ekvationerna kan då uttryckas 2 d 2 ψ(x) 2m dx 2 + U(x)ψ(x) = Eψ(x) Detta är den tidsoberoende Schrödinger ekvationen, som upptäcktes av Schrödinger i slutet av år 1925 (Annalen der Physik 79, (1926)). Då potentialfunktionen U(x) är känd, kan man i allmänhet lösa ekvationen under antagandet att funktionerna ψ(x) är välartade, vilket leder till att endast vissa av funktionerna är fysikaliskt acceptabla. Schrödinger ekvationens lösningar brukar kallas egenfunktioner. Mot varje egenfunktion svarar endast ett värde av den totala energin E som kallas egenvärde. Kvantiseringen av energin är alltså en direkt följd av att lösningarna är välartade. Den moderna fysikens grunder, Tom Sundius
22 Egenfunktionerna är välartade, ifall de uppfyller följande villkor: För alla värden av x skall både ψ och dψ/dx vara a)ändliga, b)entydiga, samt c)kontinuerliga, se figuren ovan (13.21 i boken). Den moderna fysikens grunder, Tom Sundius
23 Dessa villkor är nödvändiga för att mätbara storheter, såsom väntevärdena av x och p: x = p = ψ (x)xψ(x)dx ψ (x) i d ψ(x)dx dx skall vara fysikaliskt acceptabla, dvs vara ändliga, entydiga och kontinuerliga överallt. Den tidsoberoende Schrödinger ekvationen kan också skrivas 2 d 2 ψ(x) 2m dx 2 = [E U(x)]ψ(x). Om dψ(x)/dx inte skulle vara ändlig och kontinuerlig överallt, så kan d 2 ψ(x)/dx 2 bli oändlig med den påföljd att högra membrum av ekvationen också blir oändlig, vilket i sin tur betyder att antingen U(x) eller E är oändlig, vilket är fysikaliskt omöjligt. I det följande skall vi studera några exempel. Vi kommer där att utnyttja villkoren för att uppställa gränsvillkor, varav kontinuitetsekvationer för vågfunktionen och dess derivata kan härledas ifall potentialfunktionen har diskontinuiteter. Den moderna fysikens grunder, Tom Sundius
1.7. Tolkning av våg partikeldualiteten
1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.11] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera
Läs mer1.13. Den tidsoberoende Schrödinger ekvationen
1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation
Läs mer2.6. de Broglies hypotes; elektrondiffraktion
2.6. de Broglies hypotes; elektrondiffraktion [Understanding Physics: 13.6-13.12] Vi har konstaterat, att elektromagnetisk strålning kan bete sig både som vågor och partiklar (fotoner). Hur är det med
Läs mer1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!
KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel
Läs merF3: Schrödingers ekvationer
F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så
Läs mer1.13. Den rektangulära potentialbrunnen
1.13. Den rektangulära potentialbrunnen [Understanding Physics: 13.13-13.15(b)] Vi betraktar en partikel med massan m som är innesluten i en rektangulär potentialbrunn med oändligt höga sidor, dvs U =
Läs merKvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.
Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!
Läs merKapitel 4. Materievågor
Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett
Läs merAndra föreläsningen kapitel 7. Patrik Lundström
Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den
Läs merKvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Läs mer1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?
Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera
Läs merKvantmekanik - Gillis Carlsson
Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,
Läs merBFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Läs merFysik TFYA86. Föreläsning 10/11
Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!
Läs merFöreläsning 3 Heisenbergs osäkerhetsprincip
Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education
Läs merFysikaliska krumsprång i spexet eller Kemister och matematik!
Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik
Läs mer2.4. Bohrs modell för väteatomen
2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan
Läs merParbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
Läs merKommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?
Inte mycket verkar säkert här...? Våg-partikeldualitet Ett system kan ha både vågoch partikelegenskaper i samma experiment. Vågfunktionen har en sannolikhetstolkning. Heisenbergs osäkerhetsrelation begränsar
Läs merz = z 2. z = z 2 z /z 2 = 1 1 z = x + c z(x) = x + c = ln x + c + c 2 y(x) = ln y = 0 y(x) = c 2
Differentialekvationer II Modellsvar: Räkneövning 1 1. Lös differentialekvationen y = (y ) 2 med hjälp av substitutionen z(x) = y (x). Kommentar: detta är standard substitutionen för differentialekvationer
Läs mer7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
Läs merTentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Läs merFysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR
Läs merFAFA Föreläsning 7, läsvecka 3 13 november 2017
FAFA55 2017 Föreläsning 7, läsvecka 3 13 november 2017 Schrödingers ekvation kan tolkas som en ekvation som har sin utgångspunkt i A) konservering av rörelsemängd B) energikonservering C) Newtons andra
Läs mer1.5 Våg partikeldualism
1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens
Läs mer2.4. Bohrs modell för väteatomen
2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan
Läs merTENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
Läs merKvantmekanik II (FK5012), 7,5 hp
Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.
