9.3. Egenvärdesproblem

Storlek: px
Starta visningen från sidan:

Download "9.3. Egenvärdesproblem"

Transkript

1 9.3. Egenvärdesproblem Problem som innehåller en parameter men endast kan lösas för speciella värden av denna parameter kallas egenvärdesproblem. Vi skall här nöja oss med ett exempel på ett dylikt problem. Betrakta ekvationen 2 u x + 2 u 2 y + λu = 2 innanför en kvadrat med hörnen (, ), (3, ), (3, 3) och (, 3). Funktionen u antas försvinna på kvadratens sidor; ekvationen representerar då ett svängande membran. För att lösa ekvationen med differensmetoden skall vi föreställa oss att man täcker kvadraten med ett nät med kvadratiska maskor. Vetenskapliga beräkningar III, Tom Sundius 28 1

2 För enkelhetens skull skall vi endast använda maskstorlekarna h = 1 och h = 3/4. I det första fallet behövs då endast ett funktionsvärde innanför kvadraten, eftersom u(1, 1) = u(1, 2) = u(2, 1) = u(2, 2) = U på grund av symmetrin. I det senare fallet finns det av symmetriskäl tre olika funktionsvärden, eftersom u(3/4, 3/4) = u(3/4, 9/4) = u(9/4, 3/4) = u(9/4, 9/4) = U; u(3/4, 3/2) = u(3/2, 3/4) = u(9/4, 3/2) = u(3/2, 9/4) = V ; u(3/2, 3/2) = W. Om vi tillämpar fempunktsformeln för Laplace operatorn 2 u(x, y) = [u(x + h, y) + u(x, y + h) + u(x h, y) + u(x, y h) 4u(x, y)]/h 2, så får vi i det första fallet (h = 1) U + U + + 4U + λu =, som har lösningen λ = 2, samt i det senare fallet (h = 3/4) ekvationssystemet där µ = h 2 λ = 9λ/16. 8 < : 2V 4U +µu = 2U +W 4V +µv = 4V 4W +µw =, Vetenskapliga beräkningar III, Tom Sundius 28 2

3 Villkoret för en icke-trivial lösning av detta ekvationssystem är, att koefficientmatrisens determinant försvinner: 4 µ µ µ =. Om determinanten utvecklas, får man sekulärekvationen µ 3 12µ 2 + 4µ 32 =, vars minsta rot är µ = , varav följer λ = Å andra sidan vet vi, att felet då man använder fempunktsformeln är proportionellt mot h 2, varför elimination av ɛ ur ekvationssystemet λ + ɛ = 2 λ ɛ = 2.83 ger λ = ( )/ (Richardsons extrapolationsmetod). Vetenskapliga beräkningar III, Tom Sundius 28 3

4 Den exakta lösningen är som ger u = sin(mπx/3) sin(nπy/3), λ = (m2 + n 2 )π 2. 9 Härav följer, att det lägsta egenvärdet fås för m = n = 1: λ 1,1 = 2π2 9 = Felet är bara.15%. Man kan också beräkna högre egenvärden numeriskt, men då behövs det ett finare nät. Vetenskapliga beräkningar III, Tom Sundius 28 4

5 9.4. Finita elementmetoden I differensmetoden diskretiseras kontinuerliga funktioner genom att man väljer en ändlig mängd punkter (nät eller gitter) och ersätter derivatorna med differenser. Ett annat sätt att behandla problemet är att välja en ändlig mängd funktioner och approximera differentialekvationens exakta lösning med en linjär kombination av dessa funktioner. Sådana funktioner kallas basfunktioner, och de kan t.ex. vara polynom av lågt gradtal. Vanligen indelas det undersökta området i ännu mindre delar eller element. I varje element approximeras lösningen med en skild basfunktion, som har värdet noll i de övriga elementen. Koefficienterna för basfunktionerna, t.ex. a i, b i, c i, d i och f i för basfunktionen φ i (x, y) = a i x 2 + b i y 2 + c i xy + d i x + e i y + f i, väljs så, att basfunktionerna kontinuerligt övergår i varandra vid elementens gränsytor. De punkter på gränsytorna, där funktionsvärdena överensstämmer, kallas nodpunkter. Ofta brukar man därtill kräva, att basfunktionernas derivator (eller t.o.m. högre derivator) överensstämmer i nodpunkterna (jfr spline funktionerna). Ju flere nodpunkter det finns i ett element, desto noggrannare polynom kan man använda som basfunktioner, och desto bättre kan man täcka det studerade området med element. Denna metod kallas därför också för finita elementmetoden (FEM = Finite Element Method). Vetenskapliga beräkningar III, Tom Sundius 28 5

