Föreläsning. Projektstart. Föreläsningar. Laboration i Förbränning. Termodynamik och Förbränning 5/

Storlek: px
Starta visningen från sidan:

Download "Föreläsning. Projektstart. Föreläsningar. Laboration i Förbränning. Termodynamik och Förbränning 5/"

Transkript

1 Proektstart Förbrännngsfysk: Samlng på torsdag 2/11 kl E421. Kärnfysk: Samlng på torsdag 2/11 kl H322. Matematsk Fysk: Samlng på torsdag 2/11 kl C368 Föreläsnngar Vetenskaplgt skrvande och ltteratursöknng Måndagen den 19/ sal Rydberg På hemsdan för kursen fnns några texter (sammanfattnng, nlednng, slutsats). Förbered dg genom att läsa genom texterna förväg nför dskusson på lektonen. Inspratonsföreläsnng av homas B. Johansson (obl. närvaro) Måndagen den 26/ sal Rydberg homas är regerngens särsklde utredare om Fosslfrhet på väg och har de senaste fem åren haft uppdraget som co char exekutvkommttén för Global Energy Assessment. Laboraton Förbrännng Föreläsnng 1 laboratonstder mellan 12/11 och 23/11. Boknng sker på tavlan trapphallen utanför sal Rydberg (1 trappa ner) fram tll och med torsdagen den 8 november kl. 16 därefter fnns lstan vd rum E314 Enoch hulnlaboratoret. För att garanteras plats på laboratonen ska boknng ha skett senast den 9 november. 8 personer per laboraton, laboratonen görs grupper om två. Laboratonhandlednngen består av tre delar (Laboratonsnstrukton, eor (om förbrännng), eor (om termoelement) re förberedelseuppgfter ska vara gorda före laboratonstllfället. vå beräknngsuppgfter ( laboratonsnstruktonen) ska lämnas n tllsammans med rapporten. Samlng nför laboratonerna sker E42, se nformaton på laboratonshandlednngens framsda. Laboratonen ngår nte betygsättnngen på kursen, men måste vara godkänd för att man ska få betyg på kursen. ermodynamk och Förbrännng 5/ Per-Erk Bengtsson Förbrännngsfysk per-erk.bengtsson@forbrf.lth.se 1

2 Prognos världens energbehov Mål: Effektv mlövänlg förbrännng! överrasknng geotermsk Global energanvändnng År Organska och fossla bränslen Nya och förnybara energkällor sol ny bomassa vnd kärnkraft vattenkraft gas ola kol bomassa NO 2 utsläpp från statonär förbrännngsugn Partkelutsläpp från marn Deselmotor Foto: Henrk Bladh 2

3 Euro 3 NOx / g/km Euro 5 Euro 4 Euro 6 Partculate Matter (PM) / g/km Förbrännng är komplext! Varför lyser en flamma gul? Kemsk knetk Flödeskarakterstk Fyskalska processer Dffuson Värmelednng Strålnng ermodynamk Olka faser Gaser Droppar Partklar Komplexa bränslen Verktyg eor Modellerng Expermentella teknker Laserteknker! Nanometerstora sotpartklar avger strålnng: Planck s strålnngslag 2 2hc 1 I( ) 5 hc / k e 1 Wen s förskutnngslag max 3 2,8981 K m Stefan Boltzmann s lag 4 I 3

4 Olka flamtyper på Bunsenbrännare Dffusonsflamma Förblandad flamma nstabl strömnng Förblandad flamma, Icke statonär strömnng Förblandad flamma, Statonär strömnng Flamstruktur N2 H2O CO2 Reaktons zon C3H8 N2 O2 4

5 k = A n exp( E a /R) Förbrännng av vätgas med syrgas 2 H O 2 2 H 2 O Reaktonshastgheten d[h 2 O]/dt= 2 k [H 2 ] 2 [O 2 ] Reaktonshastgheten är starkt temperaturberoende för många förbrännngsreaktoner! Number Reacton A n E a [kj/mole] 1 H + O 2 OH + O O + H 2 H + OH OH + H 2 H + H 2 O O + H 2 O OH + OH H 2 + M H + H + M O + O + M O 2 + M O + H + M OH + M H + O + M H 2 O + M H + O 2 + M HO 2 + M HO 2 + H H 2 + O HO 2 + H OH + OH HO 2 + O OH + O HO 2 + OH H 2 O + O HO 2 + HO 2 H 2 O 2 + O H 2 O 2 + M OH + OH M 16 H 2 O 2 + H H 2 O + OH H 2 O 2 + H H 2 + HO H 2 O 2 + O OH + HO H 2 O 2 + OH H 2 O + HO Förbrännng av metan 1 CH O 2 1 CO H 2 O 149 reaktoner för metanoxdaton Hur många behövs för en större bränslemolekyl? Lektonens nnehåll Ur NY EKNIK 1 Frgord energ H (entalp) Värmevärde mol (1 mol är 6,23*1 23 av ämnet) 2 Adabatsk flamtemperatur H Vad är temperatur? C p (värmekapactet) Molekylers rotatoner och vbratoner 3 Produktgasens sammansättnng H Kemsk ämvkt S (entrop) G (Gbbs fra energ) B A 4 Sammanfattnng Några förbrännngsexempel Bränslens energnnehåll = värmevärde 5