Läs merVågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs merMilstolpar i tidig kvantmekanik
Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik
Läs merKvantmekanik II Föreläsning 2 Joakim Edsjö 1/37
Kvantmekanik II - Föreläsning 2 Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Läs mer= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Läs mer3.5. Schrödingerekvationen för atomer med en elektron
3.5. Schrödingerekvationen för atomer med en elektron [Understanding Physics: 19.5-19.8] Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna,
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och
Läs merNumerisk lösning till den tidsberoende Schrödingerekvationen.
Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall
Läs merStudietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Läs merd dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.
Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som
Läs merFYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var
Läs merEgenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
Läs merav envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
Läs mer1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop
Läs merÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och
Läs mery(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
Läs merLektion 1. Kurvor i planet och i rummet
Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation
Läs merÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),
Läs mer2.16. Den enkla harmoniska oscillatorn
2.16. Den enkla harmoniska oscillatorn [Understanding Physics: 13.16-13.17] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten)
Läs merFysik TFYA86. Föreläsning 11/11
Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt
Läs mer, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
Läs merFöreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths
1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de
Läs merLösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
Läs merRe(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
Läs mer= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merRita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
Läs merSF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
Läs merOändligtdimensionella vektorrum
Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.
Läs merKvantfysik SI1151 för F3 Tisdag kl
TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks
Läs merDugga i FUF040 Kvantfysik för F3/Kf3
Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!
Läs mer1.7. Superposition av två vågor med något olika frekvens
1.7. Superposition av två vågor med något olika frekvens [Understanding physics: 12.19-12.20] Betrakta två gående vågor som har samma amplitud A och begynnelsefas φ, men något olika frekvens, och således
Läs merFysik TFYA68. Föreläsning 11/14
Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik
Läs merLösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Läs mer19.4 Bohrs modell för väteatomen.
Den moerna fysikens gruner - Föreläsning 7 42 9.4 Bohrs moell för väteatomen. Som vi sett är en totala energin för elektronen i väteatomen E = 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor så
Läs merRelativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi
Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Läs merInstitutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Läs merSF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merSammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Heisenbergmodellen Måndagen den 0 augusti, 01 Teoridel 1. a) Heisenbergmodellen beskriver växelverkan mellan elektronernas spinn på närliggande
Läs merEXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs merKvantkemi. - M. W. Hanna, Quantum Mechanics in Chemistry, Benjamin, Menlo Park, CA, 1969.
III. Kvantkemi Kvantkemi III-1 Källor: - M. W. Hanna, Quantum Mechanics in Chemistry, Benjamin, Menlo Park, CA, 1969. - M. Karplus och R. N. Porter, Atoms & Molecules. An Introduction for Students in Physical
Läs merett uttryck för en våg som beskrivs av Jonesvektorn: 2
Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
Läs merRelativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar
Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt
Läs merLösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra
Läs merD 1 u(x, y) = e x (1 + x + y 2 ), D 2 u(x, y) = 2ye x + 1, (x, y) R 2.
Differentialekvationer I Modellsvar till räkneövning 4 De frivilliga uppgifterna U1 och U2 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Sök en potentialfunktion
Läs merPreliminärt lösningsförslag till Tentamen i Modern Fysik,
Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs
Läs merTATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Läs merHarmonisk oscillator Ulf Torkelsson
1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel
Läs mer3 differensekvationer med konstanta koefficienter.
Matematiska institutionen Carl-Henrik Fant 17 november 2000 3 differensekvationer med konstanta koefficienter 31 T Med en menar vi en av rella eller komplexa tal varje heltal ges ett reellt eller komplext
Läs merVågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Läs mer1.15. Andra potentialbrunnar och barriärer
1.15. Andra potentialbrunnar och barriärer [Understanding Physics: 13.15-13.17; 19.1-19.3] Vi skall nu ge en översikt över ytterligare några potentialbrunnar och barriärer, nämligen potentialfallet (fig.
Läs mer9.3. Egenvärdesproblem
9.3. Egenvärdesproblem Problem som innehåller en parameter men endast kan lösas för speciella värden av denna parameter kallas egenvärdesproblem. Vi skall här nöja oss med ett exempel på ett dylikt problem.
Läs mer4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella
KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.
Läs mer2.7. Egenfunktionernas tolkning - fortsättning
2.7. Egenfunktionernas tolkning - fortsättning [Understanding Physics: 19.7-19.10] Förra gången såg vi, att sannolikhetstätheten består av tre delar, en radiell del och två vinkelberoende delar. Vi skall
Läs merSF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merFysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Läs merÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF Nyckelord och innehåll
ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Partiella differentialekvationer Separation av variabler Operatorer A definierade
Läs merTentamen, Kvantfysikens principer FK2003, 7,5 hp
Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera
Läs merUtveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Läs mer