6 För att bättre förstå metoden, skall vi för enkelhetens skull tillämpa den på en endimensionell Poisson ekvation. Om laddningsfördelningen är ρ(x), så kan ekvationen för den elektrostatiska potentialen uttryckas φ (x) = 4πρ(x). Randvillkoren antas vara φ() = φ(1) =. Lösningarna till en sådan ekvation kan alltid uttryckas som en linjär kombination av sinsemellan ortogonala basfunktioner u i (x), där i = 1, 2,..., : X φ(x) = a i u i (x) i Basfunktionerna antas här uppfylla ortogonalitetsvillkoret Z 1 u i (x)u j (x)dx = δ ij, där δ ij betecknar Kroneckers delta, och u i () = u i (1) =. Ett exempel på lämpliga basfunktioner är u j (x) = 2 sin jπx. För att beräkna värdet av funktionen φ(x) bestämmer vi alla koefficienterna a i genom substitution i differentialekvationen och användning av basfunktionernas ortogonalitetsvillkor. Om systemets gränsyta inte har en regelbunden form kan detta vara ganska besvärligt. Vetenskapliga beräkningar III, Tom Sundius 28 6

7 Finita elementmetoden har konstruerats så att den skall ge en god approximation till lösningen också då randvillkoren är komplicerade, eller då lösningsfunktionen P varierar mycket. Också i detta fall uttrycks n approximationen som en linjär kombination φ n (x) = i=1 a iu i (x), men basfunktionernas antal är nu ändligt, och var och en av dem är definierad i ett litet område kring noden x i. Om vi använder denna approximation, så får vi en restterm ɛ n (x) = φ n (x) + 4πρ(x), som skulle försvinna, om φ n(x) vore den exakta lösningen. Vi försöker nu konstruera en sådan metod, att ɛ n (x) är litet över hela området, medan beräkningen av koefficienterna a i pågår. Valet av u i (x) och metoden att optimera ɛ n (x) bestämmer lösningsnoggrannheten för ett visst värde av n. En metod att utföra denna optimering är att använda en vägd integral g i = R 1 ɛ n(x)w i (x)dx som sätts till vid beräkningen av a i. Viktsfunktionerna w i (x) väljs här på ett lämpligt sätt. För den endimensionella Poisson ekvationen kan den vägda integralen uttryckas g i = Z n X j=1 a j u j (x) + 4πρ(x) 3 5 wi (x) =, vilket är ekvivalent med det linjära ekvationssystemet Aa = b, där A ij = Z 1 u i (x)w j(x)dx, och b i = 4π Z 1 ρ(x)w i (x)dx. Vetenskapliga beräkningar III, Tom Sundius 28 7

8 I praktiken behöver man alltså endast lösa ett tridiagonalt eller bandformat ekvationssystem, vilket går snabbt. Det gäller att förenkla problemet utan göra avkall på noggrannheten. Valet av viktsfunkterna w i (x) är därför kritiskt. Ofta brukar man sätta w i (x) = u i (x) (Galerkins metod). Vi skall nu studera lösningen i lite mer detalj. Vi delar in intervallet [, 1] i n + 1 lika stora delintervall (x =, x n+1 = 1) och sätter u i (x) = 8 >< >: (x x i 1 )/h, om x [x i 1, x i ] (x i+1 x)/h, om x [x i, x i+1 ] i annat fall Intervallängden är alltså h = x i x i 1 = 1/(n + 1). Observera, att randvillkoren uppfylls om u i (x) väljs på detta sätt. För enkelhetens skull väljer vi laddningsfördelningen ρ(x) = π 4 sin πx. Vetenskapliga beräkningar III, Tom Sundius 28 8