6 Standardtllstånd Standardtllstånd: den termodynamskt stabla formen av ett atomslag (N, O, H, C) vd ett referensförhållande. FörN ärdetn 2 (nte N, N 3, etc.) FörO ärdeto 2 (nte O, O 3, etc.) FörH ärdeth 2 (nte H, H 3, etc.) FörC ärdetc s,graft (nte C, C s,damant, etc.) Referensförhållandet är ett defnerat tryck och en defnerad temperatur, oftast =298 K och p=.1 MPa. Entalpn för standardtllståndet (N 2, O 2, H 2 och C s,graft ) vd referensförhållandet ges värdet, dvs H=. Från denna defnton kan standardbldnngsentalpn bestämmas för alla andra ämnen. Standardbldnngsentalp Entalp, H H 2, O 2, N 2, C s, graft H f, 298 C 3 H 8 H 2 O (l) kj/mol kj/mol H f, 298 abell 1. Standardbldnngsentalpn, H f, 298, för olka ämnen (p=.1 MPa, =298 K) H f, 298 (kj/mol) SO 3 svaveltroxd CO 2 koldoxd SO 2 svaveldoxd H 2 O(l) vatten, vätskefas H 2 O(g) vatten, gasfas CH 3 OH(l) metanol, vätska CO kolmonoxd C 3 H 8 propan CH 4 metan O 2 syrgas N 2 kvävgas H 2 vätgas C graft (s) kol, graft SO svavelmonoxd 5.1 NO 2 kvävedoxd 33.1 C 2 H 4 etylen (eten) NO kväveoxd 9.29 H väte 218. C 2 H 2 acetylen (etyn) O syre C(g) kol, gasfas

7 Beräkna värmevärdet för propan vd 298 K och.1 MPa (1) Lösnng 1. Beräkna stökometrska koeffcenter: 1 C 3 H O N 2 3 CO H 2 O (l) N 2 2. Beräkna frgord energ vd reaktonen: H n ( H ) n ( H ) f, f, Hess lag f, 298 ( N 2 f, f, f, 298 ( N 2 ) H H f, ( CO 2 ) 4 H f, ( H 2 O( l )) H 1 H ( C H ) 3 H ( O ) H H 298 = 3( ) + 4(-285.1) + - 1(-13.85) - - = kj Frgord energ Q = H = kj per mol propan ) Luft: X N2 =.78 X O2 =.21 X Ar =.1 Förenkla: X N2 =.79 X O2 =.21 Det ger 3.76 mol N 2 på vare mol O 2 Beräkna värmevärdet för propan vd 298 K och.1 MPa (2) 3. Beräkna molvkten för propan: M C =12 g/mol och M H =1 g/mol ger M C3H8 =312+81= 44 g/mol 4. Beräkna värmevärdet HV = Q / M C3H8 = kj/mol / 44. g /mol = 5.4 MJ/kg Detta är det högre värmevärdet, dvs HHV=5.4 MJ/kg. Då görs beräknngen på att vatten bldas vätskefas. Det benämns också kalormetrskt värmevärde. Det lägre värmevärdet, LHV, erhålls med beräknng av vatten gasfas. Det ger LHV = 46.4 MJ/kg. Detta värmevärde kallas också effektvt värmevärde. Flamtemperaturer Den frgorda energn från reaktonen kommer att värma upp produkterna. emperaturen kommer att öka! ( f ) H f C p produkterd Q = -H = kj per mol propan 1 C 3 H O N 2 3 CO H 2 O (l) N 2 Alkaner har lknande värmevärden Etanol och metanol har låga värmevärden Vätgas har mycket högt värmevärde Hur hög blr temperaturen maxmalt en propan/syrgas flamma? Hur hög blr temperaturen maxmalt en propan/luft flamma? Vlken flamma ger högst temperatur? 7

8 Entalp vs temperatur Fundera på fölande problem! H 1 C 3 H 8 5 O N 2 3 CO 2 4 H 2 O 18.8 N 2 H C p f p C produkterd H P Q Kvävgas (N 2 ) vå dentska volymer är solerade från omgvnngen. Den ena nnehåller kvävgas och den andra koldoxd vd 298 K och atmosfärstryck. H Adabatsk flamtemperatur emperatur / K Entalpn är konstant om det nte fnns värmeförluster Q Koldoxd (CO 2 ) Värme Q överförs tll kvävgasen så att temperaturen ökar 1 grader. Samma värme Q överförs tll koldoxden. Hur hög blr temperaturen? Över 1 grader 1 grader Under 1 grader Värmekapactet, Cp Enatomär gas 7 Cp / J mol -1 K ratomära molekyler Atomer Datomära molekyler N2 O2 CO2 H2O Ar P(v) Maxwell Boltzmannfördelnng Ökad v 8 k v m 1 / 2 k = Boltzmanns konstant (1.38 E 23 J/K) m = massa (kg) = temperatur (K) 1 1. Argon vd temperaturen 3 K v 4 m/s emperatur / K Ett ämne med fler frhetsgrader har högre värmekapactet! Atomstorlek: Fr medelväglängd : Kollsonsfrekvens: d mellan kollsoner: 1 Å 1 m 41 8 per sekund 2 ns 8

