p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):
|
|
- Emil Samuelsson
- för 8 år sedan
- Visningar:
Transkript
1 BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation: 1 p + ρv + ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt): p + ρv = konst. Om hastigheten ökar minskar trycket, och vice versa. Vätskeströmning, förträngning Volymflöde, V = V A = konst. Arean minskar Hastigheten ökar Bernoullis ekvation Trycket minskar Strömning kring vingprofil (NACA 441), anfallsvinkel 5 Tätare strömlinjer på ovan-/framsidan högre hastighet, lägre tryck (lyftkraft) 1 Daniel Bernoulli, , Holland/Schweiz. Kap. 4.1 (Ch. 1-) Strömningslära C. Norberg, LTH
2 HASTIGHETSMÄTNING Förutsättningar: friktionsfri, inkompressibel, stationär strömning. Horisontell strömlinje summan av statiskt och dynamiskt tryck konstant, p+ρv / = konst. kan utnyttjas till hastighetsmätning. Om strömningen bromsas upp till hastigheten noll längs strömlinjen blir det statiska trycket i denna s.k. stagnationspunkt, p 0 = p+ρv /. Känd densitet ρ, uppmätt tryckdifferens p 0 p ger V = (p 0 p)/ρ Pitotrör (eng. Pitot tube), Henri de Pitot (173) Ett 90 böjt rör med öppningen (O) riktad mot strömningen. I fall (a) och (b) strömmar vätska. I fall (b) och (c) antas strömningen rätlinjig, d.v.s. försumbar krökning av strömlinjer, statiskt tryckuttag vid (A); i fall (c) är (A) och (O) ihopkopplade som en U-rörsmanometer, manometervätskans densitet = ρ m ; godtycklig fluid med ρ < ρ m ; avläst höjdskillnad h. (a, b) : V = gh, (c) : V = (ρ m /ρ 1)gh Prandtlrör (eng. Pitot-static tube) Tryckuttagen A och O kombineras till en enda mätsond (Ludwig Prandtl, ca. 1910); mycket tillförlitlig; används mycket vid noggranna mätningar samt vid kalibrering, se Fig Kap (Ch. 1-) Strömningslära C. Norberg, LTH
3 TORRICELLIS TEOREM Betrakta utströmning av vätska ur ett litet hål i botten på en stor öppen behållare. En strömlinje kan identifieras från ytan (1) och ut genom hålet () och vidare ned en sträcka H vid (3). Stor behållare, litet hål (area A h ) vätskehöjden h konstant och ytans hastighet försumbar, V 1 = 0. Försumma tryckskillnaden i omgivande luft (ρ ρ air ). Förutsätt stationär, inkompressibel och friktionsfri strömning längs strömlinjen. Om z är uppåt gäller enligt Bernoullis ekvation: p 1 + ρgz 1 = p + ρv + ρgz = p 3 + ρv 3 + ρgz 3 z 1 = h; p 1 = p = p 3 = p atm ; z = 0; z 3 = H. Första likheten ger V = gh (Evangelista Torricelli 1643) Andra likheten ger V 3 = g(h + H) > V. Observera att hastigheterna är lika med de vid fritt fall för en fri kropp i vakuum. Om inte hålet är speciellt utformat kommer strålen att kontraheras vid utloppet (vena contracta). Om strålens utloppsarea är A j gäller för skarpkantade hål: A j /A h = C c 0.61, där C c 1 är den s.k. kontraktionskoefficienten, se Fig Massflöde: ṁ = ρa j V = ρc c A h V = ρc c A h gh Strålens area efter utloppet kommer att minska, A 3 = A j / 1 + H/h, när strålen blir tillräckligt smal bildas droppar. Kap. 4.. (Ch. 1-) Strömningslära C. Norberg, LTH
4 BERNOULLIS EKVATION RÖRSTRÖMNING Stationär, inkompressibel rörströmning. Volymflödet konstant, d.v.s. V 1 A 1 = V A = konst. V = medelhastighet; A = tvärsnittsarea. Hastighetsvariation över tvärsnitt oftast ganska liten (turbulent rörströmning, se Kap. 8). Över rörtvärsnitt med liten eller måttlig krökning är tryckvariationen hydrostatisk, p + ρ gz = konst. Om effekter av hastighetsvariation över tvärsnitt, krökning och friktion kan försummas gäller: p 1 + ρv 1 + ρgz 1 = p + ρv + ρgz p och z är tryck och lodrät höjd vid rörets mitt. Med friktion tillkommer en positiv term i högerledet, d.v.s. totala trycket (p + ρv / + ρgz) sjunker i strömningsriktningen, se Kap. 8. Om även tekniskt arbetsutbyte (w t ) inkluderas fås Bernoullis utvidgade ekvation: p 1 + ρv 1 + ρgz 1 = p + ρv + ρgz + p f + ρw t där p f > 0, pumpar/fläktar: w t < 0; turbiner: w t > 0. Kap (Ch. 1-4) Strömningslära C. Norberg, LTH