9 De vägda integralerna är då lätta att beräkna, och vi får A ij = Z 1 8 > < u i (x)u j (x)dx = >: 2/h, om i = j 1/h, om i = j ± 1 i annat fall (obs : partiell integration!) b i = 4π Z 1 ρ(x)u i (x)dx = π h (x i 1 + x i+1 2x i ) cos πx i + 1 h (2 sin πx i sin πx i 1 sin πx i+1 ) Denna metod är ganska lätt att programmera. I stället för Galerkins metod, kan man också använda Ritz variationsprincip 1, som går ut på minimering av en funktional (en funktion, ofta systemets totala energi, som beror av en annan funktion). Funktionalen av t.ex. Poissons endimensionella ekvation φ (x) = 4πρ(x) med randvillkoren φ() = φ(1) =, har formen Z 1 n o 1 E[φ(x)] = 2 φ 2 (x) 4πρ(x)φ(x) dx. 1 efter Walter Ritz ( ), schweizisk teoretisk fysiker Vetenskapliga beräkningar III, Tom Sundius 28 9

10 Om vi tillämpar variationsprincipen δe[φ(x)] =, och antar att variationerna vid intervallgränserna δφ(x) försvinner, så får vi Lagranges ekvationer och därur den ursprungliga differentialekvationen. Detta är Ritz variationsprincip. Den exakta lösningen φ(x) till differentialekvationen ger minimivärdet av funktionalen E[φ(x)]. Ju mindre värdet av E[φ(x)] är, desto bättre är den approximativa lösningen. Ritz metod tillämpas alltså så, att man först konstruerar en funktional för en given differentialekvation, och därpå approximerar lösningen bit för bit i varje element och använder variationsprincipen för att bilda det linjära ekvationssystemet varur koefficienterna beräknas. Vi kan tillämpa Ritz metod på Poissons ekvation, och börjar P då med att uttrycka lösningen som en linjär n kombination av linjärt oberoende basfunktioner φ n (x) = i=1 a iu i (x). Därpå minimeras funktionalen i avseende på koefficienterna a i : E[φ n (x)] a i =, i = 1, 2,..., n, vilket leder till ett linjärt ekvationssystem Aa = b, varur koefficienterna löses. Som man lätt kan visa, leder i detta fall Ritz metod till samma ekvationssystem som Galerkins metod. Vetenskapliga beräkningar III, Tom Sundius 28 1

11 Kapitel 1. Fourier analys Joseph Fourier ( ) har blivit speciellt känd för sitt verk Théorie analytique de la chaleur som utkom år Det innehåller en teori för värmeledningen, där han löser den partiella differentialekvationen med hjälp av trigonometriska serier. Han visade, att en godtycklig funktion kan utvecklas i en trigonometrisk serie, eller Fouriers serie som den senare blev kallad efter honom. Fourier metoder används nuförtiden för att lösa många slags problem inom elektricitetsläran, optiken, akustiken och termodynamiken. Vetenskapliga beräkningar III, Tom Sundius 28 11

12 1.1. Fourier serier Enligt Fouriers teorem kan en periodisk funktion f(x) (t.ex. med perioden 2π) approximeras av f(x) = a 2 + X k=1 (a k cos kx + b k sin kx). På grund av de trigonometriska funktionernas ortogonalitet: Z 2π cos kx cos mxdx = 8 >< >: k m π k = m 2π k = m = Z 2π sin kx cos mxdx = Vetenskapliga beräkningar III, Tom Sundius 28 12

13 Z 2π så kan koefficienterna i serien uttryckas sin kx sin mxdx = 8 >< >: k m π k = m k = m = a k = 1 π Z 2π f(x) cos kxdx, b k = 1 π Z 2π f(x) sin kxdx. På grund av ortogonaliteten, kommer Fourier approximationen att vara ekvivalent med minsta kvadratmetoden. Detta gäller för varje serieutveckling av en funktion i ortogonala funktioner, vilket inses på följande sätt. Antag, att f(x) nx i= c i g i (x), där funktionerna g i (x), i = 1, 2,..., n uppfyller ortogonalitetsvillkoret Z w(x)g i (x)g j (x) = δ ij. Vetenskapliga beräkningar III, Tom Sundius 28 13