9 Datomär gas Enatomär gas Datomär gas P(v) Maxwell Boltzmannfördelnng Ökad 1. Kvävgas vd temperaturen 3 K v = 5 m/s Molekylstorlek: Fr medelväglängd : Kollsonsfrekvens: d mellan kollsoner: 2 Å.3 m 21 9 per sekund.6 ns v 8 k v m 1 / 2 k = Boltzmanns konstant (1,38 E 23 J/K) m = massa (g) = temperatur (K) P(v) Maxwell Boltzmannfördelnng Ökad Det fnns ytterlgare frhetsgrader rotatoner och vbratoner! v 8 k v m 1 / 2 Rotatoner och vbratoner emperaturmätnng motor,9 Ntrogen (N 2 ) Energnvådagram för datomär moleyl Relatv populaton,8,7 =3 K,6,5,4,3 =17 K,2, Rotatonskvanttal =49 K 1 J J v=2 v=1 v= Internukleärt avstånd Relatv populaton,9,8,7 v=,6 v=1,5,4 v=2,3,2, emperatur (K) Sgnal Energ =76 K 9

10 Vad är temperatur? Ett system med lka många mol av ett ämne har ett större energnnehåll vd högre temperatur. Vad händer vd en molekylkollson? P(v) =3 K Luft =1 K Luft,9 v,8,7,6 =3 K Molekylerna ( genomsntt) rör sg snabbare (mer rörelseenerg) vbrerar snabbare (mer vbratonsenerg) roterar snabbare (mer rotatonsenerg) vd högre temperatur emperatur är ett mått på ett systems förmåga att avge värme. otala energn bevaras vd kollsonen. För att bestämma en temperatur behövs en fördelnng, dvs nformaton från många molekyler.,5,4,3,2,1 =17 K Gbbs fra energ (G) G = H S G avgör rktnngen för en reakton. En tänkt reakton A + B C + D Om G = G(produkter) G(reaktanter) < reaktonen går spontant åt höger > reaktonen går spontant åt vänster Är reaktonen 1 H O 2 1 H 2 O(g) spontan vd 298 K and.1 MPa? Lösnng: 1. Beräkna DG = G(products) G (reactants) vd 298 K G n ( H n ( G f, ) f, ) n ( H n ( G f, f, ) ) n ( S ) n ( S ) produkter reaktanter G kan httas tabeller f,, H f,, S Med spontant menas rktnng för att uppnå termodynamsk stabltet, dt systemet strävar. 1

11 ermokemska data för vatten Är reaktonen 1 H O 2 1 H 2 O(g) spontan vd 298 K and.1 MPa? Lösnng: 1. Beräkna G = G(products) G (reactants) vd 298 K G n ( H n ( G f, ) f, ) n ( H n ( G f, f, ) ) n ( S ) n ( S ) produkter reaktanter G kan httas tabeller f,, H f,, S 1 H O 2 1 H 2 O (g) H f, 298 [kj/mol] S 298 [J/mol-K] G 298 = 1) ( ( )1-3 = kj G <, alltså är reaktonen spontan mot att blda vatten! Är detta korrekt? Aktverngsenerg Ett system strävar mot att mnmera G H E a 2 H 2 + O 2 H kj 2 H 2 O Gbbs fra energ (G) H 2 + ½ O 2 Gbbs fra energ (G) H 2 + ½ O 2 Gbbs fra energ (G) H 2 + ½ O K H 2 O 15 K H 2 O 3 K H 2 O G 298 = kj/mol G 298 = kj/mol G 298 = kj/mol G = H S 11

12 Förbrännng förblandad flamma Produktgaskoncentratoner n C 3 H 8 /luftflamma C 3 H 8 O 2 N 2 CO 2 H 2 O N 2 f ~21-25 K 295 K ~3-5 m Produktgaskoncentratoner n C 3 H 8 /O 2 flamma Mer CO än CO 2 C 3 H 8 O 2 N 2 Sammanfattnng: Förbrännng förblandad flamma Mest CO 2 H 2 O N 2 1: Reaktanterna närmar sg reaktonszonen 2: Hundratals ämnen och reaktoner. 3: Hög temperatur, >2 K, höga koncentratoner av ämnen som CO, H 2 och atomer. Kemsk ämvkt råder. Systemet maxmerar entropn och mnmerar Gbbs fra energ. G=H S 4: emperaturen sunker. De kemska ämvkterna förskuts mot mer CO 2 och H 2 O. 12