5 VENTURIMETER Tryckuttag strax innan den konvergenta delen, vid sektion 1 (diameter D). Ett andra tryckuttag i den trängre passagen (sektion, diameter d). Uppmätt: tryckskillnaden p 1 p. Sökt: massflöde ṁ. Stationär, inkompressibel strömning; fluidens densitet ρ. Hastighetsvariationer över tvärsnitt försummas, liksom effekter av friktion och gravitation (mellan 1 och ). Massbalans ṁ = ρav = konst. Konstant densitet, ρ = konst. V 1 A 1 = V A. A 1 = πd /4; A = πd /4 V 1 /V = A /A 1 = (d/d). Omskrivning: Bernoullis ekvation: p 1 + ρv 1 (p 1 p ) ρ = p + ρv = V V 1 = V [ 1 (d/d) 4 ] Teoretiskt massflöde: ṁ = πd 4 ρ(p 1 p ) 1 (d/d) 4 Verkligt massflöde: ṁ = c d πd 4 ρ(p 1 p ) 1 (d/d) 4 där c d är en korrektionsfaktor (utströmningskoefficient). För en väl utformad venturimeter och höga Reynolds tal är c d Kap (Ch. 1) Strömningslära C. Norberg, LTH
p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.
BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:
Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν
RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär
MMVA01 Termodynamik med strömningslära
MMVA01 Termodynamik med strömningslära Repetitionsfrågor strömningslära (inkl. svar i kursiv stil, utan figurer) 1 augusti 018 INLEDNING 1.1 Definiera eller förklara kortfattat (a) fluid = medium som kontinuerligt
Givet: ṁ w = 4.50 kg/s; T 1 = 20.0 C; T 2 = 70.0 C; Voil = 10.0 dm 3 /s; T 3 = 170 C; Q out = 11.0 kw.
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA 21 oktober 2008; inkl. teorisvar/lösningar. T1. Definiera eller förklara kortfattat (a) kinematisk viskositet ν = µ/ρ, där µ är fluidens dynamiska viskositet
MMVA01 Termodynamik med strömningslära
INLEDNING MMVA01 Termodynamik med strömningslära 1.1 Deniera eller förklara kortfattat (a) uid Repetitionsfrågor strömningslära (inkl. svar i kursiv stil, utan gurer) 18 augusti 010 = medium som kontinuerligt
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl
TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl. 14.00 18.00. P1. En sluten cylinder med lättrörlig kolv innehåller 0.30 kg vattenånga, initiellt vid 1.0 MPa (1000 kpa) och
Lektion 5: Innehåll. Bernoullis ekvation. c 5MT007: Lektion 5 p. 1
Lektion 5: Innehåll Bernoullis ekvation c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation Reynoldstal (Re) c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation Reynoldstal (Re)
HYDRAULIK (ej hydrostatik) Sammanfattning
HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016
LEONARDO DA VINCI ( )
LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.
Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar
Sensorer, effektorer och fysik Mätning av flöde, flödeshastighet, nivå och luftföroreningar Innehåll Volymetriska flödesmätare Strömningslära Obstruktionsmätare Mätning av massflöde Mätning av flödeshastighet
τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.
Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare
v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.
STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater gäller:
Lösningar/svar till tentamen i MTM119/052 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9/05 Hydromekanik Datum: 005-08-4 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-05-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform:
BERNOULLIS EKVATION Friktionsfri strömning, Eulers ekvation på vektorform: dv dt = V t +(V )V = g ρ 1 p (1) Cartesiska koordinater: V = (u,v,w), = ( / x, / y, / z). Vektoridentitet: (V )V = (V 2 /2)+ξ
MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter
TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)
bh 2 π 4 D2 ] 4Q1 πd 2 =
MEKANIK KTH Förslag till lösningar vid tentamen i 5C1921 Teknisk strömningslära för M den 27 maj 2005 1. Medelhastigheten i rören är ū 1 4Q 1 πd 2 ochikanalenär den ū 2 och ges av Q 2 [bh 2 π ] 4 D2 Kravet
1. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens inlopp ges av. p = d
MEKANIK KTH Förslag till lösningar vid tentamen i 5C9 Teknisk strömningslära för M den 6 maj 004. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens
CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16
CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker
Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-03-8 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Grundläggande aerodynamik
Grundläggande aerodynamik Introduktion Grundläggande aerodynamik Lyftkraft Aerodynamiska grunder Vingprofiler Historik Sedan urminnes tider har människan blickat upp mot himlen Förekomst inom mytologin:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.
STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater, V = (u,
MMVF01 Termodynamik och strömningslära
Institutionen för Energivetenskaper MMVF01 Termodynamik och strömningslära FORMELSAMLING till D. F. Young, B. R. Munson, T. H. Okiishi & W. W. Huebsch, A Brief Introduction to Fluid Mechanics, John Wiley
Kapitel 9 Hydrostatik. Fysik 1 - MB 2008
Tryck Kraft per yta kallas tryck. När en kraft F verkar vinkelrätt och jämnt fördelad mot en yta A erhålls trycket p F p där A p = tryck F = kraft A = area eller yta Tryck forts. p F A Enheten för tryck
Lösningar/svar till tentamen i F0031T Hydromekanik Datum:
Lösningar/svar till tentamen i F003T Hydromekanik Datum: 00-06-04 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin
Aerodynamik Swedish Paragliding Event 2008 1-2 november Ori Levin Monarca Cup, Mexico, foto Ori Levin Behöver man förstå hur man flyger för att kunna flyga? 2008-10-31 www.offground.se 2 Nej 2008-10-31
TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH
TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,
Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.
Strömning Förberedelser Läs i "Fysik i vätskor och gaser" om strömmande gaser och vätskor (sid 141-160). Titta därefter genom utförandedelen på laborationen så att du vet vilka moment som ingår. Om du
HYDRAULIK Grundläggande ekvationer III
HYDRAULIK Grundläggande ekvationer III Rolf Larsson, Tekn Vattenresurslära För VVR145, 3 mars, 2014 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 21 feb 2014
KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT
KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT Stationär, endimensionell strömning, perfekt gas, konstant tvärsnitt. Inget tekniskt eller visköst arbete, försumbara variationer i potentiell
PM Bussdepå - Gasutsläpp. Simulering av metanutsläpp Verkstad. 1. Förutsättningar
Simulering av metanutsläpp Verkstad 1. Förutsättningar 1.1 Geometri Verkstaden var 35,5 meter lång, 24 meter bred och takhöjd 6 meter. En buss med måtten längd 18 meter, bredd 2,6 meter och höjd 3,4 meter
Inlämningsuppgift 2. Figur 2.2
Inlämningsuppgift 2 2.1 En rektangulär tank med kvadratisk botten (sidlängd 1.5 m) och vertikala väggar innehåller vatten till en höjd av 0.8 m. Vid tiden t = 0 tas en plugg bort från ett cirkulärt hål
HYDRAULIK Grundläggande ekvationer I
HYDRAULIK Grundläggande ekvationer I Rolf Larsson, Tekn Vattenresurslära För VVR145, 23 mars, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 23 mar 2016
Institutionen för Energivetenskaper, LTH
Institutionen för Energivetenskaper, LTH MMV05/11 Strömningslära LABORATION 1 Omströmmade kroppar MÅLSÄTTNING (1) Förstå hur kroppsform och ytråhet påverkar krafterna på en omströmmad kropp () Förstå hur
ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA
Institutionen för ENERGIVETENSKAPER ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA av Daniel Eriksson och Christoffer Norberg maj 01 ÖVNINGSUPPGIFTER KAPITEL 1 1.1 Om U är en hastighet, en längd, kinematisk
HYDRAULIK Grundläggande ekvationer III
HYDRAULIK Grundläggande ekvationer III Rolf Larsson, Tekn Vattenresurslära För VVR145, 3 mars, 2014 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 21 feb 2014