14 Då gäller S = = Z b Z a w(x)[f(x) nx i= w(x)f 2 (x)dx 2 c i g i (x)] 2 dx nx Z c i w(x)f(x)g i (x)dx + nx nx c i c j Z w(x)g i g j dx = Z w(x)f 2 (x)dx 2 i= nx c i a i + nx c 2 i i= j= = Z w(x)f 2 (x)dx i= nx a 2 i + nx i= (a i c i ) 2 i= i= som är ett minimum, endast om c i = a i (Fourier-koefficienterna) gäller för alla i, vsb. Vetenskapliga beräkningar III, Tom Sundius 28 14

15 Man kan också visa, att Bessels olikhet Z b a w(x)f 2 (x)dx nx i= a 2 i, w(x) gäller för Fourier koefficienterna a i = Z b a w(x)f(x)g i (x)dx, om g i (x) är ortonormerade funktioner. Istället för den trigonometriska serien, är det ofta fördelaktigt att använda den komplexa framställningen av Fourier serien, som man finner på följande sätt. Av Eulers ekvation e ix = cos x + i sin x följer Av dessa identiteter följer (för heltaliga k) att sin x = eix e ix, cos x = eix + e ix. 2i 2 f(x) = X k= c k e (2πi/L)kx, Vetenskapliga beräkningar III, Tom Sundius 28 15

16 där om perioden är L. c k = 1 L Z L f(x)e (2πi/L)kx dx, I detta fall kan man lätt bevisa ortogonalitetsvillkoret genom direkt integration: Z L e (2πi/L)kx e (2πi/L)mx dx = ( m + k L m + k = Genom att jämföra de två olika representationerna för Fourier serien, finner vi c k = 8 >< >: a k ib k 2 a k + ib k a 2 2 k > k < k = Vetenskapliga beräkningar III, Tom Sundius 28 16

17 En märklig egenskap som delas av sinus och cosinus funktionen är att bägge är ortogonala både över ett kontinuerligt intervall och en mängd av diskreta punkter på lika stort avstånd från varandra, som täcker perioden. Detta är mycket viktigt på grund av att man vanligen endast känner funktionens värden i ekvidistanta punkter. Man kan därför exakt beräkna koefficienterna i diskreta sampelpunkter, istället för att beräkna dem approximativt över ett kontinuerligt intervall genom numerisk integration. Om vi t.ex. känner funktionsvärdena i de 2N sampelpunkterna: så gäller att de 2N funktionerna x k = Lk, k =, 1,..., 2N 1, 2N 1, cos 2π L x, cos 2π L 2x,..., cos 2π L (N 1)x, cos 2π L Nx sin 2π L x, sin 2π L 2x,..., sin 2π L (N 1)x utgör en ortogonal funktionsmängd. Vetenskapliga beräkningar III, Tom Sundius 28 17

18 Detta innebär, att för k och m N gäller 2N 1 X l= 2N 1 X l= 2N 1 X l= cos cos sin 2π L k Ll 2π cos 2N L m Ll 2N 2π L k Ll 2π sin 2N L m Ll 2N 2π L k Ll 2π sin 2N L m Ll 2N = 8 >< >: = = 8 >< >: k m N 2N k = m, N k = m =, N k m (bevis i R.W. Hamming: Numerical methods for Scientists and Engineers). N k = m, N k = m =, N Vetenskapliga beräkningar III, Tom Sundius 28 18