13 Vätskeformga bränslen Vätskeformga bränslen brnner ALLID gasfas. Vätskan förångas och förbrännngen sker gasfas För pölar beror rsk för antändnng på förångnngsegenskaper. Pöl I en deselmotor förångas dropparna upphettad luft från den ökade kompressonen. Droppe Fasta bränslen (Bobränslen) Högt vattennnehåll försämrar förbrännngen då bränslet först måste torkas. 8 9% av förbrännngen sker gasfas då flyktga ämnen förbränns (olka slags flyktga kolväten) Resterande förbrännng sker det återstående kolet. Återstoden är aska (hög halt av metallsalter) Intensv värmestrålnng från sotpartklar. Bränder Varför forska förbrännngsprocesser? förstå fenomen som detonaton, antändnng exploson, och brandsprdnng. lägre halter av förorenngar som sot och kväveoxder. Brandförlopp är exponentella och ett rum kan vara övertänt på några mnuter! Rummet är övertänt när värmestrålnngen från sot vd taket är så stark att den nterar brand rummets brännbara materal. HA EN BRANDVARNARE HEMMA! HA EN BRANDSLÄCKARE HEMMA! effektvare förbrännngsprocesser med lägre bränsleförbruknng. utveckla framtdens förbrännngsteknologer. 13

14 Det är lätt att få något att brnna, men att göra det mlövänlgt och effektvt kräver kunskap nom många vetenskaplga områden! Experment kopplat tll teor och modellberäknngar leder tll bättre desgn av förbrännngsapparater. V har enbart gort en termodynamsk betraktelse av en förblandad flamma. Några saker att fundera på: Olka flamtyper (förblandat, cke förblandat) påverkar förbrännngen. Förbrännng kan ske nom stora tryck och temperaturområden och bete sg olka på grund av detta. Graden av turbulens har stor nverkan på effektvtet och förorenngar. Fasta och vätskeformga bränslens struktur påverkar förbrännngen. hat s fantastc! I can t keep up wth all ths modern combuston technology! Hur sker vår energförsörnng? Framtden Hur ska energförsörnngen ske för den tunga basndustrn? Kan v flyga säkert, effektvt och rent utan förbrännng? Hur farlga är de nya deselmotorerna? Hur sker vår elförsörnng? Hur lagrar v el från ntermttenta källor som sol och vnd? Elblar naturlgt steg? Batterer tll vlken kostnad? Varfrån kommer elen? 14

Föreläsning. Projektstart. Prognos världens energibehov. Laboration i Förbränning. Termodynamik och Förbränning 31/

Föreläsning. Projektstart. Prognos världens energibehov. Laboration i Förbränning. Termodynamik och Förbränning 31/ Global energanvändnng Föreläsnng Termodynamk och Förbrännng 31/1 216 Per-Erk Bengtsson Förbrännngsfysk per-erk.bengtsson@forbrf.lth.se Proektstart Proekt: Förbrännngsfysk För alla proekt Förbrännng, samlng

Läs mer

Föreläsning. Termodynamik och Förbränning 2/ Per-Erik Bengtsson Förbränningsfysik

Föreläsning. Termodynamik och Förbränning 2/ Per-Erik Bengtsson Förbränningsfysik Föreläsning Termodynamik och Förbränning 2/11 215 Per-Erik Bengtsson Förbränningsfysik per-erik.bengtsson@forbrf.lth.se Projektstart Projekt: Förbränningsfysik För alla projekt i Förbränning, samling på

Läs mer

Föreläsning. Termodynamik och Förbränning 3/ Förbränningsfysik

Föreläsning. Termodynamik och Förbränning 3/ Förbränningsfysik Föreläsning Termodynamik och Förbränning 3/11 214 P EikB t Per-Erik Bengtsson Förbränningsfysik per-erik.bengtsson@forbrf.lth.se 1 Projektstart Projekt: Förbränningsfysik För alla projekt i Förbränning,

Läs mer

Föreläsning. Termodynamik och Förbränning 26/

Föreläsning. Termodynamik och Förbränning 26/ Föreläsning Termodynamik och Förbränning 26/10 2011 1 Projektstart Projekt: Förbränningsfysik För alla projekt i Förbränning, samling på torsdag 27/10 kl. 10.15 i E421. För vägbeskrivning till E421 se

Läs mer

Presentation av Förbränningsfysik

Presentation av Förbränningsfysik Presentation av Förbränningsfysik Hemsida www.forbrf.lth.se Per-Erik Bengtsson per-erik.bengtsson@forbrf.lth.se Delaktighet i kursen FMFF05 Föreläsning om Förbränning första lektionen HT2 Laboration i

Läs mer

Kap Första huvudsatsen (HS). Teori och begrepp.

Kap Första huvudsatsen (HS). Teori och begrepp. Kap. 2.1-6. Första huvudsatsen (HS). eor och begrepp. ermodynamk = värmets rörelse. Energutbyte: ärme - Arbete. Utbyte System - Omgvnng. System = ntressant del av världen (t.ex. en bägare med kemkaler).

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 4 14.4.2011 Förbränningsvärme balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Squad task 1. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Squad task 1. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 5 20.4.2010 Värme i förbränning balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Energibalans och temperatur. Oorganisk Kemi I Föreläsning

Energibalans och temperatur. Oorganisk Kemi I Föreläsning Energibalans och temperatur Oorganisk Kemi I Föreläsning 5 20.4.2010 Innehåll Värme i förbränning Energibalans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att

Läs mer

Förbränning. En kort introduktion Christian Brackmann

Förbränning. En kort introduktion Christian Brackmann Förbränning En kort introduktion 2016-01-21 Christian Brackmann Christian.Brackmann@forbrf.lth.se Avdelningen för Förbränningsfysik vid Fysiska Institutionen ~ 35 anställda ~ 20 doktorander 2-5 examensarbetare

Läs mer

Centrala Gränsvärdessatsen:

Centrala Gränsvärdessatsen: Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar

Läs mer

Partikeldynamik. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Dynamik är läran om rörelsers orsak. Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är

Läs mer

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd

Läs mer

Tentamen i Dataanalys och statistik för I den 5 jan 2016

Tentamen i Dataanalys och statistik för I den 5 jan 2016 Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:

Läs mer

Övningar Homogena Jämvikter

Övningar Homogena Jämvikter Övningar Homogena Jämvikter 1 Tiocyanatjoner, SCN -, och järn(iii)joner, Fe 3+, reagerar med varandra enligt formeln SCN - + Fe 3+ FeSCN + färglös svagt gul röd Vid ett försök sätter man en liten mängd

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem.

Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem. Kapitel 2 Här hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Bras-Spisen, ett bra val till din öppna spis!

Bras-Spisen, ett bra val till din öppna spis! Bras-Spsen, ett bra val tll dn öppna sps! Bras-Spsen nsats var före sn td när den kom ut på marknaden mtten av 80-talet. Eldnngsteknken och rökkanalsystemet skyddades under många år av tre olka patent.

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Kap 6: Termokemi. Energi:

Kap 6: Termokemi. Energi: Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.

Läs mer

Kapitel 3. Stökiometri. Kan utföras om den genomsnittliga massan för partiklarna är känd. Man utgår sedan från att dessa är identiska.

Kapitel 3. Stökiometri. Kan utföras om den genomsnittliga massan för partiklarna är känd. Man utgår sedan från att dessa är identiska. Kapitel 3 Innehåll Kapitel 3 Stökiometri 3.1 Räkna genom att väga 3.2 Atommassor 3.3 Molbegreppet 3.4 Molmassa 3.5 Problemlösning 3.6 3.7 3.8 Kemiska reaktionslikheter 3.9 3.10 3.11 Copyright Cengage Learning.

Läs mer

PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften

PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften PARTIKELDYNAMIK Def.: En partkel är ett föremål vars utsträcknng saknar betydelse för dess rörelse. (Ej rotaton!) (YF kap. 1.2) Def. : Dynamk = Studer av vad som orsakar rörelse. (YF kap. 4) Observaton:

Läs mer

Förbränning. En kort introduktion 2013-01-25. Joakim Bood Joakim.Bood@forbrf.lth.se

Förbränning. En kort introduktion 2013-01-25. Joakim Bood Joakim.Bood@forbrf.lth.se Förbränning En kort introduktion 2013-01-25 Joakim.Bood@forbrf.lth.se Avdelningen för Förbränningsfysik vid Fysiska Institutionen ~ 35 anställda ~ 20 doktorander 2-5 examensarbetare Forskning inom Laserdiagnostik

Läs mer

Laboration i. Förbränning. Enoch Thulin-laboratoriet, hemvist för avdelningen för Förbränningsfysik sedan 2001.

Laboration i. Förbränning. Enoch Thulin-laboratoriet, hemvist för avdelningen för Förbränningsfysik sedan 2001. Teknisk Fysik (F2) Laboration i Förbränning Samling vid laborationen Förbränning sker i Enoch Thulinlaboratoriet, på översta våningen i rum E420 (se bild). Utgå från receptionen på Fysicum. I trappuppgången

Läs mer

odeller och storlekarw

odeller och storlekarw odeller och storlekarw Bras-Spsen, ett bra val tll dn öppna sps! Bras-Spsen nsats var före sn td när den kom ut på marknaden mtten av 80-talet Eldnngsteknken och rökkanalsystemet skyddades under många

Läs mer

Hur förändras den ideala gasens inre energi? Beräkna också q. (3p)

Hur förändras den ideala gasens inre energi? Beräkna också q. (3p) entamen i kemisk termodynamik den 4 juni 2013 kl. 14.00 till 19.00 Hjälpmedel: Räknedosa, BEA och Formelsamling för kurserna i kemi vid KH. Endast en uppgift per blad! Skriv namn och personnummer på varje

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt Spontanitet, Entropi, och Fri Energi 17.1 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 17.5 17.6 och kemiska reaktioner 17.7 och inverkan av tryck 17.8

Läs mer

Svara på följande frågor som träning inför kemiprovet om gaser, luft och vatten.

Svara på följande frågor som träning inför kemiprovet om gaser, luft och vatten. Svara på följande frågor som träning inför kemiprovet om gaser, luft och vatten. Frågor på E nivå (man ska också kunna dessa för högre betyg): 1 Vad är en gas? 2 Vad är det för skillnad på fast flytande

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi

Kapitel 17. Spontanitet, Entropi, och Fri Energi Kapitel 17 Spontanitet, Entropi, och Fri Energi Kapitel 17 Innehåll 17.1 Spontana processer och entropi 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 Fri

Läs mer

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning Bränsleanalys och rökgaskalkyl Oorganisk Kemi I Föreläsning 4 15.4.2010 Innehåll Rökgassammansättning Bränslesammansättning Förbränningsreaktioner Lufttillförsel Askan Termer och begrepp Fasta bränslen

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

Övningstentamen i KFK080 för B

Övningstentamen i KFK080 för B Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt

Läs mer

Laboration i. Förbränning

Laboration i. Förbränning Laboration i Förbränning Samling vid laborationen Förbränning sker i Enoch Thulinlaboratoriet, på översta våningen i rum E42 (se bild). Utgå från receptionen på Fysicum. I trappuppgången nära receptionen

Läs mer

Nämn ett ämne som kan omvandlas till diamant a, granit b, meteoritmineral c, kol d, grafit

Nämn ett ämne som kan omvandlas till diamant a, granit b, meteoritmineral c, kol d, grafit 1 Vad använder man kol till? Ge exempel. Energi, diamant, 1 Vad kallas en alkohol med två OH grupper? Ge exempel. Etandiol 1 Har kan diamant vara så hårt? För att lagrerna har bindningar mellan varandra

Läs mer

Handlingsplan. Grön Flagg. Bosgårdens förskolor

Handlingsplan. Grön Flagg. Bosgårdens förskolor Handlngsplan Grön Flagg Bosgårdens förskolor Kommentar från Håll Sverge Rent 2015-08-11 14:16: Det är nsprerande att läsa hur n genom röstnng tagt tllvara barnens ntressen när n tagt fram er handlngsplan.

Läs mer

FBU, maj, Revinge. Thomas K Nilsson

FBU, maj, Revinge. Thomas K Nilsson FBU, 10-11 maj, Revinge Thomas K Nilsson thomask.nilsson@srv.se 046 23 36 40 Vad finns i flaskan? Vad finns i flaskan? Vad finns i flaskan? Vad finns i flaskan? Vad finns i flaskorna? Vad finns i flaskorna?

Läs mer

Stökiometri IV Blandade Övningar

Stökiometri IV Blandade Övningar Stökiometri IV Blandade Övningar 1) 1 Man blandar 25,0 cm 3 silvernitratlösning, c = 0,100 M, med 50,0 cm 3 bariumkloridlösning c = 0,0240 M. Hur stor är: [Ag + ] i blandningen? [NO 3- ] i blandningen?

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se

Läs mer

ORGANISK KEMI KOLFÖRENINGARNAS KEMI

ORGANISK KEMI KOLFÖRENINGARNAS KEMI KOLFÖRENINGARNAS KEMI KOLATOMEN ÄR EN MÅNGSIDIG BYGGSTEN Kolatomen finns i allt levande Kolatomen finns förstås också i allt material tillverkat av sånt som har varit levande t ex papper, plast och kläder

Läs mer

Lärare: Jimmy Pettersson. Kol och kolföreningar

Lärare: Jimmy Pettersson. Kol och kolföreningar Lärare: Jimmy Pettersson Kol och kolföreningar Rent kol Grafit Den vanligaste formen av rent kol. Bindningar mellan de olika lagerna är svaga. Slits lätt som spetsen på blyertspennor som består av grafit.

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

Vad är det som gör att vi lever? Finns det en gud som har skapat livet?

Vad är det som gör att vi lever? Finns det en gud som har skapat livet? Organisk kemi 1 Vad är det som gör att vi lever? Finns det en gud som har skapat livet? Sant: ett atomslag är viktigare än alla andra för att bygga liv vilket? Kolatomen är nödvändig för liv! Viktig byggsten

Läs mer

Laboration i. Förbränning

Laboration i. Förbränning Teknisk Fysik (F2) Laboration i Förbränning Vid laborationen Förbränning samlas vi i Enoch Thulinlaboratoriet, på översta våningen i rum E42 (se bild). Utgå från receptionen på Fysicum. I trappuppgången

Läs mer

Alla papper, även kladdpapper lämnas tillbaka.

Alla papper, även kladdpapper lämnas tillbaka. Maxpoäng 66 g 13 vg 28 varav 4 p av uppg. 18,19,20,21 mvg 40 varav 9 p av uppg. 18,19,20,21 Alla papper, även kladdpapper lämnas tillbaka. 1 (2p) En oladdad atom innehåller 121 neutroner och 80 elektroner.

Läs mer

Laboration i. Förbränning. Enoch Thulin-laboratoriet, hemvist för avdelningen för Förbränningsfysik sedan 2001.

Laboration i. Förbränning. Enoch Thulin-laboratoriet, hemvist för avdelningen för Förbränningsfysik sedan 2001. Teknisk Fysik (F2) Laboration i Förbränning Samling vid laborationen Förbränning sker i Enoch Thulinlaboratoriet, på översta våningen i rum E42 (se bild). Utgå från receptionen på Fysicum. I trappuppgången

Läs mer

Månadens molekyl är syre, O 2. Syre har valts till månadens molekyl därför att syre ingår i en mängd olika reaktioner där energi omsätts.

Månadens molekyl är syre, O 2. Syre har valts till månadens molekyl därför att syre ingår i en mängd olika reaktioner där energi omsätts. 1 Solen tillför jorden enorma mängder energi. Energin går åt till att värma upp marken, vindar uppkommer, is smälter, vatten blir vattenånga, vatten förflyttar sig som moln, regnet ger vattenkraft, vattenkraft

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning Bränsleanalys och rökgaskalkyl Oorganisk Kemi I Föreläsning 3 12.4.2011 Mål Att tillämpa det första trappsteget i processkemistens verktygslåda: Definiera stökiometriska samband mellan reaktant och produkt

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Organisk kemi. Till provet ska du

Organisk kemi. Till provet ska du Organisk kemi Till provet ska du Känna till de tre vanligaste formerna av grundämnet kol och kunna berätta något om deras egenskaper Grafit atomerna sitter ihop i lösa lager, finns i t.ex. blyertspennor

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Diplomingenjörs - och arkitektutbildningens gemensamma antagning 2017 Urvalsprov i DI-kemi 31.5.

Diplomingenjörs - och arkitektutbildningens gemensamma antagning 2017 Urvalsprov i DI-kemi 31.5. Diplomingenjörs - och arkitektutbildningens gemensamma antagning 2017 Urvalsprov i DI-kemi 31.5. Modellsvar Räknefel och slarvfel, - ½ p. Halvpoäng upphöjas inte. Till exempel om totalpoäng är 2½ p. slutpoäng

Läs mer

REPETITIONSKURS I KEMI LÖSNINGAR TILL ÖVNINGSUPPGIFTER

REPETITIONSKURS I KEMI LÖSNINGAR TILL ÖVNINGSUPPGIFTER KEMI REPETITIONSKURS I LÖSNINGAR TILL ÖVNINGSUPPGIFTER Magnus Ehinger Fullständiga lösningar till beräkningsuppgifterna. Kemins grunder.10 Vi antar att vi har 10 000 Li-atomer. Av dessa är då 74 st 6 Li

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 007-1-18 FI Dnr 07-1171-30 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers P.O. Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35

Läs mer

Handlingsplan. Grön Flagg. Hamregårds förskola

Handlingsplan. Grön Flagg. Hamregårds förskola Handlngsplan Grön Flagg Hamregårds förskola Kommentar från Håll Sverge Rent 2016-03-30 08:43: Vlket härlgt vattentema n ska arbeta med tllsammans med barnen och strålande att n utgått från barnens ntresse

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Inläsningsblad, organisk kemi

Inläsningsblad, organisk kemi Inläsningsblad, organisk kemi Detta undervisningsområde handlar om följande delar av läroplanens centrala innehåll för årskurs 7-9: Kemin i naturen Kemiska föreningar och hur atomer sätts samman till molekyl-

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel:

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel: Jämviktsuppgifter Litterarum radices amarae, fructus dulces 1. Vid upphettning sönderdelas etan till eten och väte. Vid en viss temperatur har följande jämvikt ställt in sig i ett slutet kärl. C 2 H 6

Läs mer

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14 Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera

Läs mer

Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar.

Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Koncentrationer i vätskelösningar. Kap. 12.2+3. Lösning = lösningsmedel + löst(a) ämne(n)

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

TAOP61 Optimering av realistiska sammansatta system. Speciellt med denna kurs. Uppdateringar. Kursplan

TAOP61 Optimering av realistiska sammansatta system. Speciellt med denna kurs. Uppdateringar. Kursplan TAOP61 Optmerng av realstska sammansatta system Examnator: Ka Holmberg ka.holmberg@lu.se, 013-282867 Kurshemsda: http://courses.ma.lu.se/gu/taop61/ Ltteratur: Ka Holmberg: Optmerng (Lber, 2010/2018) Ka

Läs mer

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid

Läs mer

Kapitel 3. Stökiometri. Kan utföras om den genomsnittliga massan för partiklarna är känd. Man utgår sedan från att dessa är identiska.

Kapitel 3. Stökiometri. Kan utföras om den genomsnittliga massan för partiklarna är känd. Man utgår sedan från att dessa är identiska. Kapitel 3 Stökiometri Kapitel 3 Innehåll 3.1 Räkna genom att väga 3.2 Atommassor 3.3 Molbegreppet 3.4 3.5 Problemlösning 3.6 Kemiska föreningar 3.7 Kemiska formler 3.8 Kemiska reaktionslikheter 3.9 3.10

Läs mer

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck

Läs mer

Kapitel 3. Stökiometri. Kan utföras om den genomsnittliga massan för partiklarna är känd. Man utgår sedan från att dessa är identiska.

Kapitel 3. Stökiometri. Kan utföras om den genomsnittliga massan för partiklarna är känd. Man utgår sedan från att dessa är identiska. Kapitel 3 Stökiometri Kapitel 3 Innehåll 3.1 Räkna genom att väga 3.2 Atommassor 3.3 Molbegreppet 3.4 3.5 Problemlösning 3.6 Kemiska föreningar 3.7 Kemiska formler 3.8 Kemiska reaktionslikheter 3.9 3.10

Läs mer

Avancerade kemiska beräkningar del 3. Niklas Dahrén

Avancerade kemiska beräkningar del 3. Niklas Dahrén Avancerade kemiska beräkningar del 3 Niklas Dahrén Uppgifter som jag går igenom i den här filmen: 1. Hur stor substansmängd O 2 behövs för fullständig förbränning av 2 mol metan CH 4? 2. Du ska framställa

Läs mer

Test av anpassning, homogenitet och oberoende med χ 2 - metod

Test av anpassning, homogenitet och oberoende med χ 2 - metod Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna

Läs mer

Kapitel 3. Stökiometri

Kapitel 3. Stökiometri Kapitel 3 Stökiometri Kapitel 3 Innehåll 3.1 Räkna genom att väga 3.2 Atommassor 3.3 Molbegreppet 3.4 Molmassa 3.5 Problemlösning 3.6 Kemiska föreningar 3.7 Kemiska formler 3.8 Kemiska reaktionslikheter

Läs mer

(tetrakloroauratjon) (2)

(tetrakloroauratjon) (2) UTTAGIG TILL KEMIOLYMPIADE 2015 TEORETISKT PROV nr 1 Provdatum: november vecka 45 Provtid: 120 minuter. jälpmedel: Räknare, tabell- och formelsamling. Redovisning och alla svar görs på svarsblanketten

Läs mer

Beräkning av rökgasflöde

Beräkning av rökgasflöde Beräkning av rökgasflöde Informationsblad Uppdaterad i december 2006 NATURVÅRDSVERKET Innehåll Inledning 3 Definitioner, beteckningar och termer 4 Metoder för beräkning av rökgasflöde 7 Indirekt metod:

Läs mer

FK2002,FK2004. Föreläsning 5

FK2002,FK2004. Föreläsning 5 FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd

Läs mer

Nästan alla ämnen kan förekomma i tillstånden fast, flytande och gas. Exempelvis vatten kan finnas i flytande form, fast form (is) och gas (ånga).

Nästan alla ämnen kan förekomma i tillstånden fast, flytande och gas. Exempelvis vatten kan finnas i flytande form, fast form (is) och gas (ånga). Nästan alla ämnen kan förekomma i tillstånden fast, flytande och gas. Exempelvis vatten kan finnas i flytande form, fast form (is) och gas (ånga). I alla tre formerna är vatten fortfarande samma ämne och

Läs mer

Handlingsplan. Grön Flagg. Gärdesängens förskola

Handlingsplan. Grön Flagg. Gärdesängens förskola Handlngsplan Grön Flagg Gärdesängens förskola Kommentar från Håll Sverge Rent 20121012 11:04: Lte fler uppgfter tack... 20121023 15:38: N har vktga och relevanta mål samt aktvteter som kan göra alla delaktga

Läs mer

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs GÖTEBOGS UNIVESITET Fysska nsttutonen aprl 98 Hans Lnusson, Carl-Axel Sjöblom, Örjan Skeppstedt januar 99 FY 400 mars 998 Dstanskurs LEKTION Delkurs 4 STATISTISK MEKANIK TANSPOTFENOMEN I detta häfte ngår

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Grön Flagg-rapport Förskolan Kalven 20 jan 2016

Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Kommentar från Håll Sverge Rent 2016-01-20 09:07: Förskolan Kalven, n har lämnat n en toppenrapport även denna gång! Bra områden

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x Lösning till tentamen 2013-02-28 för Grundläggande kemi 10 hp Sid 1(5) 1. CH 3 COO - (aq) + H 2 O (l) CH 3 COOH ( (aq) + OH - (aq) Konc. i början 0.1M 0 0 Ändring -x +x +x Konc. i jämvikt 0,10-x +x +x

Läs mer

jämvikt (där båda faserna samexisterar)? Härled Clapeyrons ekvation utgående från sambandet

jämvikt (där båda faserna samexisterar)? Härled Clapeyrons ekvation utgående från sambandet Tentamen i kemisk termodynamik den 14 december 01 kl. 8.00 till 13.00 (Salarna E31, E3, E33, E34, E35, E36, E51, E5 och E53) Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast

Läs mer