2.2 Vatten strömmar från vänster till höger genom rörledningen i figuren nedan.
Inlämningsuppgift 2 2.1 För badkaret i figuren nedan kan antas att sambandet mellan vattenytearea och vattendjupet H kan beskrivas som:a = 4 H 3/2. Hur lång tid tar det att tömma badkaret genom avloppshålet
ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA
Institutionen för ENERGIVETENSKAPER ÖVNINGSUPPGIFTER GRUNDLÄGGANDE STRÖMNINGSLÄRA av Daniel Eriksson och Christoffer Norberg augusti 010 ÖVNINGSUPPGIFTER KAPITEL 1 1.1 Om V är en hastighet, en längd och
HYDRAULIK Grundläggande ekvationer I
HYDRAULIK Grundläggande ekvationer I Rolf Larsson, Tekn Vattenresurslära För VVR145, 23 mars, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 23 mar 2016
STRÖMNING MED FRIA VÄTSKEYTOR
STRÖMNING MED FRIA VÄTSKEYTOR Vid den fria vätskeytan (vattenytan) kan trycket antas lika med det konstanta atmosfärstrycket (ytspänningseffekter försummas). Stationär, inkompressibel och oftast turbulent
DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)
Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:
1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som.
Föreläsning 2. 1 Materiell erivata ätskor och gaser kallas me ett sammanfattane or för fluier. I verkligheten består fluier av partiklar, v s atomer eller molekyler. I strömningsmekaniken bortser vi från
Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.
010-04-6 Sammanfattning Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION p V z H const. g Quantity
Tillämpad termodynamik och strömningslära. Laborationshandledning
Tillämpad termodynamik och strömningslära (TMMV03) Laborationshandledning (VT-15) - Kyl- och värmepump - Strömningsförluster - Instationär konvektiv värmeöverföring - Kompressibel strömning Tillämpad termodynamik
Grundläggande aerodynamik, del 5
Grundläggande aerodynamik, del 5 Motstånd Totalmotstånd Formmotstånd Gränsskiktstypens inverkan på formmotstånd 1 Motstånd Ett flygplan som rör sig genom luften (gäller alla kroppar) skapar ett visst motstånd,
-rörböj med utloppsmunstycke,
S Rörböj 80 Givet: Horisontell 80 kpa at 80 -rörböj ed utlosunstycke A 600 (inlo) A 650 (fritt utlo) at 00 kpa volyflöde V 0475 /in vatten 0 C hoogena förhållanden över tvärsnitt friktionseffekter kan
DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR
DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska
Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.
Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm
Transportfenomen i människokroppen
Transportfenomen i människokroppen Kapitel 2+3. Bevarandelagar, balansekvationer, dimensionsanalys och skalning Ingrid Svensson 2017-01-23 Idag: Nyckelbegrepp: kontrollvolym, koordinatsystem, hastighet,
Termodynamik Föreläsning 5
Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5
Kap 5 mass- och energianalys av kontrollvolymer
Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)
5C1201 Strömningslära och termodynamik
5C1201 Strömningslära och termodynamik Föreläsning 12: Kompressibel strömning Introduktion samt isentropisk strömning Målsättning: att formulera de grundekvationer som gäller då strömningen är kompressibel,
MMVF01 Termodynamik och strömningslära
MMVF01 Termodynamik och strömningslära Repetitionsfrågor strömningslära (inkl. svar i kursiv stil; utan figurer) 11 december 2015 Sidhänvisningar: Young et al. (5th Ed.), Çengel & Boles (7th Ed.), Formelsamling
TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR120 8 JANUARI 2005, 08:00-13:00
Joakim Malm Teknisk Vattenresurslära LTH TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 8 JANUARI 00, 08:00-:00 Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning: Betyg: Lärobok, föreläsningsanteckningar
Grundläggande aerodynamik, del 6
Grundläggande aerodynamik, del 6 Motstånd Laminära profiler Minskning av inducerat motstånd Förhållande mellan C D,0 och C D,i Höghastighetsströmning 1 Laminära profiler Enl. tidigare: Typen av gränsskikt
FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)
FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:
printed: October 19, 2001 last modied: October 19, 2001 Laborationen avser en undersokning av stromningen kring en tva-dimensionell vingprol vid olika
Bestamning av lyftkraft pa en symmetrisk vingprol. printed: October 19, 2001 last modied: October 19, 2001 1 Laborationens innehall Laborationen avser en undersokning av stromningen kring en tva-dimensionell
Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid
Vingprofiler Ulf Ringertz Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Korda Tjocklek Medellinje Läge max tjocklek Roder? Lyftkraft,
HYDRAULIK Grundläggande ekvationer III
HYDRAULIK Grundläggande ekvationer III Rolf Larsson, Tekn Vattenresurslära För VVR145, 1 april, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 1 april
Grundläggande aerodynamik, del 4
Grundläggande aerodynamik, del 4 Gränsskiktet Definition/uppkomst Friktionsmotstånd Avlösning/stall Gränsskiktets inverkan på lyftkraften Gränsskiktskontroll Höglyftsanordningar 1 Bakgrund Den klassiska
Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.
Termodynamik FL1 Grundläggande begrepp Energi Energi Energi kan lagras Energi kan omvandlas från en form till en annan. Energiprincipen (1:a huvudsatsen). Enheter för energi: J, ev, kwh 1 J = 1 N m 1 cal
HYDRAULIK Grundläggande begrepp I
HYDRAULIK Grundläggande begrepp I Rolf Larsson, Tekn Vattenresurslära För VVR145, 17 april, 2012 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 19 feb 2014
Strömning och varmetransport/ varmeoverføring
Lektion 7: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Reynolds tal är ett dimensionslöst tal som beskriver flödesegenskaperna hos en fluid. Ett lågt värde på Reynolds
MEKANIK KTH Forslag till losningar till Sluttentamen i 5C1201 Stromningslara och termodynamik for T2 den 30 augusti Stromfunktionen for den ho
MEKNK KH Forslag till losningar till Sluttentamen i 5C0 Stromningslara och termodynamik for den 30 augusti 00. Stromfunktionen for den homogena fristrommen och kallan ar ;Vy; m dar den forsta termen (fristrommen)
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
MMVF01 Termodynamik och strömningslära
MMVF01 Termodynamik och strömningslära Repetitionsfrågor strömningslära (inkl. svar i kursiv stil; utan figurer) 24 november 2010 Sidhänvisningar: Young et al. (4th Ed.), Çengel & Boles (6th Ed.), Formelsamling
SA105X Examensarbete inom Farkostteknik grundnivå 10,5 Hp Mekanikinstitutionen KTH. Handledare: Luca Brandt Zhu Lailai
ANALYS AV NACA0018 VINGPROFIL SA105X Examensarbete inom Farkostteknik grundnivå 10,5 Hp Mekanikinstitutionen KTH David Norrby Thomas Långfors dnorrby@kth.se langfors@kth.se Handledare: Luca Brandt Zhu
Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde:
Termodynamik FL5 MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM Konserveringslag för materie Massabalans (materiebalans): Massa är konserverad och kan varken skapas eller förstöras under en process. Slutna
Aerodynamik - översikt
Aerodynamik - översikt Vingprofil Luftens egenskaper Krafter Lyftkraft Motståndskrafter Glidtal Polardiagram Sväng Prestanda 2009-11-22 www.offground.se 1 Aerodynamik vingprofil 2009-11-22 www.offground.se
TYP-TENTAMEN I TURBOMASKINERNAS TEORI
Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida
Magnus Persson, Linus Zhang Teknisk Vattenresurslära LTH TENTAMEN Vatten VVR145 4 maj 2012, 8:00-10:30 (del 2) 8-13:00 (del 1+2)
Magnus Persson, Linus Zhang Teknisk Vattenresurslära LTH TENTAMEN Vatten VVR145 4 maj 2012, 8:00-10:30 (del 2) 8-13:00 (del 1+2) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Lärobok, föreläsningsanteckningar,
(14 januari 2010) Vad representerar de två sista termerna? Illustrera ingående storheter i figur.
Kapitel 1 Inledning MMV025 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Ge en praktisk definition av en fluids densitet. Illustrera med figur. 1.2 Diskutera och illustrera med diagram några tänkbara
B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva
VINGTEORI. C L = C L 1+2/AR, C D = C D + C2 L C L och C D gäller oändligt bred vinge (2-D, AR ) L = C L A p ρu 2 /2, D = C D A p ρu 2 /2
VINGTEORI Flygplansvinge sedd uppifrån Planarea (vingyta), A p Vingbredd, b Medelkorda, C = A p /b Aspect Ratio, AR = b/c Vingtvärsnitt Fart, U Anfallsvinkel rel. kordalinje, α Max. välvning, h Max. tjocklek,
2. Vad innebär termodynamikens första lag? (2p)
Tentamen 20140425 14:0019:00 Tentamen är i två delar. Teoridelen (del A) skall lämnas in innan del B påbörjas. Hjälpmedel: Del A, inga hjälpmedel. Del B, kursbok, åhörarkopior från föreläsningar, föreläsningsanteckningar
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Bestämning av lyftkraft på en symmetrisk vingprofil.
Bestämning av lyftkraft på en symmetrisk vingprofil. November 5, 2002 1 Laborationens innehåll Laborationen avser en undersökning av strömningen kring en tvådimensionell vingprofil vid olika anfallsvinklar.
Kap.9, Kompressibel strömning
Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,
Hydrodynamik Mats Persson
Föreläsning 5/10 Hydrodynamik Mats Persson 1 De hydrodynamiska ekvationerna För att beskriva ett enkelt hydrodynamiskt flöde behöver man känna fluidens densitet,, tryck p hastighet u. I princip behöver
Kap.9, Kompressibel strömning
Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,
Grundläggande aerodynamik, del 2
Grundläggande aerodynamik, del 2 Mer om vingprofiler Kort om flygplanets anatomi Lyftkraft/lyftkraftskoefficienten, C L Alternativa metoder för lyftkraftsalstring Vingar 1 Vingprofiler Välvd/tjock profil
Magnus Persson och Linus Zhang Teknisk Vattenresurslära LTH DUGGA 2/TENTAMEN Vatten, VVR145 7 MAJ 2009, 08:00-10:30 (Dugga), 08:00-13:00 (Tentamen)
Magnus Persson och Linus Zhang Teknisk Vattenresurslära LTH DUGGA /TENTAMEN Vatten, VVR145 7 MAJ 009, 08:00-10:30 (Dugga), 08:00-13:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgiter: Rättning:
Planering Fysik för V, ht-10, lp 2
Planering Fysik för V, ht-10, lp 2 Kurslitteratur: Häfte Experimentell metodik och föreläsningsanteckningar, Kurslaboratoriet 2010 samt Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2009. markerar
5C1201 Strömningslära och termodynamik för T2 Inkompressibel, friktionsfri och viskös strömning,
MEKANIK KTH 5C1201 Strömningslära och termodynamik för T2 Inkompressibel, friktionsfri och viskös strömning, läsperiod 1 läsåret 2003/04 Denna kursdel introducerar de grundläggande begreppen inom strömningsmekaniken
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är
PTG 2015 Övning 4. Problem 1
PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser
Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta
TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Laborationer i HYDRAULIK OCH HYDROLOGI (TNBI28)
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för teknik och naturvetenskap Campus Norrköping Prof. Igor Zozoulenko Laborationer i HYDRAULIK OCH HYDROLOGI (TNBI28) Innehåll: LABORATION 1: HYDROSTATISKT
(14 januari 2010) 1.2 Ge en praktisk definition av en fluids densitet. Illustrera med figur.
Kapitel 1 Inledning MMV211 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Vad är den principiella skillnaden mellan en fluid och en fast kropp (solid)? 1.2 Ge en praktisk definition av en fluids
MMVF01 Termodynamik och strömningslära Exempel på tentamensuppgifter
MMVF01 Termodynamik och strömningslära Exempel på tentamensuppgifter TERMODYNAMIK T-1 Betrakta en välisolerad liggande cylinder som delats upp i två utrymmen m.h.a. en lättrörlig kolv av koppar (Cu). Kolven,
1 Potenitallösningen för strömningen kring en cylinder
Föreläsning 9 1 Potenitallösningen för strömningen kring en cylinder I denna föreläsning ska vi kortfattat behandla potentialströmning, som traditionellt varit ett stort område inom aerodynamiken, men
Trycket är beroende av kraft och area
Tryck Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte uppleva
Ch. 2-1/2/4 Termodynamik C. Norberg, LTH
GRUNDLÄGGANDE BEGREPP System (slutet system) = en viss förutbestämd och identifierbar massa m. System Systemgräns Omgivning. Kontrollvolym (öppet system) = en volym som avgränsar ett visst område. Massa
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00
Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),
Institutionen för tillämpad fysik & elektronik Ronny Östin Anders Åstrand. Turbojetmotor SR-30
Institutionen för 2003-11-21 tillämpad fysik & elektronik Ronny Östin Anders Åstrand Turbojetmotor SR-30 LABORATIONSINSTRUKTION 1.0 Allmänt Vidta alltid stor försiktighet under drift av experimentanläggningen.
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
1 Potentiallösningen för strömningen kring en cylinder
Föreläsning 9. 1 Potentiallösningen för strömningen kring en cylinder I denna föreläsningen ska vi behandla strömningen kring en kropp som inte är strömlinjeformad och som ett speciellt exempel ska vi