19 Hur skiljer sig den diskreta från den kontinuerliga Fourier utvecklingen? Antag, att den kontinuerliga serien är f(x) = a 2 + X k=1 (a k cos 2π L kx + b k sin 2π L kx), och att x l = Ll/(2N). Om den diskreta seriens koefficienter betecknas A k, B k och f(x l ) multipliceras med cos(2π/l)kx l och summeras, så får vi 2N 1 X l= f(x l ) cos 2π L kx l = NA k = N(a k + a 2N k + a 2N+k +...), varav följer att den koefficient som vi vill beräkna är A k = a k + X m=1 (a 2Nm k + a 2Nm+k ), som anger den ändliga Fourier seriens koefficienter uttryckta med den kontinuerliga Fourier seriens koefficienter. Vetenskapliga beräkningar III, Tom Sundius 28 19

20 På motsvarande sätt kan man visa, att B k = b k + X m=1 ( b 2Nm k + b 2Nm+k ), och att nolltegradstermen är A = a + 2 X m=1 a 2Nm. De olika frekvenser som ingår i den ursprungliga kontinuerliga signalen kommer därför att adderas vid samplingen (aliaseffekt, aliasing på engelska). Sambandet mellan den ändliga och den kontinuerliga Fourier seriens koefficienter visar tydligt aliaseffekten. Om frekvenserna representeras av punkter på en linje från till, så kan aliaseringen beskrivas genom att spegla linjen fram och tillbaka på sig själv. Den första frekvensen där en sådan invikning sker kallas vikningsfrekvensen, eller Nyquist frekvensen 2 och har värdet k = N. 2 efter Harry Nyquist ( ), en svenskfödd amerikansk ingenjör Vetenskapliga beräkningar III, Tom Sundius 28 2

21 Som synes av bilden ovan kommer alla punkter på kurvan ovanför samma ställe på frekvensaxeln att uppträda som samma frekvens på grund av samplingen, så att frekvenserna inte på nytt kan separeras. Funktioner som svänger snabbare än Nyquist frekvensen avbildas alltså som funktioner med frekvensen speglad i Nyquist frekvensen. Man kan undersöka detta genom att experimentera med Matlab. Konstruera en vektor t med 11 punkter mellan och 2 π och rita cos(t): >> t = :2*pi/1:2*pi; >> plot(t,cos(t)) Rita sedan cos(nt), där n = 2, 3,.... För n = 1 får man en rät linje, pga av att den snabba cosinussvängningen hinner svänga en hel period och återvända till 1! Vetenskapliga beräkningar III, Tom Sundius 28 21

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

3.3. Symboliska matematikprogram

3.3. Symboliska matematikprogram 3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.

Läs mer

6.3. Direkta sökmetoder

6.3. Direkta sökmetoder 6.3. Direkta sökmetoder Förutom de nyss nämnda metoderna för att uppsöka ett minimum av en funktion av en variabel finns det en enkel metod som baserar sig på polynomapproximation av funktionen. Om vi

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

Euler-Mac Laurins summationsformel och Bernoulliska polynom

Euler-Mac Laurins summationsformel och Bernoulliska polynom 46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan

Läs mer

Föreläsning 5. Approximationsteori

Föreläsning 5. Approximationsteori Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Dataprojekt. Nanovetenskapliga tankeverktyg. January 18, 2008

Dataprojekt. Nanovetenskapliga tankeverktyg. January 18, 2008 Dataprojekt. Nanovetenskapliga tankeverktyg. January 18, 2008 Dataprojekt 1: Fourierserier Två av fysikens mest centrala ekvationer är vågekvationen och värmeledningsekvationen. Båda dessa ekvationer är

Läs mer

FOURIERANALYS En kort introduktion

FOURIERANALYS En kort introduktion FOURIERAALYS En kort introduktion Kurt Hansson 2009 Innehåll 1 Signalanalys 2 2 Periodiska signaler 2 3 En komplex) skalärprodukt 4 4 Fourierkoefficienter 4 5 Sampling 5 5.1 Shannon s teorem.................................

Läs mer

Projekt Finit Element-lösare

Projekt Finit Element-lösare Projekt Finit Element-lösare Emil Johansson, Simon Pedersen, Janni Sundén 29 september 2 Chalmers Tekniska Högskola Institutionen för Matematik TMA682 Tillämpad Matematik Inledning Många naturliga fenomen

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

TMA226 datorlaboration

TMA226 datorlaboration TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,

Läs mer

INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället!

INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället! INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället! Ska du t ex förenkla 2(a + b) 2 3(b a) 2 utför först kvadreringarna

Läs mer

Föreläsningsanteckningar i linjär algebra

Föreläsningsanteckningar i linjär algebra 1 Föreläsningsanteckningar i linjär algebra Per Jönsson och Stefan Gustafsson Malmö 2013 2 Innehåll 1 Linjära ekvationssystem 5 2 Vektorer 11 3 Linjer och plan 21 4 Skalärprodukt 27 5 Vektorprodukt 41

Läs mer

Signalanalys med snabb Fouriertransform

Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör

Läs mer

Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer

Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik

Läs mer

TANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

TANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Kubiska splines Approximerande Splines s s s s 4 B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. x x x x 4 x 5 Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor.

Läs mer

Basbyte (variabelbyte)

Basbyte (variabelbyte) Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

FYSIKENS MATEMATISKA METODER

FYSIKENS MATEMATISKA METODER FYSIKENS MATEMATISKA METODER TREDJE UPPLAGAN TORBJÖRN ERIKSON HENRIK CHRISTIANSSON ERIK LINDAHL JOHAN LINDE LARS SANDBERG MATS WALLIN mfl Boken är typsatt i L A TEX med 11pt Times Printed in Sweden by

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013 TILLÄMPAD LINJÄR ALGEBRA, DN123 1 DN123 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 213 Skrivtid: 8-13 Tillåtna hjälpmedel: inga Examinator: Anna-Karin Tornberg Betygsgränser: Betyg A B C D E

Läs mer

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Tentamen, del 2 DN1240 Numeriska metoder gk II för F

Tentamen, del 2 DN1240 Numeriska metoder gk II för F Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Sammanfattning (Nummedelen)

Sammanfattning (Nummedelen) DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,

Läs mer

Interpolation Modellfunktioner som satisfierar givna punkter

Interpolation Modellfunktioner som satisfierar givna punkter Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

3.3. Interpolationsmetoder

3.3. Interpolationsmetoder 3.3. Interpolationsmetoder Antag, att vi önskar beräkna ett funktionsvärde f(x), och att det beräknade funktionsvärdet är f (x). Avvikelsen mellan f (x) och f(x), som vi betecknar e(x) = f (x) f(x), är

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig

Läs mer

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Komplexa vektorrum U och underrum V U. Linjära höljet: V = span(v 1, v 2,..., v N

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

Ekvationssystem - Övningar

Ekvationssystem - Övningar Ekvationssystem - Övningar Uppgift nr 1 y = 5x x + y = 54 Uppgift nr 2 y = 2x x + y = 12 Uppgift nr 3 y = 3x + 7 4x + y = 35 Uppgift nr 4 y = 4x - 18 3x + y = 38 Uppgift nr 5 2x - 2y = -4 x - 3y = 4 Uppgift

Läs mer

3 differensekvationer med konstanta koefficienter.

3 differensekvationer med konstanta koefficienter. Matematiska institutionen Carl-Henrik Fant 17 november 2000 3 differensekvationer med konstanta koefficienter 31 T Med en menar vi en av rella eller komplexa tal varje heltal ges ett reellt eller komplext

Läs mer

4.4. Mera om grafiken i MATLAB

4.4. Mera om grafiken i MATLAB 4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Mer om Fourierserier. Fouriertransform LCB vt 2012

Mer om Fourierserier. Fouriertransform LCB vt 2012 Mer om Fourierserier. Fouriertransform LCB vt 22. Exponentiella Fourierserier Vi ska i detta avsnitt se hur periodiska funktioner kan framställas i serieform med användning av den komplexa exponentialfunktionen.

Läs mer

Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden

Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Johan Jansson November 29, 2010 Johan Jansson () M6 November 29, 2010 1 / 26 Table of contents 1 Plan och Syfte

Läs mer

SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A

SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

3.6 De klassiska polynomens ortogonalitetsegenskaper.

3.6 De klassiska polynomens ortogonalitetsegenskaper. Vetenskapliga beräkningar III 34 3.6 De klassiska polynomens ortogonalitetsegenskaper. I nedanstående tabell anges egenskaperna för några av de vanligaste ortogonala polynomen. Polynomen är normerade så,

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

En trafikmodell. Leif Arkeryd. Göteborgs Universitet. 0 x 1 x 2 x 3 x 4. Fig.1

En trafikmodell. Leif Arkeryd. Göteborgs Universitet. 0 x 1 x 2 x 3 x 4. Fig.1 10 En trafikmodell Leif Arkeryd Göteborgs Universitet Tänk dig en körfil på en landsväg eller motorväg, modellerad som x axeln i positiv riktning (fig.1), och med krysset x j som mittpunkten för bil nummer

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

Lösningar till linjära problem med MATLAB

Lösningar till linjära problem med MATLAB 5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:

Läs mer

Preliminärt lösningsförslag till del I, v1.0

Preliminärt lösningsförslag till del I, v1.0 Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel

Läs mer

f(x + h) f(x) h f(x) f(x h) h

f(x + h) f(x) h f(x) f(x h) h NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE3 Sannolihet, statisti och ris 215-6-4 l. 8.3-13.3 Examinator: Johan Jonasson, Matematisa vetensaper, Chalmers Telefonvat: Johan Jonasson, telefon: 76-985223 31-7723546 Hjälpmedel: Typgodänd

Läs mer

Prov kapitel 3-5 - FACIT Version 1

Prov kapitel 3-5 - FACIT Version 1 Prov kapitel 3-5 - FACIT Version 1 1. Lös ekvationerna algebraiskt a. 13 x + 17 = 7x + 134 Svar: x = 117 / 6 = 19.5 b. x 10 = 84 Svar: x = 84 0.1 = 1.5575 2. Beräkna a. 17 % av 3500 = 595 b. 3 promille

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna

Läs mer

Vetenskapliga beräkningar III 139

Vetenskapliga beräkningar III 139 Vetenskapliga beräkningar III 139 Kapitel 9. Partiella differentialekvationer. Partiella differentialekvationer är mycket vanliga i den tillämpade fysiken. De bäst kända tillämpningarna är måhända numeriska

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Fourierserier: att bryta ner periodiska förlopp

Fourierserier: att bryta ner periodiska förlopp Analys 36 En webbaserad analyskurs Funktionsutvecklingar Fourierserier: att bryta ner periodiska förlopp Anders Källén MatematikCentrum LTH anderskallen@gmail.com Fourierserier: att bryta ner periodiska

Läs mer

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

TATA42: Föreläsning 3 Restterm på Lagranges form

TATA42: Föreläsning 3 Restterm på Lagranges form TATA4: Föreläsning 3 Restterm på Lagranges form Johan Thim 9 mars 9 Lagranges form för resttermen Vi har tidigare använt resttermen på ordo-form med goda resultat. Oftast i samband med gränsvärden, extrempunktsundersökningar

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

Kapitel 9. Partiella differentialekvationer

Kapitel 9. Partiella differentialekvationer Kapitel 9. Partiella differentialekvationer Partiella differentialekvationer är mycket vanliga i den tillämpade fysiken. De bäst kända tillämpningarna är måhända numeriska väderförutsägelser, varvid förändringarna

Läs mer

Trigonometriska formler Integraler och skalärprodukter Fourierserier Andra ortogonala system. Fourierserier. Fourierserier

Trigonometriska formler Integraler och skalärprodukter Fourierserier Andra ortogonala system. Fourierserier. Fourierserier Matte D : Additionsformler cos(α β) cos(α + β) = cos α cos β + sin α sin β (cos α cos β sin α sin β) = sin α sin β α = mx, β = nx sin mx sin nx = cos(m n)x cos(m + n)x Derivata f (x) = sin kx f (x) = k

Läs mer

Rapportexempel, Datorer och datoranvändning

Rapportexempel, Datorer och datoranvändning LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som

Läs mer

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. 11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet

Läs mer

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer